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Abstract: This paper proposed a optimal strategy for coordinated operation of electric vehicles
(EVs) charging and discharging with wind-thermal system. By aggregating a large number of
EVs, the huge total battery capacity is sufficient to stabilize the disturbance of the transmission
grid. Hence, a dynamic environmental dispatch model which coordinates a cluster of charging and
discharging controllable EV units with wind farms and thermal plants is proposed. A multi-objective
particle swarm optimization (MOPSO) algorithm and a fuzzy decision maker are put forward for
the simultaneous optimization of grid operating cost, CO2 emissions, wind curtailment, and EV
users’ cost. Simulations are done in a 30 node system containing three traditional thermal plants,
two carbon capture and storage (CCS) thermal plants, two wind farms, and six EV aggregations.
Contrast of strategies under different EV charging/discharging price is also discussed. The results
are presented to prove the effectiveness of the proposed strategy.

Keywords: electric vehicle (EV); coordinated charging; optimal scheduling; vehicle-to-grid (V2G);
smart grid

1. Introduction

Electric vehicles (EVs) will play a vital role in the future’s sustainable transportation systems,
since this technology is promising for environment, energy security, and improved fuel economy.
Certain issues will need to be addressed in the event that the number of EVs on the road increases.
One vital issue is the method by which these vehicles will be charged and if today’s grid can sustain
the increased demand due to more EVs. Although EVs’ growing energy demand seems to be a heavy
burden to the power gird, they can actually benefit the grid if we control the charging and discharging
behavior of them properly. For example, nowadays, a growing quantity of renewable energy, such
as wind and solar generation, is connected to the grid [1]. Due to the discontinuity of the renewable
energy power generation, an energy storage system is needed to assist the grid to absorb the volatility
of renewable energy power. Electric vehicles are considered to be the energy storage device with
the most potential to absorb the volatility of renewable energy [2]. When a large number of EVs are
aggregated, the huge total battery capacity is sufficient to stabilize the disturbance of the grid caused
by the distributed power grid interconnection [3].

In earlier research, Amory Lovins first proposed the concept “V2G” in 1995, which is an
abbreviation of “vehicle to grid”, meaning EVs serve in discharge mode to support the grid. This
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concept was well explained and developed later by William Kempton of Delaware University [4–7].
In the recent literature, a number of studies have been conducted on V2G. It has been shown that
EVs can be dispatched to follow power system regulation signals [8,9]. Literature [10,11] has studied
the integration of EVs in a regional wind-thermal system; other works [12,13] proposed coordinated
strategies for EV and renewable sources considering cost and emission reductions, and others [14–17]
have proposed optimal scheduling strategies for V2G. These studies, however, did not consider the
EV user’s cost while doing optimization of such a V2G system. Since deep charging and discharging
will greatly affect the life of EV’s battery [2], if only the cost of grid is taken into consideration while
the cost to EV users is neglected while conducting the calculation, the results might be unrealistic and
unacceptable for EV users.

In today’s power system, while wind turbines, thermal plants, and EVs are all integrated into
the grid, ramp rates, reserve capacity, fossil costs, carbon emissions, environmental costs, carbon
capture costs, and power balance should all be considered when developing an optimal coordination
strategy [13]. From the viewpoint of transmission grid, it is a quite complicated problem. Consequently,
from the viewpoint of multi-objective optimization, the complicated optimal coordination problem
can be formulated as a multi-objective problem (MOP) [18], which is solved by using a proposed
multi-objective particle swarm optimization algorithm (MOPSO) [19,20]. Furthermore, to extract the
best compromise solution from the Pareto optimal solution set, the fuzzy optimality decision making
(FODM) method [21–24] is proposed in this paper.

One of the main contributions of this paper is the presentation of a dynamic environmental
dispatch model which coordinates a cluster of charging and discharging controllable EV units with
large-scale wind power farms and large thermal plants. A MOPSO algorithm for the simultaneous
optimization of grid operating costs, CO2 emissions, wind curtailment, and EV user’s cost is presented.
With this heuristic, evolutionary algorithm, a set of Pareto optimal solution of the MOP is obtained. As
another contribution, the FODM method is proposed to extract out the best compromise solution from
the Pareto optimal set. With this approach, the objective function value weighting factors are processed
with fuzzy members. A fuzzy decision, which can be viewed as an intersection of the given goals, is
made. This process is much like the way we human beings does when we are making decisions [21].

