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Abstract: Bioelectrochemical systems (BES) are promising technologies to convert organic compounds
in wastewater to electrical energy through a series of complex physical-chemical, biological and
electrochemical processes. Representative BES such as microbial fuel cells (MFCs) have been studied
and advanced for energy recovery. Substantial experimental and modeling efforts have been made
for investigating the processes involved in electricity generation toward the improvement of the BES
performance for practical applications. However, there are many parameters that will potentially
affect these processes, thereby making the optimization of system performance hard to be achieved.
Mathematical models, including engineering models and statistical models, are powerful tools to
help understand the interactions among the parameters in BES and perform optimization of BES
configuration/operation. This review paper aims to introduce and discuss the recent developments
of BES modeling from engineering and statistical aspects, including analysis on the model structure,
description of application cases and sensitivity analysis of various parameters. It is expected to serves
as a compass for integrating the engineering and statistical modeling strategies to improve model
accuracy for BES development.

Keywords: bioelectrochemical systems; data mining; differential equations; engineering models;
regression; statistical models

1. Introduction

Bioelectrochemical systems (BES) are emerging technologies that apply microorganisms
to transform chemical energy in wastewater to electrical energy through multiple
microbial-electrochemical reactions [1–4]. The increasing energy demand and desire for environmental
sustainability motivates the technology development for energy recovery from wastes over the past
decades [5–7]. Among the emerged concepts in energy recovery and wastewater treatment, BES have
received significant attentions and are extensively studied with different configurations and designs,
including microbial fuel cells (MFCs), microbial electrolysis cells (MECs), and microbial desalination
cells (MDCs), as well as the combination of up-flow constructed wetland and MFC [2,8–16].
The performance of BES is affected by biological, physical-chemical and electrochemical aspects (e.g.,
microbial community, configurations, electrode material, etc.) [17–19]. Considerable studies have been
conducted to optimize the above aspects [1,7,8,20–24]. However, the BES development for energy
recovery from wastewater treatment still has bottlenecks [18,25]. For example, BES may not replace
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anaerobic digesters to treat the high-strength wastewater [26], and the scale-up BES cannot achieve a
similar performance in current generation as that of the lab scale systems [18,27,28]. How to improve
the BES performance is still challenging, and thorough understanding of these significant aspects that
limit the overall BES performance is needed for future improvement.

A variety of works have been conducted to study the effect of design and operational parameters
on BES performance, such as reactor configurations and scales, electrode materials, electrode surface
areas and the types of electron donors [8,29–37]. However, because of the lack of sensing technology,
some aspects are hard to be measured in situ, such as microbial community composition, biofilm
thickness and growth rate, redox mediator transferring, and substrate utilization rate of bacteria
attached on the electrode [38–44]. These hard-to-measure aspects are likely to be key components for
understanding the mechanisms of electricity generation and improving the efficiency of BES.

Mathematical modeling can be a powerful platform to investigate the effect of above aspects on
the overall BES performance [19,23,45–47]. The use of mathematical models may provide analytical
description of these hard-to-measure aspects, and thus reduce the measurement effort. The versatility
of mathematical models enables the conversion of complexly systematic phenomena into a relatively
simple series of mathematical expressions to describe the effect of each component on the overall
output [19,48]. In general, mathematical modeling is performed in two approaches. One approach
is to derive model based on engineering/physical laws governing the system processes, and this
is called engineering modeling [49,50]. In this review, most engineering models are deterministic
models, because the output of the model is determined by the parameter values and the initial
conditions [51]. For example, differential equations (DEs) are used as main mathematical equations
in the engineering models due to their strong ability to embody the dynamics of BES [19,52–55].
The parameter values and initial conditions are set depending on specific situations to operate the
model. The main equations are combined with physical, chemical and electrochemical principles to
solve specific problems. For example, Monod-type equations are created for describing the growth
curve of specific microorganisms in a certain living environment [40,56,57]. Nernst-Michaelis-Menten
equations are applied to calculate the amount of Nernstian electron transferred to embody bio-anode
kinetics [58–60], and Nernst-Planck equations are applied to represent the ion diffusion through the
interface or membrane of a system [61–64]. The other approach is statistical modeling, which is
developed based on the data collection from BES [49,50], and is also valuable for characterizing the
system input-output relationships, especially when there is limited engineering-domain knowledge
to characterize the complex mechanisms of electricity generation and organic material removal.
In addition, the statistical models can better capture the system uncertainty and remedy the error
originated from engineering models for better system quantification [49].

To help satisfy the increasing needs for mathematical models to achieve better development
of BES for wastewater treatment and energy recovery, this review aims to summarize and discuss
different modeling strategies for BES in the categories of engineering models and statistical models.
It is significantly different from a recent review paper of mathematical models that focuses on
overview of model studies [19]. A general modeling methodological tree is presented in Figure 1.
The motivations, assumptions, advantages, limitations and future directions of various modeling
strategies summarized in this paper can be a reference for scholars to choose a proper modeling
strategy according to their objectives.
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Figure 1. A bioelectrochemical systems (BES) modeling methodological tree. (ODE: ordinary
differential equations; PDE: partial differential equation; MFC: microbial fuel cell; MDC: microbial
desalination cell; OsMFC: osmotic MFCs; PRO-MEC: pressure-retarded osmosis/microbial electrolysis
cell; MBER: membrane bioelectrochemical reactors; CFD: computational fluid dynamics; SLR: simple
linear regression; ANOVA: analysis of variance; RSM: response surface methodology; MLM: Multi-task
Lasso Model; ANN: artificial neural network; GP: genetic programming; SVM: support vector machine;
RVM: relevant vector machine).

2. Engineering Models

2.1. Overview

BES have multiple processes of physical-chemistry, microbiology and electrochemistry, which are
dynamically related to each other. Such dynamic processes are governed by many key parameters,
which influence the BES performance. For example, the energy recovery of a MFC is impacted by
parameters about substrate concentration, substrate type and system configuration [65]. Understanding
the relationships among these parameters and their dynamic processes is important to optimize the
system for electricity generation and wastewater treatment [19,66,67]. Specifically, DEs are the most
frequently applied techniques [52–55]. Based on the common mathematical methods used in BES,
in the following, DEs are divided into ordinary differential equations (ODEs) and partial differential
equations (PDEs) to discuss their motivations, advantages and limitations.
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2.2. Ordinary Differential Equations

2.2.1. Introduction of Ordinary Differential Equations

ODE is a type of DE to describe the dynamic processes, focusing on only one variable. A classical
form of ODE is shown in Equation (1) [68]:

F
´

x, y, y1, y2 , ¨ ¨ ¨ , ypn´1q, ypnq
¯

“ 0 (1)

The objective of ODE is to find the relationships between input x and output y by describing the
differential changes of output under change of input [52,68].

