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Abstract: Data collected from the supervisory control and data acquisition (SCADA) system are
used widely in wind farms to obtain operation and performance information about wind turbines.
The paper presents a three-way model by means of parallel factor analysis (PARAFAC) for wind
turbine fault detection and sensor selection, and evaluates the method with SCADA data obtained
from an operational farm. The main characteristic of this new approach is that it can be used
to simultaneously explore measurement sample profiles and sensors profiles to avoid discarding
potentially relevant information for feature extraction. With K-means clustering method, the
measurement data indicating normal, fault and alarm conditions of the wind turbines can be
identified, and the sensor array can be optimised for effective condition monitoring.

Keywords: wind turbines; supervisory control and data acquisition (SCADA) data; parallel factor
analysis (PARAFAC); K-means clustering; condition monitoring

1. Introduction

Nowadays, wind power is considered as one of the most viable and sustainable resources
worldwide [1]. Wind turbines often operate offshore in order to take advantage of stronger and
more reliable winds; however, unscheduled maintenance due to unexpected failures can be costly, not
only for maintenance support but also due to lost production time [2]. Condition monitoring systems
(CMS) can play a pivotal role in establishing a condition-based maintenance and asset management.
Most modern wind turbines incorporate on-board supervisory control and data acquisition (SCADA)
systems for control and monitoring of turbine operation and performance. A SCADA system may
contain massive amounts of data related to hundreds of parameters of the wind turbines, which has
attracted great research interests in fault diagnosis and prognosis for wind turbines.

Usually, one or more parameters generated by SCADA systems are selected and used to obtain
models of the turbines operating under different conditions. There are two types of modelling
methods: mechanistic methods and data driven model-based methods. The former require a thorough
understanding of the process and may result in complex models. The latter do not require knowledge
of the process or specific parameters; they are obtained directly from measured input and output
signals [3]. For example, Marvuglia [4] investigated an artificial neural network (ANN) model of the
relationship between wind speed and generated power for an entire wind farm. The power curves
modelled in this way are used to detect faults of the wind farm as a whole. Philip et al. [5] proposed
a multiple-input (wind speed and active power) single-output (gearbox bearing temperature) state
dependent parameter (SDP) method; multivariate SDP models were used to identify the distinct
warning levels of a developing fault using adaptive thresholds.
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At the same time, in order for the SCADA system to work more accurately, it is essential to obtain
enough information about the wind turbine’s operational condition and performance. This can be
done by using different types of sensors and by monitoring different locations within the wind turbine.
Due to the complexity of the turbine, there could be more than 250 monitoring points required to
monitor most subsystems of a turbine; the number of the monitoring points will thus be considerably
larger for a wind farm [6]. Apart from the large amount of data needing to be handled and transmitted,
other questions may have also risen; for example, concerning the redundancy among monitoring data,
many of the signals might be highly correlated.

This paper therefore proposes a novel model built using parallel factor analysis (PARAFAC)
for fault detection and sensor selection of wind turbines based on SCADA data. As with other
related decomposition methods, such as Tucker3 [7] and unfolded principal component analysis
(PCA) [8], PARAFAC belongs to the same family of bi-linear or multi-linear methods of decomposing
multi-way data into a set of loading and score matrices. However, PARAFAC uses less degrees of
freedom than Tucker3 or unfolded PCA methods. This intrinsic feature leads to simpler models and
avoids the incorporation of non-significant effects such as noise and redundant information in the
model. Originated from psychometrics [9], PARAFAC has attracted increasing interest because it is
a processing technique capable of simultaneously determining the pure contributions to the dataset
and optimising each factor at a time in trilinear systems. Therefore it has been used in psychology,
chemometrics and other areas [10,11]. One of the most popular applications is modelling fluorescence
excitation-emission data, which is a commonly used data type in chemistry, medicine and food science.
Several studies have been done to explore the underlying chemical phenomena in fluorescence spectral
data obtained from sugar solutions in order to investigate quality issues [12] and a fish dataset with
known fluorophores [13]. The main characteristic of this new approach is that it can simultaneously
explore information regarding sensor contribution and measurement data contribution at different
points. Based on such information, by using an appropriate clustering method, measurement samples
can be classified and the sensor array can be optimised. However, this method has not previously been
applied to condition monitoring of wind turbines.