The rest of this paper is structured as follows. In Section 2, the concept and mathematical model
of the thermal-wind-EV system is discussed. In Section 3, the multi-objective optimization problem of
grid operating costs, CO2 emissions, and wind curtailment is formulated. In Section 4, the MOPSO
algorithm and the FODM method is introduced, and the process of the algorithm is described in detail.
Section 5 provides a simulation case study, and discusses the results. Finally, the conclusion is stated
in Section 6.

2. System Description and Models

2.1. System Concept

In order to better schedule the charging and discharging behavior of EVs, since the capacity
of a single EV’s battery is hard to have a measurable influence on the transmission grid. The
concept “EV aggregator” is present in this paper to represent a number of grid-connected controllable
EVs. By aggregating EVs, a conceptual framework for a thermal-wind-EV system is built up as in
Figure 1 shows:

In this conceptual system, at the top layer, the supervisory control and data acquisition system
(SCADA) system is used for a double purpose: one is to collect information, such as EV battery status,
EV number, predicted wind power, predicted load, etc., which are feedback from EV aggregator, wind
farms, and thermal plants; another is to make a schedule for the above units to generate/absorb power
to/from the transmission grid.

At the middle layer, wind farms, thermal plants, and EV aggregator receive a working schedule
transferred from the top layer and make a detailed work plan for each wind turbine, thermal power
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generating unit, and EV unit inside the system. The middle layer then send out power instructions to
dispatch the input or output power of the aforementioned power units.

At the bottom layer, while a large number of EVs are connected to the transmission grid via
power electronics devices, Each EV unit follows the power instruction from the middle layer and
feeds its current status back constantly to the aggregator so that the system is able to adjust its power
distribution strategy according to the real-time model.

Figure 1. Conceptual system framework. EV: electric vehicle. SCADA: supervisory control and data
acquisition system.

2.2. Electric Vehicles Aggregator Model

The electric quantity equation of EV i is given as follows:

Ei,k = (1− db)Ei,k−1 +

(
ηCPC

i,k −
PD

i,k

ηD

)
∆t (1)

where Ei,k is the electric quantity of EV i at the time period k. db is battery self-discharge rate, ηC and
ηD are the battery charging and discharging efficiency factor, respectively, while PC

i,k and PD
i,k are the

charging and discharging power of EV i at time period k, respectively. ∆t is the time step, given in hour.
The cost equation of the EV aggregator is as follows:

Gk
C,i

(
PC

i,k

)
= γC

i,k · P
C
i,k (2)

Gk
D,i

(
PD

i,k

)
= γD

i,k · P
D
i,k (3)

where γC
i,k is the EV’s charging price, while γD

i,k is the discharging cost for V2G services.
Equations (1)–(3) are subject to constraints as follows:

(1) Power constraints.
P(C,min)

i,k ≤ PC
i,k ≤ P(C,max)

i,k (4)

P(D,min)
i,k ≤ PD

i,k ≤ P(D,max)
i,k (5)
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where P(C,min)
i,k and P(C,max)

i,k are the lower and upper limits of EV’s charging power PC
i,k respectively,

P(D,min)
i,k and P(D,max)

i,k are the lower and upper limits of EV’s discharging power PD
i,k, respectively.

(2) Electric quantity constraints.

Emin
i,k ≤ Ei,k ≤ Emax

i,k (6)

Emin
i,k and Emax

i,k are the lower and upper limits of Ei,k, which are decided by EV’s battery capacity B
and its depth of discharge (DoD):

Emin
i,k = (1−DoD) · B (7)

Emax
i,k = B (8)

(3) EV will not charge and discharge at the same time period.{
PC

i,k = κ · PC
i,k

PD
i,k = (1− κ) · PD

i,k
(9)

κ =

{
1 SOCi,k − SOCD

i,dmin < 0 or SOCC
i,cmax − SOCi,k > 0

0 else
(10)

where SOCi,k is the battery state of charge of EVi , which is decided by the equation:

SOCi,k =
Ei,k

Emax
i,k
× 100% (11)

SOCD
i,d min is the lower bound of state of charge (SOC) when EV is discharging, while SOCC

i,c max is
the upper bound of SOC when EV is charging. These bounds are set by EV users.

