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Abstract: This paper studies the dynamic response of a wind turbine gearbox under different
excitation conditions. The proposed 4 degree-of-freedom (DOF) dynamic model takes into account
the key factors such as the time-varying mesh stiffness, bearing stiffness, damping, static transmission
error and gear backlash. Both the external excitation due to wind and the internal excitation due to
the static transmission error are included to represent the gearbox excitation conditions. With the
help of the time history and frequency spectrum, the dynamic responses of wind turbine gearbox
components are investigated by using the numerical integration method. This paper explains under
which conditions the fretting corrosion, as one of the wind turbine gearbox failure modes, may occur.
Furthermore, it is observed that the external excitation fluctuation has large influence on the dynamic
responses of both the gears and bearings.

Keywords: wind turbine; gearbox; dynamic responses; excitation conditions; time-varying mesh
stiffness; static transmission error; damping; gear backlash

1. Introduction

The wind turbine drivetrain converts high torque on the main shaft to low torque on the
high-speed shaft to meet the electromechanical requirements of the generator. Gearbox failure has
been the major cause of many reliability problems for the modern wind energy industry since its
inception [1]. Although vibrations in wind turbine gearboxes have received significant attention from
both the industry and researchers, to the authors’ best knowledge the fundamental failure mechanisms
have not yet been fully understood due to the complexity of its nature,. In the context of vibrations, a
wind turbine gearbox can be considered as a complex dynamic system subjected to highly complex
loading conditions. The torque applied on the gearbox is driven by the rotor blades under fluctuating
wind, and the variable loads inherently exist within the entire gearbox. Under such conditions, the
fatigue life of wind turbine gearboxes is significantly affected [2].

The objective of the present work is to study the dynamic responses of wind turbine gearbox
components under different excitation conditions. The proposed model considers both the
low-frequency excitation due to the external driving torque and the high-frequency internal excitation
due to the static transmission error. Other factors include the time-varying mesh stiffness, bearing
stiffness, damping and gear backlash. The proposed dynamic model can be used to study the
fundamental mechanism of wind turbine gearbox components including gears and bearings, which
could provide useful information to reduce the possibility of the gearbox failures at an early stage.
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2. A Brief Review on Wind Turbine Gearbox Dynamics

A brief review of the existing studies regarding wind turbine gearboxes are presented in this
section. Peeters, Vandepitte, Sas and Helsen [3–6] developed three types of multi-body models to study
the dynamic responses of wind turbine gearbox components. Feng and Zuo [7] developed a torsional
model of the gearbox used for diagnosing multiple gear faults. Abboudi et al. [8] studied the dynamic
behavior of a two-stage spur gear system used in wind turbines. Dong, Xing and Moan [9] investigated
the gear dynamics in time domain with the torque only, and found that the reverse problem is severe
at low speed and suggested a generator control. Later Xing and Moan [10] developed a multi-body
model of the planet carrier of wind turbine gearboxes and investigated the influence of the gearbox
components using the finite element model. Oyague [11] discussed a number of analytical models for
the analysis of wind turbine gearbox components, and correlated the parameters obtained from these
models with the gearbox design process. He [12] also provided the general information, configuration
and specifications of the wind turbine gearbox components using the Gearbox Reliability Collaborative
(GRC) layout (the GRC project was initiated by the National Renewable Energy Laboratory (NREL) in
2007; the project includes modelling, analysis, field testing, condition monitoring and the development
of failure database, etc.). Zhu, Chen and Liu [13] noted that the vibrations appear to be at peak on
the low-speed shaft and the internal components of the high-speed parallel gear stage. Whittle and
Trevelyan [14] studied the impact of the misalignment on the high-speed gear stage and generator
bearings. They found that the fatigue life of the gearbox bearings in high-speed gear stage were
not significantly affected by the misalignment but that of the generator bearings can be significantly
reduced. Zhang, Nielsen, Blaabjerg and Zhou [15] presented a 13-DOFs model of an offshore wind
turbine by using the Euler-Lagrangian approach. Zhao and Ji [16] studied the torsional vibrations of
wind turbine gearbox having two planetary gear stages and one parallel gear stage. It was found that
the external excitation has the most influence on the torsional vibrations of the wind turbine gearbox
components. The mesh stiffness, being another significant factor, has more influence than the static
transmission error.

