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Abstract: Accurate wind speed forecasting is a fundamental element of wind power prediction.
Thus, a new hybrid wind speed forecasting model, using variational mode decomposition (VMD),
the partial autocorrelation function (PACF), and weighted regularized extreme learning machine
(WRELM), is proposed to improve the accuracy of wind speed forecasting. First, the historic wind
speed time series is decomposed into several intrinsic mode functions (IMFs). Second, the partial
correlation of each IMF sequence is analyzed using PACF to select the optimal subfeature set for
particular predictors of each IMF. Then, the predictors of each IMF are constructed in order to
enhance its strength using WRELM. Finally, wind speed is obtained by adding up all the predictors.
The experiment, using real wind speed data, verified the effectiveness and advancement of the
new approach.

Keywords: wind speed forecasting; variational mode decomposition; partial autocorrelation function;
weighted regular extreme learning machine

1. Introduction

Wind energy has been gaining more and more attention from all over the world as a renewable
and clean energy source due to an increasing consumption of fossil energy and the pressure of
environmental protection [1–4]. However, wind power is severely intermittent, volatile, and stochastic.
It is not conducive to the safe and stable operation of the traditional electrical grid, power system
generation planning, and economic electric power dispatch. Therefore, large-scale grid-connected
operations should be based on accurate wind speed forecasting results in order to reduce wind power
fluctuations in power systems. Accurate wind speed forecasting can improve the accuracy of wind
power prediction; therefore, research on wind speed forecasting has significance and application
value [5,6].

Existing wind speed forecasting methods can be divided into ultra-short-term, short-term,
medium-term, and long-term forecasts from the forecast time scale [7]. Short-term wind speed
forecasting is an important basis for the economic electric power dispatch of wind power grids. It helps
to improve power quality and to maintain the reliability and stability of power grids. The short-term
wind speed forecasting model can be divided into three types: statistical, physical, and intelligent
models [8–13].

The statistical model is built through analysis of the correlation between the wind speed data of
each time point in the wind speed series. Linear mathematical models, such as the auto regressive
(AR) method [14] and auto regressive integrated moving average (ARIMA) [15], are established using
the functional relationship between historical wind speed data and output wind speeds. Statistical
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models have simple principles and high efficiencies. However, the prediction accuracy of low-order
statistical models is not high, while high-order model parameters are extremely difficult to determine.

A physical model relies on information from numerical weather reports (NWPs). This model
is constructed on numerous meteorological and geographic properties, including air pressure,
temperature, humidity, surface roughness, and contour [16,17]. The input dimension of the physical
model is extremely high and the operation is complex due to the large number of factors. These are not
conducive to the improvement of prediction accuracies. Moreover, the influence of numerical weather
report (NWP) error on wind speed prediction is difficult to quantitatively estimate.

An intelligent model can build the nonlinear intelligent prediction model, which can compensate
for the deficiencies in the linear prediction model. The forecasting result is close to that of the real
wind speed. The neural networks (NNs) in the existing intelligent model have excellent nonlinear
learning and generalization abilities; however, the setting of neural network (NN) parameters is
complex. The training time of the intelligent predictor is long and requires a large number of training
samples. The limitation of NNs is that they are not conducive to the improvement of prediction
accuracy [13,18]. An extreme learning machine (ELM) [19–22] is proposed, based on the single hidden
layer feedforward network (SLFN) [19–22]. ELM has the advantages of a simple structure, high
learning efficiency, and strong generalization ability. ELM has been proven capable of obtaining
accurate prediction results using a small training set. However, the modeling process of ELM is
considered a structural risk. Therefore, the prediction model based on traditional ELM is not the best
model. Moreover, the prediction accuracy of the ELM model is vulnerable to outlier interference [23–25].
Weighted regularization ELM (WRELM) considers structure and empirical risks in the building of
an optimal predictive model, and integrates weight in order to avoid interference from outliers in the
training process [26,27]. WRELM can adjust the correlation weight of ELM automatically, according
to the training errors during the training process. According to the characteristics of the training
samples, an optimal forecasting model with fewer training samples and a high forecasting accuracy,
based on WRELM, can be automatically built [26]. Thus, WRELM is more suitable for short-term wind
speed forecasting.