2.2.2. Ordinary Differential Equation Stereotypes in Bioelectrochemical Systems

ODE is a convenient and efficient tool to describe the relationships of various variables in BES,
such as the impact of growth and decay of microorganisms on the dynamic response of the change of
substrate concentration and microbial population on the anode [54,69]. ODEs allow fast computation
and provide an advantageous platform for real-time process control and optimization of BES [70,71].
Some ODE stereotypes can successfully model the dynamics of substrate concentrations and various
microbial populations in BES, and these ODE stereotypes are also the foundations for the future ODE
development [39,54,72].

ODE stereotypes are constructed based on the principle of mass balance to illustrate the dynamic
response of substrate concentration and biomass in the bulk solution in anode chamber [39]. Several
parameters were considered in the ODE: the rate of substrate consumption, the rate of growth and
death of biomass in the bulk solution, and the rate for the electrochemical oxidation of reduced
mediator at the anode surface. These considerations have effectively tracked the source and sink for
the dynamic change of substrate and biomass in the bulk solution at each moment in time, and a
generic form of ODEs was constructed [39]. However, the ODE cannot predict the dynamic change
of microbial biomass on the biofilm. The equations simplified the microbial community into overall
biomass, which cannot specify and distinguish the contribution of each type of functional microbial
species (e.g., electricigenic and acetoclastic methanogenic microorganisms) in the anode chamber [39].

More general ODE stereotypes were developed with more focus on the competition and
contribution among various types of microorganisms in the anode chamber of BES, including two types
of BES (i.e., MFC and MEC) [54,69]. They successfully integrated multiple kinetic equations such
as Monod equations to take many parameters into account, including substrate consumption rate,
biomass growth rate, and even the impact of mediator on the dynamic simulation (Figure 2). The
related ODE stereotype equations are listed and explained in the Table S1 in Supplementary Materials.Energies 2016, 9, 111 
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These ODEs could simulate the system output affected by glucose supply by constructing
two-step degradation using acetate as intermediate substrate [69]. Moreover, a multi-population
dynamic model involves ODEs looking into the various contributions of electricigenic and acetoclastic
methanogenic microorganisms on the system performance, including substrate consumption and
current generation [54,69].

2.2.3. Applications of Ordinary Differential Equation Stereotypes

The above ODE stereotypes are further developed for other BES, such as MDC, osmotic-microbial
fuel cell (OsMFC), pressure-retarded osmosis/microbial electrolysis cell (PRO-MEC), and membrane
bioelectrochemical reactors (MBERs). The ODEs applied in these BES are developed with addition
of certain equations on the stereotype models mentioned before, to enrich the modeling functions
for other physical and chemical processes (Table S2, Supplementary Materials). For instance, the
ODEs were modified with further consideration of salt flux through the ion exchange membrane,
to estimate the performance of MDC [73,74] (Figure 3). The upgraded model can predict the salt
concentration in the desalination, anode and cathode chambers, and be used to study the impact of
different parameters on the system performance to optimize the salt removal efficiency. The model
can even predict the dynamic response of the system output by changing the influent concentration
of acetate, the external resistance, and the influent salt concentration. The developed ODEs can
accurately simulate the quantitative influence of different parameters on MDC performance. The best
acetate flow rate, influent salt concentration, and salt solution flow rate were found according to the
model output [73], and thus the developed ODEs can be applied as valuable tools for future MDC
development and optimization.
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Forward osmosis (FO) is reported to be competent to help MFCs to simultaneously achieve
wastewater treatment, water extraction from the wastewater, and electricity generation together [75],
but quantitative impact of various parameters on the performance still needs to be investigated to
improve the system output. ODEs are further developed to evaluate the application value of FO
in some BES applications, including OsMFCs and PRO-MEC [76,77]. Additional ODEs related to
the salt flux between draw and feed solution were used to predict the performance of an OsMFC,
with consideration of water and salt flux through the FO [76]. The model construction was proposed
to analyze the impact of FO on the organic degradation in the anode and current generation [76].
The OsMFC model successfully validates the experimental results that higher catholyte conductivity
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can increase the current generation, and reveals that increased water flux through FO can decrease
electrical resistance of membrane and generate higher current, which proves the important value
of FO membrane in increasing current output of BES. The equations of water flux through FO were
integrated into the previously developed ODE stereotype, on purpose of simulating the energy
generation from the process of pressure retarding in the unit of PRO, to study the impact of given
pressure on the electricity generation of the PRO unit [77]. The developed model can obtain the
relations among pressure supply, electricity supply to drive MEC and the hydrogen production. The
ODEs of PRO-MEC further reveal the impact of time-dependent change of proton concentration
(e.g., migration and diffusion of proton to the cathode and further reduction to hydrogen gas) on the
reduction potential and the current generation.

BES are combined with membrane bioreactor (MBRs) to form the system called MBERs for
outstanding effect of wastewater treatment and nutrient removal (e.g., nitrogen) from the entire
system [78]. However, quantitative analysis is still needed to improve the MBERs performance,
and the ODE stereotypes were developed to simulate the system output of MBERs [79]. The model
can predict the growth and loss of “cake” layer on the membrane reactor, to indicate the impact
of biofouling on the system performance. The contribution of this model is to accurately model
three MBERs with various configurations [80]. The versatility of the configuration application can
cover many important properties in a MFC-MBR system, such as membrane fouling, nitrogen removal,
cake formation and detaching based on various cross-flow rates through the membrane.

Substrate diffusion in the biofilm matrix is another important factor on the biological activity
attached on the electrode, and understanding of the parameter is significant to improve the activity
of microorganisms on the electrode for greater electricity generation. The ODE stereotypes were
modified to enrich the mathematical expressions of mass balance and substrate diffusion between
the interface of biofilm and bulk solution, to simulate the biological activity inside the biofilm [44,81].
The model is able to simulate the performance of reverse MFC, especially the biofilm thickness and
acetate production rate in the cathode [81]. The conception of finite difference approach was applied
to make ODEs workable to simulate the mass diffusion and the impact of pH change on the substrate
consumption and biofilm performance attached on the electrode (Figure 4) [44]. The updated ODEs
become more powerful for analyzing the dynamic response of biofilm accompanied with the pH
change on the substrate consumption and current generation.
Energies 2016, 9, 111 
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2.2.4. Advantages and Limitations

ODEs are an easy and convenient method to reflect the macro scale dynamic response against the
change of other parameters. ODEs have advantages in terms of low computational load and relatively
easy to be adjusted [19,73,80].