This paper is organised as follows: wind turbine data used to evaluate the proposed method are
presented and pre-processed in Section 2. Section 3 proposes the methodology of the PARAFAC model
while Section 4 presents the K-means clustering method used to classify measurement data into alarm
events, normal and faulty segments. In Section 5 the models are applied to SCADA data obtained from
one of the operational wind turbines where the results are cross checked to ensure real faults have
been identified. In Section 6 conclusions are drawn and suggestions made for future work.

2. Wind Turbine Data

The SCADA data used for this research were obtained from an operational wind farm.
For each turbine, a complete history of sensor information and turbine status information for a period
of 16 months are available. These data, with a cut-in wind speed of 3 m/s and a cut-out wind speed of
25 m/s, consist of 128 parameters for various temperatures and pressures, power outputs, vibrations,
wind speed, digital control signals and others, associated with the condition parameters of blades,
nacelle, rotor, generator, gearbox, grid, hydraulic fluid, cooling water, and meteorological conditions.
The SCADA system acquires data at a sample rate in the order of 2 s. The data are then processed
and stored at 10-minute intervals in order to significantly reduce the amount of data that need to
be processed while still reflecting the operation of wind turbines under normal and fault conditions.
Thus a total of 77241 measurements are obtained for each parameter for the period of 16 months.
The SCADA data from one of the operational wind turbines are selected for analysis and validation of
the proposed method. Alarm logs that record the time at which the alarm occurs and the message that
reveals the malfunction of particular parameters of the turbine are also available, which are used to
cross-check potential faults identified from the data against what was actually happening.
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2.1. Data Selection

Data selection is first carried out to eliminate those digital and constant signals, which are
ineffective to the PARAFAC analysis. The meteorological parameters such as wind direction, humidity,
air pressure, and those parameters representing set points and digital signals from controllers, together
with those parameters that remain constant, are removed from the SCADA data. As one of the most
important influencing meteorological parameters, the wind speed is still retained, but it is not used
for PARAFAC. Thus there are 52 sensor signals left for PARAFAC analysis, which are associated
with the parameters defining the performance of the turbine operations, such as the nacelle position
(sensor 1); blades positions (sensors 2-8); mains currents (sensors 9-11); apparent power and active
power (sensors 12-13); reactive power (sensor 14); pitch motor currents (sensors 15-17); oil pressures
(sensors 18-19); oscillation signals (sensors 20-25), speeds of the generator and the rotor (sensors 26-32),
temperatures of the generator windings, the gearbox bearings, the nacelle, the gearbox oil sump, the
hydraulic fluid and the cooling water (sensors 33-52).

2.2. Data Pre-Processing

Gaps in SCADA data exist due to occasions when the turbine is inactive during periods of low
and high wind speeds. Additional gaps occur due to the occurrence of scheduled maintenance and
faults. Prior to the PARAFAC model analysis, it is necessary to remove these gaps. Thus, 45,654
measurement points remained for each turbine parameter. After removal of all the gaps in the data,
the active power of the turbine is plotted in Figure 1 as an example.
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Figure 1. Active power of the turbine after removal of gaps.

Figure 2a,b show the relationship between wind speed and active power output, and between
wind speed and generator winding temperature, respectively. Figure 2c illustrates the active power
output as a function of wind speed of a fault-free turbine for a further reference. As Figure 2a
demonstrates, many measured values of power output fall well inside the range of the normal power
curve; so these measurements are defined as normal. However, when the wind speed is higher than
13 m/s, the turbine was operating for some periods of time with a power output reduced to around
1.5 MW and a generator winding temperature reduced to around 58 °C. These measurements indicate
the wind turbine is operating in a fault condition. There are some discrete points deviating from the
curves which are likely associated with different types of alarms. In our study, in order to investigate
the periods of reduced power output and reduced generator winding temperature, only those data
samples for which wind speed is higher than 13 m/s are considered. This would be beneficial as the
general objective of the modelling process is to identify faults by comparing differences between the
normal and the abnormal operational signals. Thus, for each of the 52 sensors used in this study, as
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explained above, there are 5002 measurements remaining for which wind speed is higher than 13 m/s.
The input data of the sensor array can be described as:

O, = {X(U e R52X50°2,x§].1) eR|i=1,2,-,52j=12 ,5002} )
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Figure 2. Scatter plots of the processed SCADA data: (a) Active power against wind speed;
(b) Generator winding temperature against wind speed; (c) Active power output of a fault-free
wind turbine.
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3. PARAFAC Model

3.1. The Model

The notation and terminology to describe matrices and higher order arrays are adapted from [14].
Scalars are indicated by lower-case italics (e.g., x;j), vectors by bold lower-case characters (e.g., y). Bold
capitals (X) are used for ordinary two-way data arrays (i.e., data matrices) and underlined bold capitals
(X) for three-way arrays. The letter I, ], K are reserved for indicating the dimensions of different modes.
The ijkth element of X is called Xijks where the indices can change in the following ranges: i = 1,2,--- , I;
ji=12,---,;k=12,--- K

PARAFAC is a decomposition method, which conceptually can be compared to bilinear PCA,
or rather it is one generalisation of bilinear PCA, while the Tucker3 decomposition is another
generalization of PCA to higher orders [15]. The data are decomposed into triads or trilinear
components; each component consists of one score vector and two loading vectors. It is common for
three-way practice not to distinguish between scores and loadings as they are treated equally from a
numerical perspective.

A PARAFAC model of a three-way array X is given by three loading matrices, A, B, and C.
X (I x ] x K) can be written as follows:

F
Xije = Y aibjcis + e 2)
f=1
Or in the form of a matrix [16]:
X = ATFF)(C@B)T + E ©)

where F is the number of factors which contribute to the signal; ai, bjk, Ckf are the elements of the
loading matrices A(I x F), B(J x F), C(K x F), respectively; e;y is the element of three-way residual
data array of E (I x | x K). The matrix X is X rearranged to an I x JK matrix. The operator ® is the
so-called Kronecker product. The core array T is a three-way array with zeros in all places except
for the superdiagonal which contains ones, that is gy, =1 for f = ¢ = h, else tgy, = 0. The superscript
T stands for matrix transpose. The two-way matrix T¢ * FF) is the F x FF metricized three-way core.
The PARAFAC model may equivalently be stated in the form of a restricted Tucker3 model [17] as:

L
)
f=1

=

N
Z aifbjgCrng fon + Cijk 4)
g=1h=1

where L = M = N = F; the Tucker3 core G =T. If data X is arranged in a three-way array (e.g., samples
x times x sensors), the three-way PARAFAC model, as described in Equations (2) and (3), is shown
graphically in Figure 3.
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Figure 3. Graphical description of the PARAFAC model of X (samples x times x sensors).
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The trilinear model is found to minimise the sum of squares of the residuals (SSR) in the model:

I J K
SSR=121 > ¢ ®)

i=1j=1k=1

The alternating least squares (ALS) algorithms is used [16], which is based on the idea of reducing
the optimisation problem to smaller sub-problems that are solved iteratively until the variation of
the loss function or of the parameters is less than a predefined convergence criterion. An obvious
advantage of the PARAFAC model is the uniqueness of the solution when there are not highly collinear
components in the data [18].

3.2. The Core Consistency Diagnostic

The PARAFAC algorithm is very sensitive to F. If F is estimated to be too low, there is no
physical meaning. If F is too high, the noise will be increasingly modelled and the true factors will be
modelled by more correlated components. The core consistency diagnostic is used as an indicator of
an appropriate PARAFAC model. It may quantify the similarity between G = T:

F F F

3 X Y (e — taer)”

d=le=1f=1

6=1
F

(6)

The core consistency ¢ is always less than or equal to 100% and may also be negative. The value of
0 above 80% implies an appropriate model achieved, whereas a core consistency in the neighbourhood
of 50% means an inaccurate model. § close to zero or even negative implies an invalid model because
the space covered by the loading matrices is then not primarily describing trilinear variation [16].