Furthermore, wind turbine gearboxes may consist of both the planetary and parallel gear stages
depending on the capacity requirement of a wind turbine. In the study of gear dynamics, Ozguven
and Houser [17] established a nonlinear model of a spur gear and observed that the transmission error
has less effect on the dynamic responses of gears than the mesh stiffness. Kahraman and Singh [18]
studied the frequency response of a nonlinear geared rotor-bearing system. Kahraman also developed
a linear dynamic model of a helical gear pair including the shaft and bearing flexibilities and studied a
three-dimensional dynamic model of a multi-mesh helical gear train [19,20]. It was observed that only
the coupled transverse-axial-torsional modes are sensitive to the helical angle and loading conditions,
and the dynamic response could be influenced drastically by the positions of gears. Spitas and
Spitas [21] developed a nonlinear model of a single-stage spur gear reducer by considering the effects
of pitch errors, tooth separation, coupling and profile corrections. The results showed that the optimal
corrections could reduce the overloads, and a new design recommendation for the profile correction
was made based on the results. Later, they [22] derived a modified form for the fundamental gear
meshing equations, which improved the solving speed and the stability. They also developed a new
form for the equations of the non-conjugate meshing with the solution being fast implemented and
stable [23]. Recently, Spitas, Spitas and Amani [24,25] studied the effect of the dedendum coefficient
and the tip radius coefficient of spur gears, and generated a new generalized model for calculating the
corner penetration at tooth root.

3. Modelling of Wind Turbine Gearbox

3.1. Structure and Components

In the proposed gearbox model shown in Figure 1, three gear stages are presented: the low-speed
planetary gear stage, the intermediate and high-speed parallel gear stages. Theoretically, the
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aerodynamic loadings are mostly absorbed by the main shaft bearings, and thus have no influence
on the gear teeth except for the driving torque. Therefore, the input load of the proposed dynamic
model is limited to torsional load only, and assumed to be applied directly to the planet carrier arm,
which transmits the load to planet gears and the sun pinion. The non-torsional loads are assumed to
be uncoupled with the gearbox.

Figure 1. Sketch of the proposed wind turbine gearbox.

The planetary gear stage includes three moving components: planet carrier arm, planet gears and
sun pinion. The gearbox housing, planet carrier arm and bedplate are assumed to be rigid, and no
relative movements or transmission of forces between shafts are allowed. The planets are supported
on the planet carrier arm by shafts with bearings, thus the planets can rotate freely with respect to
the planet carrier arm, and split the input load to reduce the load transmitted at each gear mesh. At
parallel gear stages, the gears and pinions are also mounted between bearings.

3.2. Derivation of Equations

The present model can be used to predict the dynamic response of wind turbine gearbox
components. Both the low-frequency excitation due to wind fluctuations and the high-frequency
excitation due to static transmission errors are considered. The external excitation fluctuation is caused
by wind, whereas the static transmission error is the overall kinetic error of gear pairs during gear
meshes, expressed in the form of periodically time-varying displacement functions [26]. This model
also takes into account the key factors such as the time-varying mesh stiffness, bearing stiffness,
damping and gear backlash. The time-varying mesh stiffness, as an important source of the internal
excitation, fluctuates as the number of gears’ contacting teeth changes during gear meshes. Damping
and backlash have been neglected in some of the existing studies on the wind turbine gearboxes [27].
However, large influence of the damping and backlash in the nonlinear behavior was observed during
wind turbine emergency stop [28,29]. Thus, damping and gear backlash are included in this model.

A lumped-parameter model of a ring-planet-sun gear pair is illustrated in Figure 2 as an example,
the gear deformation during tooth meshes is represented by the time-varying gear mesh stiffness,
damping and the static transmission error (specifications of the proposed dynamic model are presented
in Section 4). All gears are helical gears, with the helical angle and pressure angle of each gear tooth
remaining constant, and are allowed to rotate freely during turbine operation (details of the gear teeth
specifications are given in Section 4.3.).
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Figure 2. Gear pairs in the planetary gear stage.

Based on the geometry of gears, the base radius of gears is determined by Equation (1):

rbu “ rucosα (1)

where rbu denotes the base radius of gears, ru denotes the radius of gears and α is the pressure angles.
The equivalent transverse displacements of the gearbox components along the line of action, caused
by their rotational displacements, are determined by Equation (2):

Qu “ rbuθu (2)

The relative displacement of sun-planet gear mesh on the line of action, caused by rotation, can
be expressed as:

Qspn_θ “
`

Qs ´Qpn ´Qc
˘

cosβs (3a)

The relative displacement of sun-planet gear mesh on the line of action, caused by the translational
motions, can be given by:

Qspn_r “
 

xssinα` yscosα´ xpnsinα´ ypncosα´ xcsinα´ yccosα
(

cosβp `
`

zs ´ zpn ´ zc
˘

sinβs
(3b)