However, ODEs also have intrinsic limitations. ODEs can only trace the time-dependent
performance of one input [82]. Thus, when facing problems related to distance such as geometry of
the biofilm and the distribution of ion concentration in the ion exchange membrane between anode
and cathode, ODEs cannot sufficiently study the problems. Though the finite difference concept was
successfully used to divide the biofilm thickness into multiple finite sections for ODE to predict the
mass diffusion into or out of each section of the biofilm one by one (Figure 4), the distance-related
problems cannot be handled by ODEs in general [44]. To successfully apply ODEs to perform BES
modeling, multiple assumptions are needed to simplify the problems, and these assumptions are
important error sources for ODEs. Most assumptions are relevant to the elimination of spatial factors,
because time is already taken into account as one independent variable and spatial factor (e.g., distance)
is difficult to be another independent variable. Assumptions related to the above ODE stereotypes
and applications are listed and explained with the relevant key kinetic equations in Supplementary
Materials (Tables S1–S3). Some important examples of the assumptions are discussed as follows:

First, both anode and cathode compartments are treated as continuously stirred tank reactors
with the feature of completely mixing [73,83], and biofilm is distributed uniformly attached on the
electrode, and biomass retention is described by two phase growth-wash-out model [38,54,84]. This
assumption may cause the delayed dynamic response of biofilm attached on the electrode against the
change of environmental factors, especially the biological components such as biofilms on the electrode
and bacteria in the bulk solution. For example, ODEs were successfully applied to describe the
impact of catholyte conductivity (adjusted by varying NaCl concentrations) on the current generation
and water flux through the membrane of OsMFC; however, when the catholyte was changed from
35 g¨L´1 to 2 g¨L´1 NaCl, leading to decreased conductivity and current generation, the anolyte
COD changed very slightly, which was overestimated by model expectation for greater anolyte COD
consumption [76]. Because microorganisms are the dominant community on the anode, the model
output of COD change is expected to be strongly correlated to the change of current generation and
anodophilic bacteria on anode [54,73,76,77]. However, the actual change of COD is much smaller
than the modeling results when changing the experimental conditions, possibly because of delayed
response of biological factors for the changing conditions in these cases [76,77].

Second, mass transportation through the membrane due to electro-migration or chemical gradient
between the anode and the cathode is assumed to be sufficiently fast to ignore the thickness of ion
exchange membrane [85,86]. This assumption ignores the impact of ion exchange membrane on
the ion transportation, and will generate errors for the gain and loss of ions in anode and cathode
chambers. For example, Donnan effects on the ion exchange membrane would lead to strong effect of
ion adsorption onto the membrane, which makes electrical potential drop through the thickness of
ion exchange membrane [87]. The accumulated ions on the solution/membrane interface would have
repulsion effect on the same charged ions transferring through the membrane from the solution [88,89],
which will have extra ion transferring impedance to cause the interruption on the ion transportation.

Other assumptions are also required to construct ODEs. For example, one can assume the ideal
mixing to eliminate concentration gradient, because only one independent variable (i.e., time) can
be taken into account while other variables (e.g., distance) cannot be considered in ODE models.
The intrinsic drawback of ODE needs other mathematical principles to solve by simultaneously
considering more independent variables in the model.
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2.3. Partial Differential Equations

2.3.1. Introduction of Partial Differential Equations

Most BES are impacted with many temporal and spatial parameters. Thus, more complex DEs are
needed, which should not only consider the temporal factors, but also the spatial factors for predicting
the high dimensional problems. PDEs can deal with multiple inputs simultaneously with the general
form shown in Equation (2) [90]:

f
ˆ

x1, . . . , xn, y,
By
Bx1

, . . . ,
By
Bxn

,
B2y
Bx1Bx1

, . . . ,
B2y
Bx1xn

, . . .
˙

“ 0 (2)

2.3.2. Partial Differential Equation Stereotypes in Bioelectrochemical Systems

Some high-dimensional problems, including biofilm thickness, microbial distribution on the
electrode, and the ion transportation through the membrane, are all significant to study the working
mechanisms of BES performance to enhance knowledge for performance optimization [38,63,91].
Previously, assumptions are needed for ODEs to solve the above problems. Upcoming PDEs can help
analyze these assumptions that ODEs cannot deal with. Some PDE stereotype equations are also
created to reveal the dynamic response of the biofilm, and the mass transportation through the ion
exchange membrane in three-dimension (3D) (Table S4, Supplementary Materials) [38,39,63,91]. These
PDE stereotypes lay a cornerstone for the future applications of PDEs for various objectives.

A stereotype PDE was developed by integrating Monod and Nernst equations together, to simulate
the electron production rate and the local potential of the biofilm and to understand the kinetic and
electrochemical property of the biofilms on substrate consumption and electrons production [38,92].
This PDE has developed a concept of conductivity of biomass biofilm to represent electrical conductivity
through 3D pattern of the biofilm and to make spatial prediction for impact of biomass thickness and
accumulation of inner biomass on current generation. The PDE successfully overcomes the limitation
of ODE to quantitatively indicate the relation between specific detachment rate and density of biomass
on the electrode.

Another PDE was assisted with Nernst-Planck equations to simulate the ion transportation
through the ion exchange membrane [63]. The simulation was performed in the process of diffusion
and electro-migration, and the ion transport process is shown in Figure 5. The model is able to show
the ion gradient in the ion exchange membrane, which is promising to simulate ion transportation that
ODEs cannot deal with. Moreover, it can describe the pH gradient in the ion exchange membrane to
help explain the relation of pH gradient between two chambers and ion exchange membrane.Energies 2016, 9, 111 
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A series of general PDEs were further developed on the basis of original ODEs. The PDEs
can predict the microbial activity on the biofilm to consume the substrate for growth and electron
generation, which considered substrate diffusion and the biofilm geometry together [39,72], and even
the effect of pH on the model prediction [91].