The fluctuations and the randomness of wind speeds are the main factors that influence the
accuracy of wind speed forecasting. The signal processing methods used to decompose the signal
reduce the fluctuations and the randomness of the data in the wind speed sequence, and obtain a more
regular sub-series [28–32]. Subsequently, a hybrid wind speed forecasting model is constructed using
the sub-predictors of the sub-series. Thus, the fluctuations and randomness of the original signals are
reduced and the classification of wind speed forecasting is improved. Existing hybrid methods often
use wavelet transforms (WTs) and empirical mode decomposition (EMD) in order to decompose the
original wind speed sequence [28–31]. WTs have very good decomposition ability for non-singular
signals; however, obtaining satisfactory results according to specific circumstances with appropriate
basis functions and decomposition scales is difficult [28]. As an adaptive decomposition method,
intrinsic mode functions (IMFs), decomposed using EMD, could maintain the regularity of a wind
speed signal in different frequency domains. Although constructing the hybrid wind speed forecasting
model, based on EMD, is convenient, some defects, such as mode mixing and false modes, still exist.
These defects lead to the uncertainty in the center frequency and bandwidth of the signal frequency
band of the IMF component and affect the forecasting accuracy of the hybrid model. Variational mode
decomposition (VMD) can adaptively decompose the signal in the frequency domain and transform
the original signals into several IMFs with strong continuity and correlation [33–37]. Unlike EMD,
VMD reduces the nonlinearity and fluctuations of the wind speed time series, and avoids the influence
of mode mixing defects on wind speed predictions.

The results of the wind speed time series decomposition differ in different periods when the
wind speed time series is pretreated with the signal processing method. Therefore, feature selection,
according to the correlation of the elements, should be performed in each sub-sequence in order to
construct the optimal prediction model for each. The partial autocorrelation function (PACF) is often
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used to measure the degree of a time series and to remove autocorrelation interference [35,38]. The IMF
sequence generated by the VMD treatment has a certain correlation and stability; therefore, the optimal
input vector of the predictor for each IMF can be separately determined by PACF.

A new hybrid method of short-term wind speed prediction, using VMD, PACF, and WRELM,
is proposed. First, VMD is used to decompose the wind speed sequence and to obtain relatively
stable IMFs. This step reduces the influence of the random and fluctuating wind speed series on the
prediction accuracy of wind speed forecasting. Second, PACF is used to determine the maximum
input order for each IMF sequence in order to obtain the optimal feature vector of each predictor
based on the WRELM for different IMFs. Subsequently, the parameters of the forecast model are
automatically adjusted, and the WRELM-based optimal forecasting model is obtained in the training
process. Finally, each forecasting model is used to predict the corresponding IMF sequence, and the
prediction results of the WRELM model are added to obtain the final wind speed forecasting result.
The experiment is performed using real wind speed data from the Measurement and Instrumentation
Data Center (MIDC) of the National Renewable Energy Laboratory (NREL) in America in order to
verify the effectiveness of the new method.

2. Structure and Methodology of the New Hybrid Model

The new method includes VMD wind speed decomposition, PACF feature selection, and modular
WRELM prediction. Figure 1 shows the forecasting process of the new approach.
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As shown in Figure 1, the hybrid wind speed forecasting method mainly consists of two stages.
The main contents of the two stages are described as follows.

Stage I: Data Processing
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As shown in Figure 1, the new method first uses the VMD decomposition method to analyze the
wind speed forecast time series in a specific time window. This method also obtains relatively stable
IMF sub-sequences. The optimal variational mode layers are determined by the variation of the center
frequency of the IMF subsequence. Finally, the optimal IMF sub-sequence is obtained by using the
optimal decomposition layer number k.