Combining Equation (3a) and (3b), and taking into account the effect of the static transmission
error esp, yields the total relative displacement of sun-planet gear mesh on the line of action:

Qspn “ Qspn_θ `Qspn_r ´ esp (3c)

Similarly, the relative displacement of ring-planet gear mesh on the line of action, caused by
rotation, can be written as

Qrpn_θ “
`

Qpn ´Qc
˘

cosβp (4a)

The relative displacement of ring-planet gear mesh on the line of action, caused by the translational
motions, can be expressed as

Qrpn_r “
`

xpnsinα` ypncosα´ xcsinα´ yccosα
˘

cosβp `
`

zpn ´ zc
˘

sinβs (4b)
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By taking into account the static transmission error of the ring-planet gear mesh, the total relative
displacement is:

Qrpn “ Qrpn_θ `Qrpn_r ´ erp (4c)

The relative displacement between the sun pinion and the gear of the intermediate parallel gear
stage can be calculated by:

Qsg1 “ Qg1 ´Qs (5)

The relative displacement of the gear pair at the intermediate parallel gear stage, caused by
rotation, can be expressed by:

Qg1g2_θ “
`

Qg2 ´Qg1
˘

cosβg (6a)

The relative displacement of gear pair, caused by the translational motions, is given by:

Qg1g2_r “
`

xg2sinα` yg2 cosα´ xg1sinα´ yg1cosα
˘

cosβg `
`

zg2 ´ zg1

˘

sinβs (6b)

By considering the static transmission error between the gear and pinion, the total relative
displacement is:

Qg1g2 “ Qg1g2_θ `Qg1g2_r ´ eg1g2 (6c)

The relative displacement between the gears g2 and g3 can be obtained by:

Qg2g3 “ Qg3 ´Qg2 (7)

For the high-speed parallel gear stage, the relative displacement of the gear mesh on the line of
action, caused by rotation, can be written as:

Qg3g4_θ “
`

Qg4 ´Qg3
˘

cosβg (8a)

The relative displacement of gear pairs on the line of action, caused by the translational motions,
can be expressed by:

Qg3g4_r “
`

xg4sinα` yg4cosα´ xg3sinα´ yg3cosα
˘

cosβg `
`

zg4 ´ zg3

˘

sinβs (8b)

By including the static transmission error between the gear and pinion, the total relative
displacement is:

Qg3g4 “ Qg3g4_θ `Qg3g4_r ´ eg3g4 (8c)

The meshing forces of the gear pairs of the wind turbine gearbox can be determined from the
relative displacements of gear meshes Qj pQj represents Qrpn, Qspn, Qg1g2 and Qg3g4, n “ 1, 2, 3q. By
considering the gear backlash, the meshing forces of gear pairs (e.g., Frpn between the ring-planet
gear mesh) can be recalculated by Equation (9), where krp represent the gear meshing stiffness of
the ring-planet gear pairs, and f

`

Qj
˘

given by Equation (10) is the vector form of the nonlinear gear
mesh displacement function (no gear backlash exists on shafts). Damping forces can be calculated in a
similar way:

FQj “ krp f
`

Qj
˘

; n “ 1, 2, 3 (9)

f
`

Qj
˘

“

$

’

&

’

%

Qj ´ b, Qj ą b
0, ´b ď Qj ď b

Qj ` b, Qj ă ´b
(10)

The equations of motion of the gearbox components can be obtained by applying the Newton’s
laws. For the planet carrier, the equations of motion are given by:
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`

Ic ` 3mp
2˘

..
θc `

3
ř

n“1

´

ksp f
`

Qspn
˘

` csp
.

Qspn

¯

cosβsrbC`

3
ř

n“1

´

krp f
`

Qrpn
˘

` crp
.

Qrpn

¯

cosβsrbC “ Tin

(11a)

mc
..
xc `

„

3
ř

n“1

´

ksp f
`

Qspn
˘

` csp
.

Qspn

¯

`
3
ř

n“1

´

krp f
`

Qrpn
˘

` crp
.

Qrpn

¯



cosβssinα´ kcxxc ´ ccx
.
xc “ 0

(11b)

mc
..
yc `

„

3
ř

n“1

´

ksp f
`

Qspn
˘

` csp
.

Qspn

¯

`
3
ř

n“1

´

krp f
`

Qrpn
˘

` crp
.

Qrpn

¯



cosβscosα´ kcyyc ´ ccy
.
yc “ 0

(11c)

mc
..
zc `

„

3
ř

n“1

´

ksp f
`

Qspn
˘

` csp
.

Qspn

¯

´
3
ř

n“1

´

krp f
`

Qrpn
˘

` crp
.