2.3.3. Applications of Partial Differential Equation Stereotypes

The above stereotype PDEs are further developed and applied for specific problems in BES, such as
impact of oxygen diffusion on substrate concentration profile in single-chamber MFCs, quantitative
description of the Donnan effect, and computational fluid dynamics (CFD) to predict mass distribution
inside the tubular reactor. The relevant equations are listed and explained in Supplementary Materials
(Table S5).

Single-chamber MFCs are a system without ion exchange membrane to separate the anode
and cathode chamber, because the design can reduce the membrane resistance for higher current
generation [34,93]. However, the oxygen diffusion from the cathode to the anode will be greater in the
absence of the membrane impedance, and thus the activity of the microorganisms will be impacted
by the oxygen transportation [34]. Investigating the impact of transported oxygen on the system
performance is important to evaluate and optimize the system structure. A previously developed
stereotype PDE was modified to simulate the impact of substrate concentration, oxygen diffusion,
cathode thickness (material: polytetra-fluoroethylen (PTFE)), and biofilm thickness on the voltage
output of the entire system [94]. It was found that at the condition of high substrate supply, the biofilm
thickness had greater impact on voltage output than the PTFE layer [94].

PDE is also applied to investigate the fluid flow pattern in the BES by CFD. CFD can be applied
to study the flow dynamics to improve the condition of substrate distribution to increase electricity
generation [95]. Kim et al. applied CFD to simulate the flow dynamics in twelve MFCs with different
internal structures and to analyze the impact of anode surface on the electricity generation; it was
found that power generation increased exponentially with increased anode surface, due to greater
bio-electrochemical reaction space [96].

The dynamic change of biofilm on the electrode is another important problem, because the biofilm
growth and detaching is strongly relevant to substrate degradation and electricity generation [97,98].
A PDE is used to simulate the dynamic response of Geobacter of the biofilm and understand how the
species react against the change of external operating conditions. The results reveal the importance of
substrate concentration and pH gradient on the biofilm growth and electricity generation through the
entire biofilm [97,98].

The simulation on the ion transportation through the ion exchange membrane can serve as a
monitor to indicate the relations between the activities of specific ions and system output. Ammonium
is a significant species deserving to be monitored and analyzed, because the ammonium is considered
to be main carrier of protons through proton exchange membrane from anode to cathode, and the
accumulation of ammonia in cathode enhances the possibility to recover the ammonia from cathode
due to high pH in cathode [99,100]. A PDE model on the basis of Nernst-Planck equation is created to
successfully describe the current-driving ammonia evaporation and recovery in the cathode, and the
model can describe in detail the impact of different factors on the ammonia recovery including flow
rate of gas in the cathode and back diffusion of ammonia from cathode to anode, which makes great
contribution to improve ammonia treatment and recovery from the wastewater in BES [85].

2.3.4. Advantages and Limitations

The primary advantage of PDEs is the higher ability to solve the spatial problems [82]. PDEs can
consider the impact of not only temporal factors, but also the spatial factors on the system performance.
Thus, PDE can trace the flow dynamics and biomass growth in the angle of high dimensions in
BES [39,41,101]. However, because PDEs consider the impact of more factors on the BES performance,
the trade-off is the increased time required for PDE construction [82]. PDEs structure is generally more
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complex than ODEs, because a larger number of parameters needs identification. The complexity
increases the simulation time, particularly in the multidimensional space dependent models [82].

There are still some limitations even if PDEs are used to substitute ODEs in the model structure,
and the details of PDE assumptions are presented and explained in Supplementary Materials
(Tables S4–S6). For example, it was assumed that organic substrate is converted by reducing redox
mediator, and the redox mediator is to complete the electron transferring mechanism in bulk solution
and biofilm [39,91]. However, in practical application, some operational steps can make deviation
between experimental data and model outputs. When voltage drops to a baseline, replacing the
medium will remove some mediator from the bulk liquid, leading to abrupt concentration drop of
the mediator in the solution. After medium refreshment, the change of the mediator concentration
causes decreasing current in the model while experimental data indicates current increase after acetate
addition [39]. The deviation exists due to certain assumptions in this particular model [91]. More
advanced alternative models are required to improve the model accuracy and precision.

2.4. Model Adjustment and Validation

2.4.1. Sensitivity Analysis of Model Parameters

The parameters in engineering models need to be adjusted to predict the model output accurately
and speed up the model construction. Sensitivity analysis can allow us to determine which parameters
are the most influential factor on the model output, and select the most relevant parameters to be
adjusted in less computational time [102,103]. A common method to perform the sensitivity analysis is
to vary each parameter while fixing the other parameters, one factor at a time, to check the impact of
the parameter on output [83,104].

Another function of sensitivity analysis is to evaluate the parameters’ relative importance for the
output [73,105,106]. The importance comparison among all parameters can quantitatively assist the
explanation for the relationships among various factors in the system. For example, model construction
consists of three parts: model fitting, validation and prediction [73,107,108]. Sensitivity analysis is
one part in the process of model fitting, to determine the impact of a specific parameter on the system
output [73]. In general, relatively more sensitive parameters will take priority to be adjusted and to fit
the experimental data under specific situations in model fitting. In the MDC model, one parameter
(kr) has the highest sensitivity, whose physical meaning indicates how fast the internal resistance of
the system responds to the change of microorganism concentration [73]. In this case, changing flow
rate is applied in model fitting to obtain the experimental data and to give guidance for development
of mathematical equations, assumption determination and parameter adjustment to make model
structure. Because of high sensitivity, kr significantly impacts the model accuracy and precision. High
sensitivity of kr is reasonable because the dynamic change of microorganism concentration in a MFC
strongly affects the efficiency and availability of electron transferring to the anode. kr considers and
represents the overall impacts of substrate diffusion and reaction kinetics on the anode [109–111].
Determination of highly sensitive parameters can reduce the computational time to make satisfactory
model. Once the model fitting and constructing is finished, model validation is applied to verify the
model reliability, by changing operating conditions of other aspects (e.g., organic concentration) [73].
All parameters must be fixed in the model validations, except for the target parameter being studied in
each test, to guarantee the model applicability [73].