Stage II: Hybrid Forecasting Model Construction

For every IMF sub-sequence, PACF is used to calculate the partial autocorrelation after the
removal of the autocorrelation. Then, the input variable for the corresponding prediction model is
selected, based on the partial autocorrelation measured by the PACF value. Subsequently, the WRELM
prediction network is constructed for each IMF subsequence layer, with the output variable of wind
speed in the forecasting point. A cross-validation method is used to determine the network parameters
of WRELM, including the activation function and node number of the hidden layer. The final prediction
results can be obtained by combining the predicted results of WRELMs corresponding to different
IMF sequences.

2.1. Variational Mode Decomposition (VMD)

VMD decomposes the wind speed time series in the variational framework, which is different
from EMD, which uses cyclic screening. The decomposition process of VMD is the construction and
solution of the variational problem. Assuming that each mode has a limited bandwidth, which is
compacted around a center frequency, the variational problem is decomposing the wind speed series,
f, into {uk(t)}, where k is number of the modes.

Wind speed time series f is assumed decomposed into k modes, and each mode has a finite
bandwidth and a center frequency. The objective function seeks the k modes of wind speed decomposed
by VMD, of which the sum value of the estimated bandwidth is the minimum. In addition, the sum
of the IMFs must be equal to the input signal, f, which is the constraint condition. The estimation
procedure of the IMF bandwidth is as follows:

(a) Hilbert transform is used to decompose the wind speed time series, f, and the analytic signal of
each mode function, uk(t), is calculated in order to obtain the corresponding unilateral spectrum.

(b) Estimated pulsation is obtained by mixing e−jωkt. The frequency spectrum of each mode is
modulated to the corresponding baseband.

(c) The L2 norm of the demodulation signal gradient is calculated and the bandwidth of each mode
is estimated.

Subsequently, the variational problem is described as follows:
min

{uk},{ωk}

{
∑
k
‖ ∂t[(δ(t) +

j
πt ) ∗ uk(t)]e−jωkt ‖2

2

}
s.t.∑

k
uk = f

(1)

where {uk} = {u1, u2, · · · , uk}, ∑
k
=

k
∑

k−1
, {ωk} = {ω1, ω2, · · · , ωk}, and ωk are the center frequency of

the kth mode.
To obtain the optimal solution of the constrained variable problem, the issue is addressed as

an unconstrained variable problem by introducing a quadratic penalty factor, α, and the Lagrange
multiplication operator, λ(t) [33,34]. The augmented Lagrange equation is defined as:

L({uk}, {ωk}, λ) = α∑
k
‖ ∂t[(δ(t) +

j
πt ) ∗ uk(t)]e−jωkt ‖2

2 + ‖ f (t)−∑
k

uk(t) ‖2
2 +

〈
λ(t), f (t)−∑

k
uk(t)

〉
(2)
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Then, the alternate direction method of multipliers (ADMM) is used to find the iterative
sub-optimizations for the augmented Lagrange equation of Equation (2). The solutions for Equation (2)
are expressed as:

ûn+1
k (ω) =

f̂ (ω)− ∑
i 6=k

ûi(ω) + λ̂(ω)
2

1 + 2α(ω−ωk)
2 (3)

ωn+1
k =

∫ ∞
0 ω |ûk(ω)|2 dω∫ ∞

0 |ûk(ω)|2 dω
(4)

where f̂ (ω), λ̂(ω), ûn+1
k (ω), and ûi(ω) are the Fourier transform results of f (t), λ(t), un+1

k (t), and ui(t),
respectively, and n is the number of iterations.

2.2. Partial Autocorrelation Function (PACF)

The data correlation of the mode decomposed by the VMD in each period is different because
of the different wind speed fluctuations in each period. Thus, in the design of the prediction model
corresponding to various IMF sequences, the correlation between the data in each IMF needs to be
analyzed based on the current decomposition results, and the optimal feature vector of each predictor
can be selected by the correlation. PACF is used to evaluate the correlation and the result.