2.3. Thermal Plant Model

In this thermal plant model, we consider two kinds of thermal generating plants, including
traditional coal-fired (TC) power plants and coal-fired power plants with carbon capture and storage
(CCS). The consumption function of traditional coal-fired power plants can be approximated by
quadratic function:

FU
i = ai

(
PU

i,k

)
+ biPU

i,k + ci (12)

where PU
i,k is the active power output of TC power plant i at time period k, while ai, bi, and ci are

consumption characteristic factors of the function.
The emission equation of traditional coal-fired power plant is as follow:

CU
i = αi

(
PU

i,k

)
+ βi (13)

where αi and βi are emission characteristic factors of the function.
CCS power plants need to consume a large amount of energy to capture CO2, which leads to an

increase in generating cost. Assuming that the capture rate of CO2 isω, then the consumption function
FC

i and emission function CC
i of CCS power plants are as follows:

FC
i = ai

(
Pccs

i,k

)
+ biPccs

i,k + ci (14)

CC
i = (1−ω)

[
αi

(
Pccs

i,k

)
+ βi

]
(15)

where Pccs
i,k is the active power output of CCS power plant i at time period k.
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The amount of captured CO2 is calculated as follows:

Cca
i = ω ·

[
αi

(
Pccs

i,k

)
+ βi

]
(16)

Equations (12) – (16) are subject to constraints as follows:

(1) Power constraints
P(U,min)

i,k ≤ PU
i,k ≤ P(U,max)

i,k (17)

P(ccs,min)
i,k ≤ Pccs

i,k ≤ P(ccs,max)
i,k (18)

where P(U,min)
i,k and P(U,max)

i,k are the lower and upper limits of TC plant power output PU
i,k, P(ccs,min)

i,k

and P(ccs,max)
i,k are the lower and upper limits of CCS plant power output Pccs

i,k .

(2) Ramping rate constraints

For the safety of thermal plant operation, the power output of TC plants and CCS plants must be
subject to ramping rate constraints as follows:{

PU/ccs
i,k − PU/ccs

i,k−1 ≤ UG

PU/ccs
i,k−1 − PU/ccs

i,k ≤ DG
(19)

where UG and DG are the highest increase and decrease value of the generating unit power output
between adjacent time period.

2.4. Wind Farm Model

When wind power generation is allowed to be integrated into the grid, the power output of
thermal plants decreased if the wind power generation increases. Assuming that the upper bound of
wind generation is equal to the negative peak load regulation ability of thermal plants [25]:

Pk
max = Pk

L +
Nv

∑
i=1

(PC
i,k − PD

i,k)−
N

∑
i=1

Pk
min,i (20)

where Pk
min,i is the lower limit of thermal generating units, which includes TC and CCS units; Pk

L is the
system load; Pk

loss is the system loss; PC
i,k and PD

i,k are EVi’s charging and discharging power, respectively.
Consequently, the generating capacity of wind farm i at time period k can be calculated as follows:

Pk
wa,i = min

Pk
wc,i,

Pwr,i
Nw
∑

i=1
Pwr,i

Pk
max

 (21)

where Pk
wa,i is the available generating capacity, Pk

wc,i is the forecasted wind generation capacity, and
Pwr,i is the rated capacity that of Wind farm i.

The cost function of wind farms is as follows:

Wk
i

(
Pk

w,i

)
= εi · Pk

w,i (22)

where εi is the operating cost factor of wind farms.
Equations (20) – (22) are subject to constraint as follows:

0 ≤ Pk
w,i ≤ Pk

wa,i (23)
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3. Multi-Objective Optimization Model

According to the aforementioned EV aggregator model, thermal plant model, and wind farm
model, the EV-wind-thermal coordination multi-objective optimization problem can be formulated
as follows:

J1 = Minimize the global cost

min J =
T

∑
k=1


NG
∑

i=1

[
FU

i

(
PU

i,k

)
+ πe

i CU
i

]
+

NCC
∑

i=1

[
FC

i

(
Pccs

i,k

)
+ πe

i CC
i + πs

i Cca
i

]
+

NW
∑

i=1
Wk

i

(
Pk

w,i

)
+

NV
∑

i=1

[
Gk

D,i

(
PD

i,k

)
− Gk

C,i

(
PC

i,k

)]
 (24)

where T is the scheduling time; NG is the number of TC units; NCC is the amount of CCS units; NW is
the number of wind farms; NV is the total number of electric vehicles; πe

i is the emission costs; πs
i is the

carbon capture costs.
J2 = Minimize the global CO2 emission

min E =
T

∑
k=1

NG

∑
i=1

CU
i,k+

T

∑
k=1

NCC

∑
i=1

CC
i,k (25)

J3 = Minimize the wind curtailment

min A =
T

∑
k=1

NW

∑
i=1

[
Pk

wa,i − Pk
w,i

]
(26)

J4 = Minimize the EV user′s cost

min I =
T

∑
k=1

NV

∑
i=1

[
Gk

C,i(PC
i,k) + ζ · (PC

i,k + PD
i,k)− Gk

D,i(PD
i,k)
]

(27)

where ζ is the batteries degradation cost of EV users, which reflects the influence of deep charge and
discharge on the EV’s battery life.