Another significant parameter, mediator yield (Ym), represents the production of intracellular
mediator in the anodophilic bacteria [54]. The anodophilic bacteria in the electrode biofilm takes the
electron from the substrate oxidation, reduces the intracellular mediator to finally transfer electrons to
the electrode by direct contact or nanowires [54]. Higher Ym means stronger conversion of the oxidized
mediators to reduced mediators and higher electron transferring activity accompanied with higher
concentration of anodophilic bacteria on the electrode [8,112,113]. Thus, determination of Ym in BES
modeling is critical to understand and quantify the impact of mediators for the current generation.
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BES development would require more parameters to make an accurate model to optimize their
applications. For example, submersible microbial fuel cell (SMFC) is a system to place anode in the
anaerobic sediment, and the anode connects with the air-cathode to complete a closed circuit and
generate electricity by degrading organics in the sediment [114]. To improve SMFC performance,
it is helpful to construct an effective model to simulate the changes of DO and current generation
under different conditions [115–117]. However, the biological aspects, such as biofouling in the
environmental waters and competition among different bacteria for COD degradation and nutrient
removal, need more parameters to trace their change and activity. Sensitivity analysis is a strong tool
to help select the parameters. For example, biofouling formation and detachment strongly impacts
electrochemical reaction on a cathode due to bacterial competition for oxygen [18,118]. To address this
issue, the researchers adopted the increase rate of resistance in their model to describe the difficulty of
water filtration through the membrane under biofouling [80,119]. Sensitivity analysis can also assist
in parameter tuning for accelerated model construction. Other innovated applications in BES also
need new parameters to analyze the system performance, such as growth rate of algal biomass for
integrated photo-bioelectrochemical system (IPB), and the constant for hydrogen production rate in
microbial electrolysis and desalination cells (MEDC) [120–122].

In summary, sensitivity analysis is an important method to identify the most influencing
parameters on the model performance. It can not only reduce the working load of parameter
adjustment, but also reflect the importance of certain parameters on the system output and help
understand the working mechanisms and interrelations among immeasurable factors in MFC [73,123].
The current sensitivity analysis frequently applied in BES is one-factor-at-a-time method (OFAT).
This method has intrinsic drawback because it cannot completely reflect the systematic impact of
various parameters together on the performance. Some important and sensitive parameters might be
hidden if other parameters are not set in the suitable range, which will limit the sensitive output of
these actually important parameters [124]. Thus, more efficient and accurate approaches of sensitivity
analysis are required to solve complicated problems [124].

2.4.2. Model Validation

Model validation is a significant process after finishing model construction and adjustment.
A principle to validate the model is to see if experimental data can match the modeling data [54,73].
The model validation is required to enhance the model reliability and practicability. In addition,
the model validation can give significant information of what physical, chemical or biological reactions
or phenomena are not explained by the model, which will need further model modification. There are
several standards to calculate the modeling error, such as mean square errors (MSE), root mean square
error (RMSE), and coefficient of determination (R2) [54,63,69,73].

The results of model validation of above engineering models are listed in Supplementary Materials
(Table S7) (models without showing validation results are not listed), as a reference to compare the
model accuracy. However, it is difficult to set a general standard to determine if the model has fit
the experimental data well, because of the difference in BES configurations and operating conditions.
Whether a model is acceptable will depend on both validation results and specific case conditions.

A common standard to optimize the parameter for most accurate output is to minimize the root
mean square error (RMSE) by adjusting the model structure and parameters to fit the experimental
data shown in Equation (3) [54]:

RMSE “

d

řN
i´1pyi ´

xyiq
2

N
max pŷq

(3)

Normally, RMSE below 20% is acceptable for the model validation, but acceptable level is difficult
to be fixed due to variously actual cases [73,74,76,77,80,83]. For example, Yuan et al. [77] constructed
an engineering model to successfully predict the dynamic volume profile of feed and draw solution
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with RMSE smaller than 2.5%; although the RMSE for a MEC model was relatively high (13%–23.6%),
the predicted output was still acceptable because the error came from overestimation of organics in
the model, which was related to microbial degradation of organics in anode featured with relatively
higher unstableness and delayed response of biological factors than other physical attributes. There
are also some cases with high RMSE or intrinsic limitations indicating that engineering models are
not powerful enough to deal with specific outputs [49,63,76,80]. For example, a model was proposed
to simulate the performance of a MBER with fluidized-bed system with granular activated carbon
(GAC) as media [80]. A significant large RMSE of 55.7% was obtained when changing the anodic
hydraulic retention time (HRT) to 5 h [80]. The huge error may come from the delayed acclimation of
electrochemical active bacteria on the electrode, and it is possible that most of enhanced organics are
consumed by non-electrochemical active microorganism on the GAC surface instead of electrode [80].
However, the error can be utilized to derive more impact of other factors, which is not considered in
the original model structure (e.g., organic consumption by non-negligible microorganisms attached on
GAC in above case).

With higher demand for model application in BES, more advanced engineering models are
needed. Even engineering models themselves cannot satisfy the model demand, and another model
system, statistical model, can be a complementing method to help engineering models to increase the
prediction ability, which will be discussed in next section [49].

3. Statistical Modeling

3.1. Overview

Statistical models are constructed based on the measured data from the BES system. The statistical
models are useful to reveal the input–output relationships and identify the significant parameters for
system quantifications, especially when the engineering models are hard to be constructed in a timely
manner. The uncertainty can also be better quantified in statistical models than engineering models.
On the other hand, the conclusions drawn from the statistical models needed to be validated with the
engineering knowledge. A large variety of statistical models, ranging from regression based methods
to data mining methods, can be used for the BES modeling. In the following, we will focus on MFCs as
representative BES.

The performance of a statistical model depends heavily on the type and quality of the collected
data. In general, the data can be collected from controlled experiments, observational studies, and
simulations based on engineering models. Most MFC model works were performed based on
controlled experiments with studying the effect of parameters on system performance [125–133].
More details on data collection for controlled experiments will be introduced in Section 3.2. Very
limited observational studies were reported [134,135], where the data collection was performed directly
during the real production of the system. Simulation data can be generated from the engineering
models based on the first principles (see Section 2 for more details). In these simulation studies, the
data are generated from the computer program by setting the program inputs and initial and/or
boundary conditions.

Depending on the data structure, a variety of model formats can be chosen from. In general,
one can select from linear models, nonlinear models and more complex data mining models [136].
A discussion on selecting the appropriate type of model is provided in Supplementary Materials (Model
Selection and Figure S1). Most models used for MFC modeling are based on linear regression (LR),
and these models usually have good interpretability and simple model structures [125–127,129–133].
In recent years, data mining methods were also introduced for modeling the MFC performance
such as artificial neural network (ANN), genetic programming (GP), support vector machine (SVM)
and relevance vector machine (RVM) [128,137,138]. These data mining methods can yield good
prediction performance. However, they usually do not have an analytical form thus are difficult to be
interpreted [19].
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In the following, the data generation approaches are first briefly reviewed. Then, different
statistical models used in the MFC studies are summarized (Table 1). The motivations, advantages and
limitations of these models are discussed. Finally, model diagnostic and variable selection, which are
the missing part in the literature, are also discussed.