For IMF sub-sequence 1 ≤ s ≤ L, let xt be the forecasting variable of the predictor. If the
partial autocorrelation at lag s is outside of the 95% confidence interval, which is calculated as
[−1.96/

√
L, 1.96/

√
L], xt−s is one of the selected features for the predictor [35,38]. If all the PACF

coefficients are within the 95% confidence interval, xt−1 will be selected as the only input variable of
the predictor. The PACF process is as follows [35,38]; the covariance at lag s (if s = 0, it is the variance)
is described as:

γ̂s =
1
L

N−s

∑
t=1

(xt − x)(xt+s − x), s = 1, 2, · · · , M (5)

where x is the mean value of IMF and M is the maximum lag. Then, the autocorrelation function (ACF)
at lag s is:

ρ̂s =
γ̂s

γ̂0
(6)

According to Equations (5) and (6), PACF at lag s can be calculated as:

α̂1,1 = ρ̂1

α̂s+1,s+1 =
ρ̂s+1−∑s

j=1 ρ̂s+1−j α̂sj

1−∑s
j=1 ρ̂j α̂sj

α̂s+1,j = α̂sj − α̂s+1,s+1 · α̂s,s−j+1
(j = 1, 2, · · · , s)

 (7)

where 1 ≤ s ≤ M.

2.3. Weighted Regularization Extreme Learning Machine (WRELM)

ELM is proposed based on SLFNs. Compared with other intelligent methods, it has the advantages
of having a simple structure, fast calculation speeds, a high forecasting accuracy, and fewer training
sample requirements [15–18]. According to the wind speed forcasting process, the ELM for regression
is constructed in this paper using multiple inputs and a single output.

Assuming a data set with N training samples, {(xi, yi)}N
i=1, where the input vector is xi ∈ Rn and

the output is yi ∈ R, the ELM predictor between xi and yi with L hidden nodes can be described as [24]:

L
∑

j=1
β jg(wj · xi + bj) = yi, i = 1, 2, . . . , N (8)
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where g(x) is the activation function, wj is the randomly selected input weight vector between the ith
hidden neuron and the input neuron, bj is the randomly selected bias of the ith hidden node, and β j is
the weight that connects the ith hidden neuron and the output neuron. Equations can be described as
a single linear system:

Hβ = y (9)

where H(w1, . . . , wL, x1, . . . , xN , b1, . . . , bL) =

 g(w1 · x1 + b1) · · · g(wL · x1 + bL)
... · · ·

...
g(w1 · xN + b1) · · · g(wL · xN + bL)


N×L

,

β = [β1, β2, . . . , βL]
T , and y = [y1, y2, . . . , yN ]

T . The structure of the traditional ELM is shown in
Figure 2.
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The goal of the ELM is to find the optimal least squares solution, β, by minimizing the associated
loss function:

min‖ y−Hβ ‖2
2 (10)

In the process of actual regression application, the training sample is more than the testing sample.
Thus, the optimal solution can be written as:

β̂ = (HTH)
−1

HTy (11)

Though ELM has many advantages, the regression accuracy of ELM still suffers from outliers
in the training set. Otherwise, the goal of minimizing the training error might cause an overfitting
limitation, which could affect the forcasting accuracy of ELM. To overcome the limitation of ELM,
WRELM is employed in order to construct the wind speed predictor. WRELM [24] is designed using
a regularized extreme learning machine (RELM) [27]. In RELM, a regularization parameter is used to
balance the training error and the norm of output weight in order to avoid the overfitting limitation.
WRELM further improves RELM by reducing the influence of outliers. The mathematical model of
WRELM can be written as [24]:

min
β

C ‖We ‖2
2 + ‖ β ‖2

2 subject to y−Hβ = e (12)
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where W = diag{w1, w2, . . . , wN} is the extension form of ‖ e ‖2
2, which is obtained from the error

variable weight, ei, using weighing factor wi, e = [e1, e2, . . . , eN ]
T W = diag{w1, w2, . . . , wN}; C is

a regularization parameter; and e is a training error vector with N variables, where e = [e1, e2, . . . , eN ]
T .