Equations (24)– (27) are subject to constraints as follows:

(1) Power balance

NG

∑
i=1

PU
i,k +

NCC

∑
i=1

Pccs
i,k +

NW

∑
i=1

Pk
w,i +

NV

∑
i=1

PD
i,k = Pk

load +
NV

∑
i=1

PC
i,k (28)

In Equation (28), power balance does not takes the power losses into account. The calculation of
power losses is an open question for later research.

(2) Up- and down-spinning reserve constraints [26,27]
NG
∑

i=1
(PU,max

i,k − PU
i,k) +

NCC
∑

i=1
(Pccs,max

i,k − Pccs
i,k ) ≥ Pk

L × L% +
NW
∑

i=1
Pk

wp,i × w%

NG
∑

i=1
(PU

i,k − PU min
i,k ) +

NCC
∑

i=1
(Pccs

i,k − Pccs,min
i,k ) ≥ Pk

L × L% +
NW
∑

i=1
Pk

wp,i × w%
(29)

where L% is the load reserve coefficient, which presents the uncertainty of load prediction, while w%
confirm italics is the wind reserve coefficient, which presents the uncertainty of wind prediction.

4. Multi-Objective Particle Swarm Optimization Algorithm and Fuzzy Decision Maker

A multi-objective optimization problem (MOP) [18–20] can be described as follows:
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min[f1(x),f2(x), · · · ,fk(x)]
s.t.g(x) ≤ 0

(30)

where fi(·) is objective function, k is the number of objective functions, and x = [x1,x2, · · ·, xn]T is the
vector of independent variables. The aim of the multi-objective optimization is to determine a particle
set of values x∗ = [x∗1 ,x∗2 , · · ·, x∗n]T from the feasible solution space which is closest to the ideal value of
all the objective functions.

In single objective optimization problem (SOP), the global best Gbest is the solution of the optimal
problem. However, in MOP, it is impossible to find a single Gbest that would be optimal for all objective
functions simultaneously. Hence, a set of compromised solutions called “Pareto front”, which consists
of a set of solutions wherein no existing dominated solution, is utilised to solve the MOP.

Since the Pareto front usually contains a large amount of individual solutions, but a real practical
problem only needs one solution, it is essential to choose a single best compromise solution out of the
Pareto front by using decision maker (DM).

Based on the above analysis, the process of solving a MOP can be divided into following two
main steps:

(1) Find out the Pareto front of the MOP
(2) Extract out the best compromise solution from the Pareto front

4.1. Multi-Objective Particle Swarm Optimization Algorithm

Particle swarm optimisation (PSO) [19] is an evolutionary soft computational optimisation
technique developed by Kennedy and Eberhart. The system initially has a population of
randomly-selected solutions. Each solution, which is called a particle, is given a random velocity
and is flown through the problem space. The particles keep track of their best position and their
corresponding fitness values. Among these best positions, the particle with the best fitness is the Gbest
of the swarm.

In MOPSO [19–21], a set of particles are initialised in the D dimension decision space at
random. For each particle i, a position xi = [xi1, xi2, · · ·, xid]

T in the decision space and a velocity
vi = [vi1, vi2, · · ·, vid]

T are assigned. The particles change their positions and move towards the so-far
best-found position pi = [pi1, pi2, · · ·, pid]

T. Besides, the so-far best-found position of the whole
particles set pg = [pg1, pg2, · · ·, pgd]

T is kept. for every single particle, its evolution function in the D
dimension decision space is as follows. The so-far best-found non-dominated solutions from the last
generations are kept in an archive, which is an external population.

vid = ω · vid + c1 · rand() · (pid − xid) + c2 · rand() · (pgd − xid) (31)

xid = xid + vid (32)

where c1 and c2 are the personal learning coefficient and global learning coefficient of the equation,
respectively, by which the particle is able to make self summary and learn from outstanding individuals
inside the whole particles set. ω is an inertia weight, which reflects the impact of a particle’s formal
speed to its current speed. In this paper, a self-adaptive inertia weight tuning method is adopted to
enhance the searching ability and convergence speed of the optimal algorithm:

ω = ωmax −
t

tmax
(ωmax −ωmin) (33)

whereωmax is the upper limit of inertia weight,ωmin is the lower limit of inertia weight, tmax is the
maximum iterations.