4. K-means Clustering Method

In order to verify if the extracted features from the PARAFAC model are good for system
identification, K-means clustering method is used. Essentially, K-means clustering automatically
divides a data set into K groups [19]. It proceeds by selecting k initial cluster centres and then
iteratively refining them as follows.

Letx ={x;},i=1, ... ,n be the set of n dimensional observations to be clustered into a set of K
clusters c = {¢}, k=1, ... ,K. K-means algorithm finds a partition such that the squared error between
the empirical mean of a cluster and the points in the cluster is minimised [20]. Let u; be the mean of
cluster ci. The squared error between uy and the points in cluster ¢ is defined as:

Jeo) = 3 1xi—ug 12 @)

Xi€ECk
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The goal of K-means is to minimise the sum of the squared error over all K clusters:

K

J@ =D > My — w1 (8)

k=1 Xj€ck

Minimising this objective function is known to be an non-deterministic polynomial (NP)-hard
problem (even for K = 2) [21]. Thus K-means, which is a greedy algorithm, can only converge to a
local minimum. One way to overcome the local minima is to run the K-means algorithm, for a given
K, with multiple different initial partitions and choose the partition with the smallest squared error.
K-means is used with the Euclidean metric for computing the distance between points and cluster
centres. Therefore, K-means tends to find spherical or ball-shaped clusters in data.

5. Results and Discussion

5.1. Data Pre-Processing

In order to build the PARAFAC model, the data array O is first arranged into a three-way array
X (I x J x K) of three dimensions as samples x times x sensors. In order to examine whether each
measurement value is indication of normal or abnormal operation, the first dimension is arranged with
the 5002 measurement samples and the second dimension is only one associated with time. The third
dimension is the 52 sensors, thus X (5002 x 1 x 52) is obtained:

0, — {Xe RVO2XIX2 y o e R|i=1,2,---,5002;j = 1;k=1,2,--- ,52} )

One element x;j in X corresponds to the measured sensor signal value i at time instant j from
sensor k. For each sensor, every sample represents a value measured at a particular time instant.
The measurement data can be considered as linearly independent of each other because many
processes associated with wind turbines are non-linear and measurements are made at 10 min
intervals. The sensors are used to monitor different phenomena including electrical, mechanical,
thermal, chemical and meteorological phenomena, which means that the components will not be highly
collinear in dimension three. Thus the factors of the PARAFAC model can be uniquely determined [18].

In order to improve the accuracy for fault detection, mean-centring is performed, which aims
to remove constant terms in the dataset in order to increase the difference between the samples.
Mean-centring across the first dimension (i.e., the sample dimension) can be done by metricising the
array to an | x JK matrix, and then centring it in an ordinary two-way analysis [22]:

I
tered
X = Xij — D xije/ T (10)
i=1

5.2. Determining the Factors

To determine the factors, PARAFAC models with an increasing number of factors from 1 to 5 are
built based on the mean-centred data. The value of the core consistency is 100%, 98%, 873.%, 44.2% and
31.7%, respectively. It is typically decreasing more or less monotonically with the number of factors,
because the influence of noise and other non-trilinear variation increase with number of factors. It is
found that the number of factors, which better describe the data, should be F = 3. The three-factor
PARAFAC model has a core consistency of 87.3%. When the factor is over 3, it will lead to a sharp
decrease in the degree of core consistency.

The PARAFAC model with F = 3 can be obtained by using ALS algorithm, as described in
Equation (5). Consequently, the three loading matrices are therefore A (5002 x 3), B (1 x 3) and C
(52 x 3), corresponding to the sample mode, the response mode and the sensor mode, respectively.
The number of columns of the three matrices are all 3. In the subsequent sections, the different modes



Energies 2016, 9, 280 8 of 15

will be noted as follows: sample mode (A): al, a2, a3; response mode (B): b1, b2, b3; sensor mode (C):
c1, 2, ¢3. The sample mode and sensor mode will be illustrated with scatter loadings plots.