Table 1. Summary of statistical models.

Methods Data Generation Systems Major Conclusions References

SLR OFAT Submersible MFC
Current density increased with
increase of microorganisms
concentration before saturation

[130]

SLR OFAT MFC biosensor
Current density increased with
increase of acetate concentration
before saturation

[139]

SLR OFAT Two-chamber MFC
Voltage increased with increase of
organic loading rate and flow rate at
neutral pH

[140]

SLR OFAT Two-chamber MFC
Mainly cation species were
responsible for the transport of
positive charge

[141]

ANOVA, RSM FD, CCD Two-chamber MFC The interaction effect was significant [125]

ANOVA, RSM FD Two-chamber MFC Two-factor and three-factor
interaction effects were less significant [127]

MLM FD with covariates Two-chamber MFC
Cathode moisture was significant on
energy recovery but insignificant on
organic removal efficiency

[142]

ANOVA, RSM CCD Two-chamber MFC
Quadratic effects can be significant,
but interaction effects were not
significant

[129]

ANOVA, RSM CCD Mediator-less
single-chamber MFC

Interaction and quadratic effects can
be significant [126]

ANOVA, RSM CCD Two-chamber MFC All the linear, square and interaction
effects were significant [132]

ANOVA, RSM CCD Membrane-less MFC Interaction and quadratic effects can
be significant [133]

ANOVA PBD Submersible MFC Temperature, initial pH, and
conductivity were significant [130]

ANOVA, RSM PBD Two-chamber MFC Glucose, NaHCO3 and KCl were
significant [131]

GP, ANN, SVM [143] Two-chamber MFC GP performed best among the three
models [138]

ANN Controlled Experiment Membrane-less MFC R2 value can be as high as 0.99 [144]
RVM UD Two-chamber MFC RVM performed better than SVM [128]

[130] uses both OFAT and PBD. OFAT: one-factor-at-a-time; FD: factorial design; CCD: central composite design;
PBD: Placket-Burman design; UD: uniform design.

3.2. Data Generation

MFCs have been studied via controlled experiments intensively [125–133,141,145]. The controlled
experiments are performed in OFAT or design of experiments (DOE) fashion. In OFAT, only one factor
is varied while the others are remained constant. The system performance, such as power generation
and organic removal, can be measured by varying the factor under study. The effect of the varied factor
is analyzed visually or by statistical models [130,139–141,146–151]. Note that OFAT can only study
the effect of a certain parameter on the MFC performance once at a time, resulting in interpretation
problems of interactions or joint effects of multiple factors on the MFC performance. Misleading results
can be yielded in such circumstances [125,126,133,152]. For instance, it was found that the interaction
effect of pH and buffer concentration was very significant, while a false conclusion could be made
if the interaction effect was ignored [125]. In DOE, each factor will be studied with selected levels.
The combinations of these levels over different factors consist of the design table. Based on the design
table and measured output, the main effects and interaction effects can be studied simultaneously.
Here, main effects refer to the effect of factors themselves, and interaction effects characterize the
phenomenon that the effect of one factor on output changes over the level of other factor(s). Moreover,
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the number of experimental runs required can be significantly reduced in DOE compared with all
possible combinations, or random selections of factor levels. The past MFC studies have used factorial
design (FD), central composite design (CCD), box-Behnken design (BBD), Placket-Burman design
(PBD), and uniform design (UD) [125,127,128,130–133,142,153]. More general designs can be found
in [152].

Figure 6 shows some of the designs for a three-factor problem, where the red points represent
the settings of experiment runs and the cube represents the design space. The factors in FD usually
take two levels of values, where only linear effect can be estimated (Figure 6a). In CCD and BBD, the
factors will take more levels of values and the quadratic effect can be studied without adding a lot
of additional experimental runs (Figure 6b,c). PBD uses a limited amount of experimental runs for
screening a relatively large amount of factors (Figure 6d). In the screening experiments, the interactions
between the factors are usually neglected [154]. Finally, UD uniformly assigns experimental points in
the domain, and is used when the underlying model structure is unknown. See details in constructing
a UD in [155]. Note that along with the experiments in DOE, other related but uncontrolled factors can
be recorded. These factors are usually called covariates [152].
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The observational data, which are usually collected after the system enters the application phase,
are rarely reported in the literature [134,135]. These studies did not use statistical models for the
observation data collected from the field operation. The simulation studies are also widely performed
in MFC literature (see Section 2 for details). In such studies, the focus was on the engineering models
themselves. We would like to point out that the engineering models can generate useful simulation
data, and statistical surrogate models can then be constructed based on the simulation data and
real measurement data. These statistical models can be used to enhance the simulation models’
prediction performance.

It is worth noting that experimental procedures vary a lot in different studies, even for the
same BES configuration. The statistical models generated from one system may not be directly used
for another study. Standard experimental and data collection procedures are therefore required for
guaranteeing the data uniformity and quality. In BES, available data to be measured are mainly divided
into two categories: electrochemistry and wastewater treatment. Cell voltage and electrode potential
are significant data about electricity generation in BES. The collection and reporting procedures
of these data have been previously discussed, and voltage meters, multimeter, and potentialstat
are common methods to collect the data and observe the electrochemical behavior of the system
under specific situation [8]. In wastewater treatment, removal efficiency of organic compounds
(e.g., acetate, glucose, and COD), and other indexes (e.g., pH and total nitrogen) are significant data
to be collected [76,78]. High performance liquid chromatography (HPLC) is a common method to
qualitatively and quantitatively measure the organic concentration [156–159]. Chemical analysis such
as COD kits (Hach Co., Loveland, CO, USA) can be applied to measure COD, ammonium, nitrate and
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other ion concentration in water [160–162]. Some calculation data such as Coulombic efficiency (CE),
power density, and energy efficiency are also needed to report the efficiency of electricity generation
and assess the BES performance [8,163].