Qrpn

¯



sinβs ´ kczzc ´ ccz
.
zc “ 0

(11d)

For the sun pinion, the equations of motion are:

Is
..
θs ´

3
ÿ

n“1

´

ksp f
`

Qspn
˘

` csp
.

Qspn

¯

cosβsrbs `
´

ksg1Qsg1 ` csg1
.

Qsg1

¯

cosβsrbs “ 0 (12a)

ms
..
xs ´

3
ÿ

n“1

´

ksp f
`

Qspn
˘

` csp
.

Qspn

¯

cosβssinα` ksxxs ` csx
.
xs “ 0 (12b)

ms
..
ys ´

3
ÿ

n“1

´

ksp f
`

Qspn
˘

` csp
.

Qspn

¯

cosβscosα` ksyys ` csy
.
ys “ 0 (12c)

ms
..
zs ´

3
ÿ

n“1

´

ksp f
`

Qspn
˘

` csp
.

Qspn

¯

sinβs ` kszzs ` csz
.
zs “ 0 (12d)

For the planet gears, the equations of motion are given by:

Ip
..
θpn ´

´

krp f
`

Qrpn
˘

` crp
.

Qrpn

¯

cosβp `
´

ksp f
`

Qspn
˘

` csp
.

Qspn

¯

cosβp “ 0 (13a)

mp
..
xpn ´

”´

krp f
`

Qrpn
˘

` crp
.

Qrpn

¯

´

´

ksp f
`

Qspn
˘

` csp
.

Qspn

¯ı

cosβpsinα` kpxxpn ` cpx
.
xpn “ 0

(13b)

mp
..
ypn ´

”´

krp f
`

Qrpn
˘

` crp
.

Qrpn

¯

´

´

ksp f
`

Qspn
˘

` csp
.

Qspn

¯ı

cosβpcosα` kpyypn ` cpy
.
ypn “ 0

(13c)

mp
..
zpn ´

”´

krp f
`

Qrpn
˘

` crp
.

Qrpn

¯

´

´

ksp f
`

Qspn
˘

` csp
.

Qspn

¯ı

sinβp ` kpzzpn ` cpz
.
zpn “ 0

(13d)

For the gear at the intermediate parallel gear stage g1, the equations of motion are written as:

Ig1
..
θg1 `

´

kg1g2 f
`

Qg1g2
˘

` cg1g2
.

Qg1g2

¯

cosβgrbg1 ´
´

ksg1Qsg1 ` csg1
.

Qsg1

¯

rbg1 “ 0 (14a)

mg1
..
xg1 `

´

kg1g2 f
`

Qg1g2
˘

` cg1g2
.

Qg1g2

¯

cosβgsinα´ kg1xxg1 ´ cg1x
.
xg1 “ 0 (14b)

mg1
..
yg1 `

´

kg1g2 f
`

Qg1g2
˘

` cg1g2
.

Qg1g2

¯

cosβgcosα´ kg1yyg1 ´ cg1y
.
yg1 “ 0 (14c)
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mg1
..
zg1 `

´

kg1g2 f
`

Qg1g2
˘

` cg1g2
.

Qg1g2

¯

sinβg ´ kg1zzg1 ´ cg1z
.
zg1 “ 0 (14d)

For the pinion at the intermediate parallel gear stage g2, the equations of motion are expressed as:

Ig2
..
θg2 ´

´

kg1g2 f
`

Qg1g2
˘

` cg1g2
.

Qg1g2

¯

cosβg ` kg2g3rbg2`
´

kg2g3Qg2g3 ` cg2g3
.

Qg2g3

¯

rbg2 “ 0
(15a)

mg2
..
xg2 ´

´

kg1g2 f
`

Qg1g2
˘

` cg1g2
.

Qg1g2

¯

cosβgsinα` kg2xxg2 ` cg2x
.
xg2 “ 0 (15b)

mg2
..
yg2 ´

´

kg1g2 f
`

Qg1g2
˘

` cg1g2
.

Qg1g2

¯

cosβgcosα` kg2yyg2 ` cg2y
.
yg2 “ 0 (15c)

mg2
..
zg2 ´

´

kg1g2 f
`

Qg1g2
˘

` cg1g2
.

Qg1g2

¯

sinβg ` kg2zzg2 ` cg2z
.
zg2 “ 0 (15d)

For the gear at the high-speed parallel gear stage g3, the equations of motion are obtained as:

Ig3
..
θg3 `

´

kg3g4 f
`

Qg3g4
˘

` cg3g4
.

Qg3g4

¯

cosβgrbg3´
´

kg2g3Qg2g3 ` cg2g3
.