The pseudo code of the proposed MOPSO algorithm is shown as follows:
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Algorithm 1 MOPSO

1: Initialization: p(i)=rand, v(i)=0, EA=∅ i=(1,2,· · ·,N), It=0
2: while It ≤ Itmax do
3: for i = 1 to N do
4: Individual best position pid update
5: Global best position pgd update
6: v(i)= ω· v(i)+c1 · (pid-p(i))+c2 · (pgd-p(i))
7: p(i)=p(i)+v(i)
8: if p(i) � ∀ Rep(λ) then
9: Rep← Rep ∩ Rep(λ) ∪ p(i)

10: else
11: if (p(i) � ⊀ Rep(λ))

∧
(p(i) � � Rep(λ)) then

12: Rep← Rep ∪ p(i)
13: end if
14: end if
15: Update Grid
16: end for
17: It=It+1
18: end while

4.2. Fuzzy Optimality Decision Making

In the real world, people prefer to describe the importance of an object and make decisions
based on concepts such as “very important” or “less important” rather than using precise numbers.
It is considered that, in the real world, even the most experienced expert can’t precisely judge the
importance of different objects by using certain numbers such as “0.7” or “0.5” [22]. It is considered
that fuzzy sets or fuzzy numbers [22] are more appropriate than numbers as weight value used to
describe the importance of different objects [25]. Hence, in this paper, a FODM approach is present to
extract out the best compromised solution from the Pareto front, where the individual of the highest
fuzzy optimality is the best compromised solution of the MOP.

In this paper, a triangular fuzzy number Ã can be defined as Ã = (l, m, r), the membership
function of which is defined as:

µÃ(x) =


(x− l)/(m− l)l < x ≤ m
(r− x)/(r−m)m < x ≤ r
0otherwise

(34)

where l and r are the lower and upper limits of the fuzzy number Ã, and m is the modal value.
The membership function of the triangular fuzzy number (Ã1, Ã2, · · ·, Ãn) can be illustrated as in
Figure 2.

x1s

2s3s

4s

max

0

1 1A 2A
3A

nA

  

( )
iA

x  
3( , )H 1 2d A max s s  

2 1 4( , )Hd A max s s 

Figure 2. Triangular fuzzy number and maximum fuzzy subset.
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Where the red thick lines in Figure 3 represent the membership function of the maximum fuzzy
subset m̃ax between Ã1 and Ã2. Define Ãmax = m̃ax(Ã1, Ã2, · · ·, Ãn) as the maximum fuzzy subset
among (Ã1, Ã2, · · ·, Ãn), the membership function of Ãmax is defined as:

µÃmax
(x) = sup

x1 ∨ x2 ∨ · · · ∨ xn

(x1, x2, · · ·, xn) ∈ Rn

min
{
µÃ1

(x1),µÃ2
(x2), · · ·,µÃn

(xn)
}

(35)

Hamming distance [24] dH(Ãi, Ãj) is used here to measure the distance between two fuzzy
numbers Ãi and Ãj:

dH(Ãi, Ãj) =
∫

x∈R

∣∣∣µÃi
(x)− µÃj

(x)
∣∣∣ dx (36)

The hamming distance dH(Ã1, m̃ax) and dH(Ã2, m̃ax) are illustrated in Figure 3, where s1,s2,s3,
and s4 are the geometric metric of hamming distance. dH(Ã1, m̃ax) = s2 + s3, dH(Ã2, m̃ax) = s1 + s4.

In this paper, the pseudo code of the proposed FODM algorithm is shown as follows:

Algorithm 2 FODM

1: Initialization: fi,Jk=rep(i).Cost(k), i=(1,2,· · ·,m), k=(1,2,3,4), ω̃ = (ω̃1, ω̃2, ω̃3), ω̃k = (a;α,β),

f min
Jk = min( f1,Jk, f2,Jk, · · · , fm,Jk)

2: Build triangle fuzzy number matrix: f̃i,Jk = ( fi,Jk, fi,Jk, fi,Jk)

P̃ =



f̃1,J1 f̃1,J2 f̃1,J3

f̃2,J1 f̃2,J2 f̃2,J3

...
...