3.3. Linear Regression

To model the MFC, a LR, with the form shown in Equation (4) can be used. The LR uses an
additive form of inputs and an error term for the prediction of the output shown in Equation (4) [164]:

yi “ β0 `β1xi,1 ` ¨ ¨ ¨ `βpxi,p ` εi, i “ 1, ¨ ¨ ¨ , n (4)

where yi is the ith observation of the output such as power density, xi,j is the ith observation of the
jth input such as substrate concentration, β0 is the intercept term, βj is the model parameter for the
jth input, and εi is the error term for the ith observation. The basic assumptions for any LR are that
the input–output relationships can be represented in a linear form, and the error terms εi, i “ 1, ¨ ¨ ¨ , n
are normal, identically and independently distributed with mean zero and variance σ2. These model
assumptions need to be checked via model diagnostic after the estimation steps. However, the model
diagnostic process is rarely reported in the MFC literature, which should be emphasized.

The data generated from OFAT can be studied via simple linear regression (SLR), where only one
factor is used as input. For instance, the relationship between current density and microorganisms
concentration was investigated [130]. It was found that the current density increased with the
increase of active microorganism concentration when the active microorganism concentration was
below 6.52 nmol-ATP/L (ATP: adenosine-triphosphate), and the system saturated at higher active
microorganism concentrations. In another example, the association of current generation and bulk
phase acetate concentration was found to be positive association at acetate concentration value less
than 2.3 mM [139]. SLR was also used for studying the species that were responsible for the transport
of positive charge [141], and the effect of organic loading rate, flow rate and pH on current density,
voltage and volumetric power [140].

The analysis of variance (ANOVA) and response surface methods (RSM) are also based on LR
analysis, which are widely used for the analysis of DOE data of MFCs. Taking a system with two
factors A and B, with a and b levels respectively for example, a typical ANOVA has the form shown in
Equation (5):

yi,j,k “ µ`αi `βj ` pαβqi,j ` εi,j,k, i “ 1, ¨ ¨ ¨ , a, j “ 1, ¨ ¨ ¨ , b, k “ 1, ¨ ¨ ¨ , n (5)

where yi,j,k is the kth observation at the level i and j for A and B respectively, µ is the overall mean,
αi and βj are main effects of A and B, pαβqi,j is pair-wise interaction effect between A and B, and
εi,j,k „ N

`

0,σ2˘ is the error term. ANOVA can be used to identify significant effects. RSM uses a
polynomial model, with the form in Equation (4), to approximate the input-output relationships. RSM
can help determine the optimal settings for a response at the specified design region.

The effects of pH and catholyte buffer concentration on power output, columbic efficiency,
COD change and COD removal efficiency were studied for a two-chamber MFC via ANOVA and RSM
based on FD and CCD [125]. It was reported that the increase in buffer concentration would lead to an
increase in power generation at a high pH level; while the opposite impact was observed at low pH
level. In another word, the interaction between pH and catholyte buffer concentration was significant,
which cannot be discovered by the OFAT approach [125]. The factor setting for maximal power
generation was obtained and validated by physical experiments [125]. In a sediment MFC, the effects
of pH, distance between electrodes and external resistance on organic removal, nitrogen removal and
power generation were studied via ANOVA and RSM [127]. It was reported that organic removal,
nitrogen removal and power density were optimized if controlling pH in 7.6–8.5, distance between
electrode in 90–100 cm and external resistance in 0–52 ohm. The authors also concluded that two-factor
and three-factor interactions were less significant, and might be negligible in the final identified mode.
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The ANOVA or RSM were used in several other works studying the effects of parameters on MFC
performance (as summarized in Table 1) [126,129–133,153].

It is worth mentioning that the MFC systems are becoming more complex with successively added
functions. New factors are of interest and the number of factors increases quickly for the MFC stack.
For instance, new parameters such as ammonia and sulfate were detected via bipolar bioelectrodialysis,
and a MFC with multiple modules was studied [116,142]. Under such circumstances, variable selection
is needed. Recently, a multi-task Lasso model (MLM) was proposed for modeling the multi-module
MFC system, and showed its great modeling power (Figure 7) [142].
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3.4. Data Mining Methods

Some data mining methods were applied for MFC modeling, though there were no clearly stated
reasons on why these data mining methods were preferred over regression models. In general, these
data mining methods can have good prediction performance, but usually do not have good engineering
interpretations [19]. These data mining methods included ANN, GP, SVM and RVM.

ANN is inspired by biological neural networks and uses a number of connected “neurons” for
the modeling of input-output relationships. The “neurons” can be characterized by different layers,
as shown in Figure 8, where the hidden layers are composed of some function of input neurons [144].
More details can be found [165].Energies 2016, 9, 111 
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GP mimics the evolution process, and uses crossover and mutation operations for learning [138].
In GP, the solutions to a problem are represented by tree structures, and an initial structure is generated
randomly. The optimal structure is learned via heuristic searching over all structures created by
crossover and mutation operations until some termination criterion is met. For more details, please
refer to [138].

SVM and RVM are also effective methods for predicting MFC performance. SVM maps the
finite-dimensional input space to infinite-dimensional space via kernel functions, and performs the
regression in the infinite-dimensional space. The learning in infinite-dimensional space is usually
easier than in finite-dimensional input space [136]. RVM has very similar formulation as SVM, except
that the RVM solves the problem in Bayesian framework [128]. The RVM can provide probabilistic
classification, and typically use fewer kernel functions than SVM. RVM usually uses expectation
maximization algorithm for learning, and may fall into local minima [166]. On the other hand, SVM
uses sequential minimal optimization and is guaranteed to have a global optimum [167]. The effects
of temperature and ferrous sulfate concentrations on the voltage were studied via GP, ANN and
SVM [138]. The researchers adopted the data for a two-chambered MFC, and the model inputs included
temperature or ferrous sulfate concentrations and time. They concluded that GP performed best among
the three models based on R2 values. However, their models contained complex transformations such
as tan, tanh, sin, log, etc., which are hard to be interpreted. At the same time, R2 values can be used to
describe the model fitting performance, but not the prediction performance [164]. In another example,
the effects of temperature, pH and electron acceptor concentration on power density were studied
via ANN for a membrane-less MFC [144]. It was reported that the R2 value could be as high as 0.99;
however, the specific variable effects and the analytical model structure were not provided. A RVM
was adopted for investigating the effects of ionic concentration, pH, medium nitrogen concentration
and temperature on Coulombic efficiency and power density [128]. The R2 values were larger than
0.99, and the optimized factor setting was obtained via genetic algorithm (GA), and validated by
validation experiments [128].

3.5. Model Diagnostic

The model assumptions must be checked before applications. If the model assumptions are
severely violated, the model inference and interpretation may have some problem [164]. However, the
model diagnostic was rarely reported in MFC literature. In the following, the model diagnostic for LR
will be briefly reviewed as an example.