The optimal solution of β for WRELM is as follows:

β̂ = (HTW2H +
I
C
)
−1

HTW2y (13)

where I is a unit matrix.
Existing research certifies that WRELM has better regression accuracy than ELM or RELM.

Moreover, WRELM effectively avoids the influence of overfitting and outliers on the forcasting
accuracy [24]. The details of the derivation procedure and the parameter setting of WRELM can be
found in Reference [24].

3. Case Study

In this section, the effectiveness of the proposed hybrid approach on historical wind speed
observations in order to predict the short-term wind speed is verified using real wind speed data.
The observations are obtained from NREL. All the experiments are performed in Matlab 8.5 (2015a)
running on an Intel® Core™ i7-6700 processor operating at 3.40 GHz. The WRELM and VMD toolboxes
are from Zhang [24] and Dragomiretskiy [33], respectively.

3.1. Data Sets and Evaluation Criteria

The change of wind speed data is uncontrollable because wind speed data is influenced by
meteorological factors. The correlation between the wind speed data in the forecast period and the
historic wind speed data with a long time interval is low. Therefore, the data quantity for model
verification is set as in Reference [32]. The mean half-hour wind speed data for two days (i.e., 96 training
samples) are used to train the forecasting model under a new approach. The model will then be
constructed between the historical wind speed data and the current wind speed [32]. Considering the
fluctuation of wind speeds and weather differences between day and night, the correlation between
the 12-hour historical data and the forecasting data is analyzed using PACF in order to construct the
optimal input vector of each predictor. Hence, length L of the wind speed time series for correlation
analysis is 120, which means that a wind speed time series with 120 samples is decomposed by VMD.
The maximum lag, M, is 24, and the number of training samples, N, for WRELM is 96.

In practice, two-thirds of the entire data set is used to train the model and one-third is used to
test the forecasting accuracy. The testing set for the new approach contains 48 samples (i.e., one day)
because the training set contains 96 samples. The data used for training and testing the effectiveness of
the new approach for forecasting the wind speed on 20 February 2004 is shown in Figure 3.

To assess the forecasting accuracy of the new approach and the comparative methods, the mean
absolute percentage error (MAPE) and root mean square error (RMSE) are used as evaluation criteria.

MAPE =
1
K

K

∑
i=1

∣∣∣∣ xi − x̂i
xi

∣∣∣∣× 100% (14)

RMSE =

√√√√ 1
K

K

∑
i=1

(xi − x̂i)
2 (15)

where K is the sample number of the testing set, xi is the real value of wind speed at i, and x̂i is the
corresponding forecasting value.
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3.2. Decomposition of the Wind Speed Series Based on VMD

Before the wind speed sequence is decomposed by VMD, the decomposition layers, k, need to
be set first. If k is too small, the signal is not fully decomposed. Accurately characterizing the signal
into different frequency ranges is difficult. If the signal is over-decomposed, the mode in the high
frequency is excessive. Reducing the difference between each mode will increase the complexity and
reduce the accuracy of the hybrid model.

The optimal mode number can be selected by the difference between the center frequencies (∆ f )
of IMF k and IMF (k − 1), as the center frequency is closely related to the decomposition results of
VMD [35]. Table 1 shows the center frequency with different modes, k, of the decomposing results of
the wind speed decomposition series in Figure 3.

As shown in Table 1, the value of xt−s is significantly reduced when the value of k is from one to
seven, while the value of ∆ f tends to be stable. Thus, we consider seven as the optimal value of k.