Qg2g3

¯

rbg3 “ 0
(16a)

mg3
..
xg3 `

´

kg3g4 f
`

Qg3g4
˘

` cg3g4
.

Qg3g4

¯

cosβgsinα´ kg3xxg3 ´ cg3x
.
xg3 “ 0 (16b)

mg3
..
yg3 `

´

kg3g4 f
`

Qg3g4
˘

` cg3g4
.

Qg3g4

¯

cosβgcosα´ kg3yyg3 ´ cg3y
.
yg3 “ 0 (16c)

mg3
..
zg3 `

´

kg3g4 f
`

Qg3g4
˘

` cg3g4
.

Qg3g4

¯

sinβg ´ kg3zzg3 ´ cg3z
.
zg3 “ 0 (16d)

For the pinion at the high-speed parallel gear stage g4, the equations of motion are given by:

Ig4
..
θg4 ´

´

kg3g4 f
`

Qg3g4
˘

` cg3g4
.

Qg3g4

¯

cosβgrbg4 “ ´Tout (17a)

mg4
..
xg4 ´

´

kg3g4 f
`

Qg3g4
˘

` cg3g4
.

Qg3g4

¯

cosβgsinα` kg4xxg4 ` cg4x
.
xg4 “ 0 (17b)

mg4
..
yg4 ´

´

kg3g4 f
`

Qg3g4
˘

` cg3g4
.

Qg3g4

¯

cosβgcosα` kg4yyg4 ` cg4y
.
yg4 “ 0 (17c)

mg4
..
zg4 ´

´

kg3g4 f
`

Qg3g4
˘

` cg3g4
.

Qg3g4

¯

sinβg ` kg4zzg4 ` cg4z
.
zg4 “ 0 (17d)

Substituting the relative displacements of gear meshes given by Equations (3) to (8) into
Equations (11) to (17), yields the transverse and translational displacements of gears.

4. Parameter Specifications

4.1. General Information

In simulation, the radius of the rotor blades rblade is 36 m, the average wind speed Vwind is 16 m{s,
the air density ρair is 1.21 kg{m3, and the rotational speed of the rotor bladesωblade is 17 rpm. When
the rotational speed of the blades is set to be constant, the simulated wind fluctuation results in the
fluctuation of the driving torque to the gearbox. Thus, the effects of wind excitation on the gearbox
components can be investigated.

4.2. Excitation Conditions

The driving torque Tin_ avg, that is applied to the planet carrier as the input to the system, can be
calculated by Equation (18), where ωblade is the rotational speed of blades, and Pblades is the output
power generated by the blades, which is given by Equation (19) [30]:
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Tin_avg “ Pblade{ωblade (18)

Pblades “ ρairπrblade
2Vwind

3Cp{2 (19)

where ρair is the air density, rblade is the radius of the blades, Vwind is the average wind speed and Cp is
the wind power utilization. By neglecting the power loss in gearbox, the average output torque of the
gearbox Tout_avg can be obtained by using Equation (20), where Gr is the gear ratio of the gearbox:

Tout_avg “ Tin_avg{Gr (20)

If only the external excitation is considered, the driving torque can be expressed by Equation (21)
as a periodic sinusoidal function, where Tin_ avg is the constant external driving torque, Tin_e is the
fluctuating external driving torque, ωe represents the external excitation frequency (ωe “ 2π fe and
fe “ 6 Hz (as in the low frequency range) is chosen to be the external excitation frequency). This
usually happens when the wind turbine is parked. Under such a condition, the gears in the gearbox
are not allowed to rotate:

Tin ptq “ Tin_avg ` Tin_ecos pωetq (21)

It can be predicted that the external excitation results in low frequency responses, whereas the
internal excitation results in high frequency responses. The static transmission error function ej ptq used
in Equations (3) to (8) is represented by Equation (22). As the static transmission error is very small,
only the fluctuation term eaj is considered. The high-frequency excitations at the meshing frequency
ωi are expected during gear mesh (ωi “ 2π fi and the meshing frequencies fi in the proposed dynamic
model are 28.05 Hz, 132.8 Hz and 438.7 Hz):

ej ptq “ eajcos pωitq (22)

When only the internal excitation, caused by the static transmission error ej, is considered, the
internal excitation pj is given by Equation (23), where Faj is the fluctuating meshing force caused by
the static transmission error ej:

pj ptq “ Fajωi
2cos pωitq (23)

In addition, under the constant rotational speed the meshing frequencies of the wind turbine
gearbox components, determined by Equation (24), remain constant during operation for the simplicity
in simulation:

fi “ ωgNg{60 (24)

whereωg is the rotational speed of the gear and Ng is the teeth number. For the planetary gear stage,
ωg is the rotational speed of the planet carrier arm and Ng is the teeth number of the ring gear [31].