5.3. Fault Detection

Fault detection aims to identify data patterns which do not conform to the principle of expectation.
The loading plot (Figure 4) showing correlations between the first two factors (al versus a2) for
the sample mode (the loading matrix A) offers a clear way for visualising all the samples. Because
mean-centring across the first dimension was done as described in Equations (10), most of measurement
points are accumulated in the vicinity of the coordinate origin (0,0). Compared with Figure 2, it can be
seen that these measurement points represent normal operation of the wind turbine. Some of them are
clustered in the left plot far away from the origin indicating fault conditions with a reduced active
power output, while the points scattered in the lower part of the plot representing alarm conditions.
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Figure 4. Loadings plot of the PARAFAC model for the sample mode (al versus a2), al and a2 are the
first two columns of the loading matrix A.

In order to verify if the extracted features by the PARAFAC model are good ones for fault detection
and to find out which group each measurement point belongs to, the loading matrix A is now analysed
using K-means clustering method. Figure 5 shows that three types of measurement data are clearly
distinguished from each other. The alarm samples distributes more dispersedly, which indicates the
great variability of their measurement values.
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Figure 5. K-means clustering result of the loading matrix A, al and a2 are the first two columns of A.
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Each sample represents a value measured at a specific time, so we can know which group it
belongs to. Thus the active power and the generator winding temperature can be plotted against
measurement time and wind speed, as shown in Figures 6 and 7 respectively. In these figures, the blue
dots represent normal measurement points while the green triangles represent fault points, and the red
stars represent alarm points. These figures indicate a clear distinction between the three operational
patterns of the turbine. Having checked the alarm logs, all the measurement points for which the
active power is lower than 1.5 MW while the wind speed is larger than 13 m/s are marked with red
stars in Figure 6. These figures also show several significant features, as summarised below:

1.  The active power normally increases with increasing wind speed until it reaches a stable value
of approximately 2.5 MW. The generator winding temperature also increases with the rising
wind speed.

2. During the fault operation period, the active power and the generator winding temperature are
reduced to around 1.5 MW and 50-58 °C, respectively, despite the increase in wind speeds. This
time period occurs from sample 3711 to sample 4162 for a duration of 4510 min. It was found
from the alarm logs that a low gearbox oil sump temperature appears to have been the cause of
the problem.

3. The discrete points marked as red stars in Figure 6 indicate short excursions of the active power
outside the normal range. It was found from the alarm logs that the problems were mostly
associated with the wind speed which was close to the cut-out speed and with high or low
gearbox oil sump temperatures.



Energies 2016, 9, 280

Active power (kW)

Active power (kW)

3000 |

Normal Fault

2000 +
1500
*
*
1000 |- % * s
* * *
* *
500 * % * 7
* *
* * *
0 | 3 Il *\ Il Il
0 1000 2000 3000 4000 5000
Measurement points
(a)
3000 | ‘ b
. Normal Fault * Alarm
2500 - 4
2000 ~ R

1500

1000

500 |

. .
16 18 20
Wind Speed (m/s)

(b)

22

24

26

10 of 15

Figure 6. Active power output for fault detection: (a) Active power output against measurement time;
(b) Active power output against wind speed.

For example, at samples 4783 and 4784, the wind speed was 22.9 and 21.7 m/s, respectively, which
might be too strong for the generator and can thereby damage the turbines. Thus, the brake device
has to be put in use to stop the wind turbine from running at high wind speeds. In sample 3434, the
gearbox oil sump temperature reached a high value of up to 73.88 °C. In sample 2944, it was reduced
to 47.52 °C. In order to ensure the safe operation of the turbine, the system automatically limits the
power operation when the gearbox oil temperature is too high or too low. The discrete generator
winding temperature points, as shown in Figure 7, are also related to these wind speed and gear oil
sump temperature events.
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Figure 7. Generator winding temperature for fault detection: (a) Generator winding temperature

against measurement time; (b) Generator winding temperature against wind speed.