Table 1. Center frequency corresponding to different mode number, k.

k
Normalized Center Frequency

∆f
IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10

1 0.0011 - - - - - - - - - -
2 0.0011 0.2249 - - - - - - - - 0.2238
3 0.0011 0.0536 0.2254 - - - - - - - 0.1718
4 0.0011 0.0535 0.2254 0.3867 - - - - - - 0.1613
5 0.0011 0.0533 0.2245 0.2867 0.3902 - - - - - 0.1035
6 0.0011 0.0185 0.0682 0.2248 0.2873 0.4412 - - - - 0.1584
7 0.0011 0.0185 0.0681 0.2248 0.2869 0.3845 0.4443 - - - 0.0598
8 0.0011 0.0181 0.0640 0.1420 0.2260 0.2878 0.3850 0.4446 - - 0.0596
9 0.0011 0.0181 0.0639 0.1418 0.2259 0.2864 0.3250 0.3868 0.4449 - 0.0581

10 0.0011 0.0181 0.0548 0.0907 0.1598 0.2265 0.2869 0.3260 0.3871 0.4450 0.0579

To further validate the effectiveness of the method for k optimization, wind data from 20 days,
randomly selected from 2004, are used in order to verify the forecasting accuracy of the new
hybrid wind speed forecasting method with different k values, from one to 10. The optimal
number of decomposition layers is evaluated by the prediction error (MAPE and RMSE) of one-step
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forecasting using the new approach with different decomposition layers. In those 20 days, the optimal
decomposition layer with a minimum error of 17 days is seven. The prediction error of seven
decomposition layers of other days, with different optimal decomposition layers, is very close to
that of the minimum error of the predicted result with the optimal layer number. The mean errors of
the different decomposition layers of the one-step forecasting are shown in Table 2.

Table 2. Mean error of one-step-ahead forecasting using the new method with different k values.

k
Mean Error

MAPE (%) RMSE (m/s)

1 20.7629 0.4742
2 15.8809 0.3963
3 14.7369 0.3545
4 13.0698 0.3154
5 11.9313 0.2968
6 11.3299 0.2851
7 11.0996 0.2810
8 11.1432 0.2832
9 11.6413 0.2913
10 11.9311 0.3031

As shown in Table 2, when the decomposing layer of VMD is seven (k = 7), the mean MAPE and
RMSE are the minimum values, 11.0996 and 0.2810, respectively. To obtain optimal prediction results
in general, the optimal decomposition layer with the minimum mean error of seven is selected in the
VMD decomposition, according to the mean error of the statistical experiment.

On the basis of determining the decomposition level of VMD, a comparative experiment on
decomposing a normalized wind speed series is proposed, based on VMD and EMD. The other
parameters of VMD are set according to References [34–37], and the parameters of EMD are
set according to Reference [30]. The experimental results of series decomposition are shown in
Figures 4 and 5.Energies 2016, 9, 989 10 of 20 

 

 

Figure 4. Decomposition results of variational mode decomposition (VMD). 

 

Figure 5. Decomposition results of empirical mode decomposition (EMD). 

The IMF sequence generated by VMD in the low-frequency area with a large amplitude had 

fewer fluctuations. The change trends of the data with a large amplitude, such as IMF1, IMF2, and 

IMF3 of VMD, were stable. For these types of data, any predictor can achieve a better prediction 

effect. The predictors corresponding to the IMFs with large amplitudes will have fewer forecasting 

errors. The IMFs in the high-frequency area with a small amplitude changed drastically. The 

predictors corresponding to IMFs with small amplitudes will have larger errors. However, the error of 

the high-frequency predictor has a limited effect on the prediction accuracy of the hybrid model 

Figure 4. Decomposition results of variational mode decomposition (VMD).



Energies 2016, 9, 989 10 of 19

Energies 2016, 9, 989 10 of 20 

 

 

Figure 4. Decomposition results of variational mode decomposition (VMD). 

 

Figure 5. Decomposition results of empirical mode decomposition (EMD). 