...

f̃m,J1 f̃m,J2 f̃m,J3



3: Normalize the fuzzy matrix P̃: f̄i,Jk = (c; δ,γ) = (
f min
Jk
fi,Jk

,
f min
Jk
fi,Jk

,
f min
Jk
fi,Jk
∧ 1)

4: Weighted P̃: r̃ik = ω̃k · f̄i,Jk = (ac; aγ+ aα− αγ, aδ+ cβ− βδ)

5: Calculate the fuzzy ideal solution M̃+: M̃+ = (M̃1, M̃2, M̃3, M̃4), M̃k = m̃ax(r̃1k, r̃2k, · · · , r̃mk)

6: Compute hamming distance: Di =

√
3
∑

k=1
[dH(r̃ik, M̃+

k )
2
]

7: Sort Di from small to large, the smallest is the best compromise solution.

5. Case Study and Results

5.1. Case Study

In this work, a 30 node grid system as shown in Figure 3 is adopted here to verify the effectiveness
of the proposed optimal strategy, which contains two CCS thermal plants, three TC thermal plants, two
wind farms, and six EV aggregators. Where the capacity of TC thermal plants is 150 MW, the capacity
of CCS thermal plant is 150 MW, the capacity of a wind farm is 100 × 2 MW. There are 1000 EV in
each EV aggregator, while the capacity of each EV’s battery is 200 kWh. The upper limit of charging
power is 40 kW, while the upper limit of discharging power is also 40 kW. Assuming the SOC of the
1000 EV is in accord with Gaussian distribution, set SOCD

i,d min = SOCC
i,c max = 50%. Assuming EV’s
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charging price γC
i,k = 0.1 $/kWh, EV’s discharging cost γD

i,k = 0.2 $/kWh, EV’s battery degradation cost
ζ = 0.13 $/kWh [2]. Simulation Parameters of the used thermal plants are listed as shown in Table 1.

1

TC 
Plant B

CCS
Plant B

Wind 
Farm A

2 5 7 8

3 4

6 28

27

29

30

22

10

21

25 26
24

201918

15

16 17

15

12

14

13
11 9

EV 
Ag. A

Wind 
Farm B

EV Ag. C EV Ag. E

TC 
Plant A

TC 
Plant C

CCS 
Plant A

EV Ag. B

EV 
Ag. D

EV Ag. F

Figure 3. 30 node drid system. CCS: carbon capture and storage. TC: traditional coal-fired power
generating unit.

Table 1. Simulation parameters of the used thermal plants.

Plants Pmax
i,k Pmin

i,k UG DG ai bi ci αi βi πe
i πs

i ω

TC Plant 150 20 –1.5 1.5 0.013 23.07 1675 0.63 5 10
CCS Plant 150 20 –1.5 1.5 0.017 32.31 2178 0.63 5 10 5 85

In this paper, the wind power model is predicted as Figure 4a shows, while the wind farm
operating cost factor εi is 50 $/MW, and the reserve coefficient of wind turbines, w%, is 20%.

In order to reduce the risk of incorporating uncertain wind forecasts into system scheduling, wind
uncertainty should be taken into consideration before conducting further calculation. It is assumed
that the wind forecast error is likely normally distributed [28]. The error of wind generation forecast is
referred to as ẽ. The forecasting error is estimated with a level of confidence α% [29], which means the
probability of forecasting error being greater or equal to ẽ is less than (100−α)%. The wind generation
capacity counted in the optimal schedule is calculated by:

Pk
wc,i =

 Pk
wp,i − ẽ

(
Pk

wp,i ≥ ẽ
)

0
(

Pk
wp,i < ẽ

) (37)

where Pk
wp,i is the predicted wind power generation of wind farm i.
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Since we are concerned more with overestimation of the wind power (or that the power supply
might not satisfy the demand), a one-side distribution curve is considered. By specifying the level of
confidence, the value of ẽ can be estimated as follows:

P
(

e− µe

σe
≤ zα

)
= (100− α)% (38)

ẽ = µe + zασe (39)

where µe and σe are the estimated mean value and standard deviation from sampling of the error of
the historical forecast, respectively. The value of zα for 90%, 95%, and 99% confidence level can be
chosen by Table 2 [29].

Table 2. Select of zα value.

P [(e − µe) ≥ zασe] = α% 90% 95% 99%

zα 1.285 1.645 2.329

In the simulation setup of this paper, the confidence level is selected as 95%, the error mean µe is
5 MW, and the standard deviation σe is 3 MW.