Model diagnostic for LR is based on residuals, which are calculated as the difference between
the observed value and fitted value. The common model diagnostic for LR includes: (1) whether
the input-output relationship is linear; (2) whether the error terms have homogeneous variance
(“identically distributed”); (3) whether the error terms are independent; (4) whether the error terms
are normally distributed; and (5) whether there are outliers [164]. The model diagnostic methods
include graphical methods and statistical tests. The graphic methods are more vivid and interactive,
but the judgment made is subjective. On the other hand, statistical tests provide quantitative tools to
evaluate the model assumptions [164]. If a certain model assumption is violated according to the model
diagnostic in LR, several approaches can be used to relief the problem. For instance, the weighted least
square can be used if the variance is heterogeneous. The nonlinear regression can be used if the linear
model structure does not work well. Box-cox transformation can be used if the normal assumption
is violated [164]. If the above remedy approaches do not work, one can use data mining methods as
described in Section 3.4.

3.6. Variable Selection

Many model candidates are usually available within a given modeling framework. Given the
model candidates, a certain evaluation criterion is needed to select the best candidates. These criteria
include: R2, adjusted R2, Mallow’s Cp, Akaike information criterion (AIC), Bayesian information
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criterion (BIC), RMSE of cross validation (CV), etc. [136,164]. R2 is usually used in the MFC
study to characterize how well the model fits, and p-value is used to judge the significance of
variables [125–127,129,130,132,133]. As discussed before, R2 may not be a good criterion to characterize
the prediction performance. Moreover, the p-value is subjective and there is no consensus on how
to select a threshold on variable significance [168]. More systematic variable selection methods
are required.

The variable selection methods, such as subset selection, stepwise selection and model
regularization, can be applied for selecting the best model. Subset selection considers all possible
candidate models and select the best based on certain criterion. Such combinatorial analysis is infeasible
for high dimensional problems. Stepwise selection starts from a null (empty) model or a full model
(model with all the inputs), and systematically add or drop variables [169]. The stepwise selection is
computationally inefficient for high dimensional problems, where regularized regression can be used.
A regularized regression model is estimated by solving the objective function shown in Equation (6):

n
ÿ

i“1

´

yi ´ xT
i β

¯2
` λΩ pβq , i “ 1, ¨ ¨ ¨ , n (6)

where xi “
`

1, xi,1, ¨ ¨ ¨ , xi,p
˘T, β “

´

β0,β1, ¨ ¨ ¨ ,βp

¯T
, and Ω p¨ q is a measure of the model complexity

which can take the form such as |β1|` ¨ ¨ ¨`
ˇ

ˇ

ˇ
βp

ˇ

ˇ

ˇ
. The xi,j, andβj are defined as before.

ř n
i“1

`

yi ´ xT
i β

˘2

is a loss function to characterize the model prediction performance. λ is a tuning parameter that controls
the balance between how well the model fits and how complex the model is. A family of models will
be yielded by varying the tuning parameter λ. The best model candidate with the smallest MSE can be
selected from a regularization path [170].

4. Perspective

The BES modeling may be further improved in the aspects of variable selection, modeling with
functional data, data fusion and hybrid models. With the development of more BES applications,
demand for BES modeling is enhanced.

4.1. Variable Selection

Many parameters can potentially have strong correlation with the MFC performance. The number
of parameters of interest could increase rapidly for a MFC system consisting of multiple modules [171].
However, due to the experimental cost, limited samples can be collected. The number of parameters
of interest could be certainly larger than the number of samples. In this case, ANOVA and RSM
cannot be directly applied. Variable selection method can be applied for investigating the important
parameters for such systems when there are a lot of parameters but limited samples. Currently, there
is very limited application of variable selection in MFC studies. In a recent work, a multi-task Lasso
was adopted for identifying the important parameters for system performance characterization in a
serially connected five-module MFC [142]. More works on systematic variable selection are required
for understanding, monitoring and control the MFCs.

4.2. Modeling with Functional Data

The MFCs are essentially complex nonlinear dynamic systems whose performance would evolve
over time [172]. The evolving history of key parameters such as temperature, pH and moisture are
important for the system characterization. These measurements over time are called functional data.
Generally, the dynamics of the system could be characterized by ODEs or PDEs, and validated with
sampled points during operation over time. But these ODEs or PDEs are time-consuming to be
constructed, and may not be accurate in the prediction. Given the measurements over time, some
functional data analysis techniques could be adopted so that the important features of the system can
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be identified. For instance, the varying-coefficient model can be adopted for modeling a dynamic
system [173].

4.3. Data Fusion

Because the MFCs, though different configurations, could contain many similar features [8],
ensemble modeling strategy could integrate knowledge from an existing configuration to new systems
development [174]. In this way, fewer samples will be needed for new system modeling. There will
also be various differences between the field condition and lab testing condition. Therefore, the model
learned from the lab measurement data may not be accurate for applications for field production.
Under such a situation, ensemble modeling strategy can be used to tune the model so that it fits the
need for field production [174]. The basic idea is to adopt the existing knowledge on the model format
and significance of variables to the newly developed systems, and most details can be found in a
previous publication [174].

4.4. Hybrid Models

Hybrid models integrate the engineering models and statistical models systematically.
One example is to keep the engineering models as the mean part, but add statistical adjustments to the
final model to account for the errors incurred by simplification assumptions in the engineering models.
It can therefore take advantage of the strength of each type of models for system characterization, and
will yield better modeling performance. Such an approach has been used for manufacturing systems
and show their advantages [49,50], and may also be applied for MFC studies.

5. Conclusions

Mathematical modeling is a powerful tool to help understand and guide BES development for
energy recovery from waste and wastewater. Both engineering models and statistical models have
their merits and drawbacks. Engineering models are developed based on the biochemical mechanisms
to reflect the relationships among versatile variables in MFC systems, which require knowledge in
the field of physical-chemistry, biology and electrochemistry. Engineering models have advantage in
quantitative analysis and explanation of the impact of certain variables that are hard to be measured.
On the other hand, the statistical models have higher flexibility in the model format and are capable
of dealing with the system uncertainty. The statistical models are driven by the measurement data,
and easier to develop for an unknown complex system. However, the statistical models need to be
interpreted by domain expert before applications.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1073/9/2/111/s1.
The detailed information of the models in the prior studies is summarized in Tables S1–S7. Determining the model
format by using residue plot is shown in Figure S1.
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