4.3. Time-Varying Mesh Stiffness

The teeth mesh stiffness variation of each gear pair is assumed to be approximately proportional
to the meshing tooth variation, which is periodic over meshing cycles. Each of the gear meshes has the
same shape of mesh tooth variation by neglecting static and dynamic transmission error effects, but
they are not in phase with each other. Thus, the mesh stiffness kij is expressed in the periodic forms in
terms of the average and fluctuating mesh stiffnesses as shown in Equation (25), which fluctuates with
the change of the contact teeth at the meshing frequencyωi of each gear stage [32]:

kii ptq “ koij ` krijcos pωitq (25)

where ωi is the meshing frequency, koij is the average gear mesh stiffness, and krij is the fluctuating
term of the gear mesh stiffness calculated by Equations (26) and (27):
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krij “ koij{CR (26)

CR “ LA{Pb (27)

where CR is the contact ratio, LA is the length of action given by Equation (28), which is the distance
along the line of action between meshing points. The meshing points are the points of beginning and
leaving the teeth contact during tooth mesh:

LA “
b

`

rp ` ap
˘2
´
`

rpcosα
˘2
`

b

`

rg ` ag
˘2
´
`

rgcosα
˘2
´ Csinα (28)

where rg and rp are the pitch radii of the gear and pinion, ag and ap are the addendum of the gear and
pinion, α is the pressure angle, and C is the center distance of the gear pairs (C “ rp ` rg) [33].

It is assumed that the gear tooth behaves like a cantilever beam. Thus, the mean stiffness koij is
calculated by Equation (29) based on the ISO-6336 standard [11,34]:

koij “ P{
`

ymax_gear ´ ymax_pinion
˘

(29)

where ymax_ gear and ymax_pinion are the maximum deflection of the gear tooth calculated by
Equation (30), where P is the applied load at the tooth tip, L is the tooth depth which can be calculated
by using the AGMA standard in Table 1 [2], I is the area moment of inertia, and E is the modulus of
elasticity. Figures 3 and 4 present a gear tooth and gear nomenclature:

ymax “ PL3{3EI (30)

Table 1. AGMA full-depth gear tooth specifications [33].

Parameters Coarse Pitch (Pd ă 20)

Pressure angle α p˝q 20
Addendum a pinq 1{Pd
Dedendum b pinq 1.25{Pd

Whole depth L pinq 2.25{Pd

Figure 3. Simplified model of a gear tooth.
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Figure 4. Nomenclature of a gear teeth [35].

The mesh stiffness can be calculated using Equations (26) to (30), and the actual values are
obtained with the help of Matlab. As the actual values of the mesh stiffnesses vary in simulation
due to the gear contact cycles, they cannot be provided in details for brevity. Instead, the gear teeth
dimensions used for the proposed model are provided in Table 2. (The “7.5 L” and “14.5 R” in Table 2
represent 7.5˝ facing left and 14.5˝ facing right.)

Table 2. List of gears and specifications.

Gears Teeth Module Pd a pmq b pmq L pmq h pmq β poq

Ring 99 10 2.540 0.0100 0.0125 0.0225 0.0089 7.5 L
Planet 39 10 2.540 0.0100 0.0125 0.0225 0.0187 7.5 L

Sun 21 10 2.540 0.0100 0.0125 0.0225 0.0172 7.5 L
g1 82 8 3.175 0.0080 0.0100 0.0180 0.0149 14 R
g2 23 8 3.175 0.0080 0.0100 0.0180 0.0137 14 L
g3 76 5.5 4.618 0.0055 0.0069 0.0124 0.0103 14 L
g4 23 5.5 4.618 0.0055 0.0069 0.0124 0.0103 14 R

4.4. Bearing Stiffness

The bearing stiffness has large influence on the dynamic behaviors of bearings. The elastic
displacement of bearings, during the wind turbine operation, would affect the dynamic responses of
other gearbox components. The cylindrical roller bearings (CRB) and the full-complement cylindrical
roller bearings (fc CRB) are used to support the radial loads, and the tapered roller bearings (TRB) to
support axial loads. Table 3 presents the bearing stiffness used in the proposed model.

Table 3. List of bearing stiffness.