Assuming that the system load model is as Figure 4b shows while there are no EVs in the EV
aggregator. Assuming that the reserve coefficient of system load L% is 10%.
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(a)
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(b)

Figure 4. Wind Power and System Load. (a) Predicted wind power; (b) system load with no EV.

MOPSO parameters are initialized as follows: both the maximum number of iterations and
population size are set to 200, while repository size is set to 50, inertia weight ω is 0.5, the personal
learning coefficient c1 is 1, while the global learning coefficient c2 is 1.

5.2. Results and Analysis

According to the above curve and installment, the data of system operating status at 18:00, 1:00,
and 4:00 are extracted out respectively to calculate the result of the simulation case. The cost of TC
plants and CCS plants is calculated by using Equations (12) and (14), respectively, the emission of
TC plants and CCS is calculated by using Equations (13) and (15). Equation (16) is used to calculate
the amount of captured amount of CO2 of CCS plants. Equation (22) is used to calculate the wind
farms’ cost, while EV’s charging and discharging cost is calculated by using Equations (2) and (3).
Equations (24)–(27) are used to calculate the global cost, CO2 emission, wind curtailment, and EV
users’ cost, respectively. These equations are subject to the aforementioned constraints.

The Pareto front of the three scenes are shown as shown in Figure 5.
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Figure 5. Cont.



Energies 2016, 9, 186 13 of 17

7,000
9,000

11,000
13,000

15,000

70
85

100
115

130

0

6,000

12,000

18,000

24,000

30,000

E
V

 U
se

rs
' C

os
t 

($
)

Best Compromised Solution

CO2 Emission (Ton)
System Operating Cost ($)

(d)

10,000
16,000

22,000
28,000

34,000

100
140

180
220

260

0

20

40

60

80

W
in

d
 C

u
rt

ai
lm

en
t 

(M
W

)

System Operating Cost ($)

Best Compromised Solution

CO2 Emission (Ton)

(e)

16,000

22,000

28,000

100
140

180
220

260

0

6000

12,000

18,000

24,000

E
V

 U
se

rs
' C

os
t 

($
)

System Operating Cost ($)
CO2 Emission (Ton)

Best Compromised Solution

(f)

Figure 5. Result of the multi-objective problem (MOP) of four different scenarios. (a) Pareto front at
18:00; (b) Pareto front at 18:00; (c) Pareto front at 4:00; (d) Pareto front at 4:00; (e) Pareto front at 1:00;
and (f) Pareto front at 1:00.

Setting up the fuzzy weight of the four objective functions by using triangle fuzzy members
“Middle” ( ω̃1 = (0.3, 0.4, 0.5) ), “High” ( ω̃2 = (0.4, 0.5, 0.6)), “High” ( ω̃3 = (0.4, 0.5, 0.6)) and “Middle”
( ω̃3 = (0.3, 0.4, 0.5)) (the way to calculate it is shown as pseudo code in Section 4.2) respectively, the
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individual of the highest fuzzy optimality which is also the best compromised solution is selected from
the Pareto front as Table 3 shows.

Table 3. Best compromised solutions at different times.

Variables and Objectives 18:00 4:00 1:00

TC plants power (MW) 297.2 102.2 199.8
CCS Plants power (MW) 299.2 106.7 174.6
Wind farms power (MW) 0 176.9 105.7

EV aggregators discharging power (MW) 104.5 0 13.56
EV aggregators charging power (MW) 0 85.83 33.64

System operating cost ($) 44,230 11,194 20,707
CO2 Emission (ton) 221 80 148

Wind cultailment (MW) 0 3 14
EV user’s cost ($) –7138 19,673 6787

By contrasting Figure 5 and Table 3, it can be seen that:

From the above case it can be seen that when the system load is relatively high, for example at
18:00 (due to the fact that wind energy is relatively low by that time), the thermal plants need to go
all-out to satisfy the power needs of the load in the system. However, when the EV aggregator is
controlled to discharge its power to the grid, it is capable of sharing part of the thermal plants’ work,
hence the CO2 emission can be relatively cut down. Also, EV users can receive economy benefit from
sending their EVs to attend the V2G activity at the same time.

As a contrast, when the system load is relatively low, for example in the 1:00 scenario (due to the
relatively high availability of wind energy at that time), while the thermal plants still need to maintain
spinning, a large amount of wind energy will be abandoned for keeping the power balance of the grid.
However, this power was saved because the EV aggregator is controlled to charge from the grid by the
time. Hence, the wind curtailment of the system is reduced.