5.4. Sensor Selection

With regards to the sensor mode (the loading matrix C which is relative to the sensor
contributions), the loading plot c1 versus ¢2 and an enlarged view of the central cluster are shown
in Figure 8. It can be seen that 52 sensors can be divided into eight groups, which are summarized
in Table 1. Most of the sensors (Group VIII) are concentrated in the vicinity of the coordinate origin
(0,0). Sensor 1 (Group 1), sensors 26-29 (Group II), sensors 9-11 (Group III), sensors 12-13 (Group 1V),
sensors 14 (Group V), sensors 2-8 (Group VI) and sensors 33, 34, 48 (Group VII) belong to the different

groups, respectively.

Table 1. The eight groups of the sensors.

Group

The Number of Sensors

Parameter Description

I
II
I
v
\Y%
VI
vl
VIII

1 Nacelle position
26-29 Generator speeds and the rotor speed
9-11 Mains currents
12-13 Apparent power and active power
14 Reactive power
2-8 Blade positions
33,34,48 Generator temperatures

others Other parameters
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Figure 8. Loadings plot of the PARAFAC model for the sensor mode (c1 versus. c2): (a) Loadings plot
of the PARAFAC model for sensor mode; (b) An enlarged view of the central cluster of (a), c1 and ¢2
are the first two columns of the loading matrix C.

The readings of the grouped sensors generally behave similar to each other and are highly
correlated. Group I-VII lie in the areas far from the origin, which indicates that the response values
of these sensors change notably during a fault condition. On the contrary, the signals of Group VIII
changed a little, which means that the fault condition does not cause these signals to change greatly
during the fault. For example, during the fault operation of the wind turbine, the active power
(sensor 13) and generator winding temperature (sensor 33) decrease greatly, as shown in Figures 6a
and 7a, respectively, while the gearbox oil sump temperature (sensor 47) remained relatively constant,
as shown in Figure 9.
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Figure 9. Gearbox oil sump temperature for fault detection.

We can randomly choose one sensor from each respective group. Therefore under this wind
turbine operation condition, the size of the sensor array can be reduced to eight by selecting sensors
as shown in Table 1. If sensors 1 (nacelle position), 2 (pitch position 1), 9 (mains current phase
A), 12 (apparent power), 14 (reactive power), 26 (generator speed), 33 (temperature generator 1),
52 (temperature cooling water) are selected, the responses of these eight sensors can be used to
characterize the whole sensor array response pattern under this operation condition. With the method
described in Section 5.3, the PARAFAC model of this optimised array can be obtained, and the active
power output against measurement time for fault detection is plotted in Figure 10a.
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Figure 10. Active power output produced by PARAFAC model from samples using an optimised
sensor array: (a) Using sensors 1, 2,9, 12, 14, 26, 33, 52; (b) Using sensors 1, 8, 11, 13, 14, 19, 29, 48.

6. Conclusions

The use of PARAFAC is studied for condition monitoring of wind turbines, evaluated with
SCADA data from an operational wind farm. In order to build a suitable model, the SCADA data are
selected and pre-processed in order to obtain an appropriate three-way dataset. The results from the
PARAFAC model show its effectiveness in providing easily interpretable plots revealing the turbine
conditions. Combined with the K-means clustering method, three kinds of wind turbine operation
conditions are identified, i.e., normal, fault and alarm conditions. In the meanwhile, the contribution
results of the sensors are also utilized to optimise the sensor array and to reduce data redundancies
between sensors. The sensors are classified into eight groups. By selecting one representative senor
randomly from each group, the eight sensors are able to characterize the whole sensor array response
pattern. It can be found from the loading plot for the sensor mode that there were remarkable changes
in the powers, main currents, and generator winding temperatures when the turbine operated under
fault conditions. However, further work remains to determine the validity of the approach, including
testing the measurement data from more wind turbines. The measurements when the wind speed
is relatively low (less than 13 m/s in this study) must also be considered so that results can be more
robust and convincing, allowing decisions to be made for optimal maintenance scheduling.
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