Carrier Sun Planet g1 g2 g3 g4

kx (N{m) 2 ˆ 1012 2 ˆ 1010 1012 1012 1012 1012 1012

ky (N{m) 3.2 ˆ 109 2 ˆ 1010 3.2 ˆ 109 2.9 ˆ 109 2.9 ˆ 109 2.9 ˆ 109 2.9 ˆ 109

kz (N{m) 3.2 ˆ 109 2 ˆ 1010 3.2 ˆ 109 2.9 ˆ 109 2.9 ˆ 109 2.9 ˆ 109 2.9 ˆ 109

4.5. Damping

The tooth deformation is represented by the time-varying mesh stiffness and damping in the
lumped-parameter model shown in Figure 2. The damping of the teeth mesh cj is expressed by:

cj “ 2ξ
b

kjmgearmpinion{
`

mgear `mpinion
˘

(31)
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where ki is the mesh stiffness of the gear pair, ξ is the damping ratio of tooth mesh (varies between
0.03 and 0.17), mgear and mpinion are the masses of gear and pinion.

5. Numerical Results and Discussion

This section presents the simulation results of the proposed gearbox model. The ode45 solver in
Matlab is used to solve the differential equations. The integration results of the first 1500 periods are
discarded prior to recording the steady state solutions. For each meshing cycle, 360 meshing points
are sampled in order to capture the sufficient number of data. The analysis focuses on the effects of
the excitation conditions on gears and bearings of the wind turbine gearbox with the help of the time
histories and FFT spectrums.

5.1. External Excitation only

When only the external excitation is considered and the gears are not allowed to rotate, such
condition is similar to the situation when the wind turbine is parked. Assuming the driving torque of
the gearbox fluctuates with the external excitation frequencyωe, then the total excitation is expressed
by Equation (21). Figure 5 shows the dynamic responses of Qrp1 (Qrp1 represents the relative gear
mesh displacement of the ring gear and the first planet gear. As the gearbox gear meshes behave in a
similar pattern, only the response of Qrp1 is presented as the example of the gear meshes) and Xg4a,
representing the relative displacements of the ring-planet gear meshes and the axial displacement
of the pinion at high-speed parallel gear stage. It is observed that the frequency peak in each FFT
spectrum occurs at the external excitation frequency fe, which indicates that only the external excitation
contributes to the vibrations in the gearbox, and the gearbox components only respond to the wind
fluctuation. The time histories also show the stability of the dynamic responses of the gearbox
components. The magnitude of Qrp1 is much larger than that of Xg4a. This indicates that the relative
displacement of the gear meshes caused by wind fluctuations is much larger than the axial displacement
of the gear when the wind turbine is parked. These observations are in good agreements with
Errichelo’s findings that the fretting corrosion, as one of the wind turbine gearbox failure modes,
normally occurs in gears along a line of action when the turbines are parked [36].

Figure 5. Cont.
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Figure 5. Time histories and frequency spectrums of vibrational responses caused by the external
excitations only (a) Time history of Qrp1; (b) FFT spectrum of Qrp1; (c) Time history of Xg4a; (d) FFT
spectrum of Xg4a.

5.2. Constant External Excitation

When both the internal and constant external excitations are considered, it is assumed that the
turbine operates under ideal condition. The external excitation is constantly applied to the gearbox,
and the internal excitation, caused by the static transmission errors ei, is assumed to fluctuate with
the meshing frequencies ωi. Figure 6 shows the dynamic responses of Qrp1 and Xg4a. The internal
excitation provides high-frequency vibrations to the gearbox, thus, the dynamic responses under
meshing frequenciesωi are expected to be observed.

Figure 6. Cont.
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Figure 6. Time histories and frequency spectra of the vibrational responses caused by both the internal
and constant external excitations (a) Time history of Qrp1; (b) FFT spectrum of Qrp1; (c) Time history of
Xg4a; (d) FFT spectrum of Xg4a.

Figure 6a,b show that Qrp1 is stable and the meshing frequency of the planetary gear stage f1

contributes the most on Qrp1, while the magnitude of its harmonics and f2 are much smaller than f1

and provides much less effects on Qrp1. Figure 6c,d exhibit the axial displacement of the bearing at the
high-speed parallel gear stage Xg4a. The frequency peak occurs at f3. This implies that f3 contributes
the most to the high-speed parallel gear stage.

5.3. Fluctuating External Excitation with Mean-to-Fluctuating External Force Ratio of 5

When both the internal and external excitation fluctuations are taken into account, the total
excitation is a combination of loads expressed by Equations (21) and (23). To study the effect of the
wind fluctuation, the mean-to-fluctuating external force ratio fm{ fa is used. In this secton, fm{ fa is 5.
Figure 7 shows the dynamic responses of Qrp1 and Xg4a. As both the external excitation fluctuation
(with the mean-to-fluctuating external force ratio of 5) and the internal excitation are considered,
the dynamic responses with the external excitation frequency fe and the meshing frequencies fi are
expected to be observed.