Table 4 shows the result of a contrast simulation of two strategies under different discharging
prices in the 18:00 scenario. One does not take the EV user’s cost into consideration (strategy A),
while another is the proposed strategy in this paper (strategy B). Table 5 shows the result of a contrast
simulation of strategies A and the proposed strategy in this paper (strategy B) under different charging
prices in the 4:00 scenario.

Table 4. Contrast of two strategies under different discharging prices at 18:00.

EV discharging cost γD
i,k ($/kWh) 0.05 0.1 0.2

EV aggregators discharging power A (MW) 119.8 109.5 69.98
EV aggregators discharging power B (MW) 83.03 81.57 104.5

System operating cost A ($) 25,582 30,072 37,947
System operating cost B ($) 27,167 31,832 44,230

EV user’s cost A ($) 19,988 16,288 –4431
EV user’s cost B ($) 9641 3456 –7138

CO2 emission A (ton) 252 264 257
CO2 emission B (ton) 249 244 221
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Table 5. Contrast of two strategies under different charging prices at 4:00.

EV charging cost γC
i,k ($/kWh) 0.1 0.2 0.5

EV aggregators charging power A (MW) 118.1 119.6 120
EV aggregators charging power B (MW) 85.83 80.76 67

System operating cost A ($) 8973 –3316 –39,287
System operating cost B ($) 11,194 2881 –14,480

EV user’s cost A ($) 27,163 39,435 75,600
EV user’s cost B ($) 19,673 26,606 42,179

Wind curtailment A (MW) 1.3 1 2
Wind curtailment B (MW) 3 6 21

From Table 4 it can be seen that when the EV users’ cost is not considered, EVs discharge more
energy when the discharging price γD

i,k is lower, and discharge less energy when the discharging
price is higher. This is because a higher discharging price means the grid company needs to pay
more money to EV users, which will increase the grid operating cost. However, if the discharging
price is too low, even below the charging price, EVs might discharge energy to charge itself while the
battery degradation cost is not taken into consideration. This will definitely lead to an increase on EV
user’s cost, which is unacceptable for EV users since the they wish to achieve economy benefits from
attending V2G activity. The advantage of strategy B (proposed in this paper) is, because the user’s cost
is taken into consideration while conducting system optimization, a compromised solution between
system operating cost and EV users’ cost will be chosen by using FODM. The system will not reduce
the EVs’ discharging power when the discharging price is relatively high (e.g., in the peak load period),
and will limit EVs’ discharging power when the discharging price is too low. As a result, CO2 emission
is reduced and the willing of EV users to attend the V2G activity is enhanced.

From Table 5 it can be seen that EVs’ charging power is relatively high while EV users’ cost is not
taken into consideration. This is because a higher charging price means more income from EV users to
the grid company, the system operating cost will also drop if the charging price is increasing. However,
it is unacceptable for EV users if the charging price is too high. By using strategy B, system will drop
part of the wind power and limit EV’s charging power when the charging price is too high. Hence, the
interest of EV users is protected. Otherwise, due to strategy B taking battery degradation cost into
consideration inside its objective function, the charging power of strategy B will not be as high as that
of strategy A.

6. Conclusions

This paper presents a dynamic environmental dispatch model which coordinates a cluster of
charging and discharging controllable EV units with large-scale wind power farms and large thermal
plants. A MOPSO algorithm for the optimization of system operating costs, CO2 emissions, wind
curtailment, and EV user’s cost is presented to obtain the Pareto front of the optimization problem and
a FODM method is proposed then to extract out the best compromise solution from the Pareto optimal
set. The simulation results further demonstrate that the best compromised solution calculated by the
proposed strategy is able to schedule charging and discharging of EV aggregator to balance supply and
demand for active power, according to grid status. System operating costs, CO2 emissions, and wind
curtailment can be relatively reduced and the objective of EV users’ cost is demonstrated to be able
to ensure the interest of EV users attending V2G activity. The contribution of the proposed method
can be described as follows: (1) establishing a mathematical model of wind farms, EV aggregators,
and thermal plants while considering many operating constrains and security requirements; (2) using
MOPSO as the solver to deal with the proposed MOP; (3) proposed a FODM-based algorithm to extract
out the compromised best solution of the Pareto Front; (4) take EV users’ cost into consideration in the
optimization model, thus a best compromised solution between system operating cost, EV users’ cost,
CO2 emission, and wind curtailment is obtained.
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