It can be seen from Figure 7b that both the meshing frequencies and the external excitation
frequency exist. The magnitude of the external frequency component fe is smaller than the meshing
frequency at its own gear stage f1. The magnitudes of its harmonics and f2 are much smaller than f1.
This indicates that the meshing frequency of the planetary gear stage f1 contributes the most on Qrp1.
Figure 7c,d present the axial displacement of the bearing at the high-speed parallel gear stage Xg4a.
The frequency peak occurs at f3 and its magnitude is much larger than fe and f2. The effect of f1 is too
small and can be ignored. This shows that f3 contributes the most at the high-speed parallel gear stage.
In short, the gear meshes at all three gear stages are relatively stable when the external fluctuation is
small. However, the harmonics and their sidebands exist on the dynamic responses of the gears. When
with the external fluctuations, the sidebands appeared in the FFT spectrum can be used to estimate the
gear and bearing damage conditions.
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Figure 7. Time histories and frequency spectra of the vibrational responses caused by both the internal
and external excitations with the mean-to-fluctuating external force ratio of 5 (a) Time history of Qrp1;
(b) FFT spectrum of Qrp1; (c) Time history of Xg4a; (d) FFT spectrum of Xg4a.

5.4. Fluctuating External Excitation with The mean-to-Fluctuating External Force Ratio of 2

Similar to the previous section, the increased external excitation fluctuation (with the
mean-to-fluctuating external force ratio of 2) and the internal excitation are considered in this section.
Figure 8 presents the dynamic responses of Qrp1 and Xg4a. As both the external excitation fluctuation
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and the internal excitation are considered, the external excitation frequency fe and the gear meshing
frequencies fi are expected to be observed.

Figure 8. Time histories and frequency spectra of the vibrational responses caused by both the internal
and external excitations with the mean-to-fluctuating external force ratio of 2 (a) Time history of Qrp1;
(b) FFT spectrum of Qrp1; (c) Time history of Xg4a; (d) zoomed FFT spectrum of Xg4a.
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As shown in Figure 8a,b, the dynamic response of Qrp1 starts to have more fluctuations. The
magnitude of the external frequency fe is still smaller than the meshing frequency at its own gear stage
f1, but contributes more compared with that in Figure 7b. The harmonics 2 f1, 3 f1 and 4 f1 and their
sidebands are observed. The magnitude of f2 is much smaller than f1 , which means that it provides
much less effects on Qrp1. Figure 8c,d present the zoomed image of the axial displacement of the
bearing at the high-speed parallel gear stage Xg4a. The frequency peak occurs at f3 and its magnitude
is much larger than fe, f1 and f2. This shows that f3 contributes the most at the high-speed parallel
gear stage. Its harmonics 2 f3 and sidebands are also observed. Compared with Figure 7 for when the
mean-to-fluctuating force ratio fm{ fa is 5, the external excitation has larger influence on both the gears
and bearings, which simulates the condition for a sudden change of external excitation on turbines.

6. Conclusions

The present work developed a 4-DOF dynamic model of a wind turbine gearbox, which takes
into account both the low-frequency external excitation and the high-frequency internal excitation.
This model includes the key factors such as the time-varying mesh stiffness, bearing stiffness, damping
and gear backlash. Three excitation conditions on the wind turbine gearbox were studied: the external
excitation only condition, the internal and constant external excitation condition; and the internal and
fluctuating external excitation condition. The dynamic response of the gears and bearings of wind
turbine gearboxes have been investigated with the help of time history and FFT spectrum.

In the study of the dynamic responses of the wind turbine gearbox components, when considering
the external excitation only and disallowing gears to rotate, such a condition is similar to that when the
wind turbine is parked. The results showed that the magnitude of the relative displacements of gear
meshes is much larger than the elastic displacement of gearbox bearings. This explains why the fretting
corrosion, as one of the wind turbine gearbox failure modes, occurs in gears along the line of action
when the wind turbine is parked. When both the internal and external excitations were considered, it
was observed that the gear meshes at all gear stages are relatively stable. When the external excitation
fluctuation is small, the stability of gears is not affected. However, the dynamic responses of gears
were observed to have more fluctuation. When the external excitation fluctuation is increased, the
responses of gears and bearings were observed to have both the harmonics and sidebands in their FFT
spectrums, which suggest that the external excitation fluctuation has large influence on wind turbine
gearbox components, especially when a sudden change of external excitation is added. As a result, the
dynamic responses of wind turbine gearbox components can be affected and may lead to gear wear
and bearing failures.
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Both authors wrote and edited the manuscript.
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