The IMF sequence generated by VMD in the low-frequency area with a large amplitude had 

fewer fluctuations. The change trends of the data with a large amplitude, such as IMF1, IMF2, and 

IMF3 of VMD, were stable. For these types of data, any predictor can achieve a better prediction 

effect. The predictors corresponding to the IMFs with large amplitudes will have fewer forecasting 

errors. The IMFs in the high-frequency area with a small amplitude changed drastically. The 

predictors corresponding to IMFs with small amplitudes will have larger errors. However, the error of 

the high-frequency predictor has a limited effect on the prediction accuracy of the hybrid model 

Figure 5. Decomposition results of empirical mode decomposition (EMD).

As shown in Figures 4 and 5, the original wind speed signal can be decomposed by VMD and EMD
for seven and five IMFs, respectively. The results of the EMD method also include a residue component.

The IMF sequence generated by VMD in the low-frequency area with a large amplitude had fewer
fluctuations. The change trends of the data with a large amplitude, such as IMF1, IMF2, and IMF3
of VMD, were stable. For these types of data, any predictor can achieve a better prediction effect.
The predictors corresponding to the IMFs with large amplitudes will have fewer forecasting errors.
The IMFs in the high-frequency area with a small amplitude changed drastically. The predictors
corresponding to IMFs with small amplitudes will have larger errors. However, the error of the
high-frequency predictor has a limited effect on the prediction accuracy of the hybrid model because
of the small magnitude of the predicted object. The characteristics of the VMD decomposition results
are conducive to the improvement of the prediction accuracy of wind speed forecasting because the
final prediction result, based on VMD, is the sum of the prediction results of each IMF.

However, IMFs decomposed by EMD have different characteristics. IMFs with a large amplitude
change drastically. The forecasting errors of IMFs with large amplitudes are also sizable because of the
intense fluctuations in the EMD decomposition results. The violent fluctuation trends of IMFs with
large amplitudes will lead to a larger error in the final prediction results of the EMD-based predictor.
Furthermore, the results of the EMD are not conducive to the improvement of the prediction accuracy.
IMFs decomposed by VMD are significantly more suitable for the hybrid wind speed forecasting
model construction than those decomposed by EMD.

3.3. Optimal Feature Vector Construction Based on PACF

The change trends and the correlation between data elements are different in IMFs decomposed
by VMD at different periods. To obtain the optimal predictors, the input variables of the predictors
should be selected according to the decomposition results of VMD. In this paper, the length of the
wind series, L, is 120, and its confidence interval of 95% is [−0.179, +0.179]. The partial autocorrelation
of the original wind speed series and the IMFs decomposed by VMD are shown in Figure 6. According
to the partial autocorrelograms, the variable with lag s, denoted as xt−s with the partial autocorrelation
value out of the confidence interval, will be selected to construct the input vector of the predictor
corresponding to the specific IMF.
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Figure 6 shows the characteristics of the partial autocorrelation of the original wind speed and the
IMFs. Only two variables can be selected by PACF because of the large fluctuation in the original wind
speed. However, IMFs decomposed by VMD have a certain stability and regularity; thus, more related
variables can be selected by PACF. Compared to the original wind speed series, the IMFs of VMD
can easily establish a prediction model. The compositions of the input vectors of different predictors
determined by PACF are shown in Table 3.

Table 3. Input variables determined by PACF.

Time Series Input Variables

Original xt−1, xt−4
IMF1 xt−1, xt−2, xt−3, xt−4, xt−9, xt−10, xt−14, xt−18, xt−22, xt−23
IMF2 xt−1, xt−2, xt−3, xt−4, xt−5, xt−14, xt−17, xt−22, xt−23
IMF3 xt−1, xt−2, xt−3, xt−4, xt−5, xt−7, xt−14, xt−17, xt−22, xt−23, xt−24
IMF4 xt−2, xt−3, xt−4, xt−5, xt−6, xt−15, xt−17, xt−24
IMF5 xt−1, xt−2, xt−4, xt−5, xt−6, xt−11, xt−24
IMF6 xt−1, xt−2, xt−6, xt−19, xt−20
IMF7 xt−1, xt−2, xt−5, xt−6, xt−10, xt−17, xt−17, xt−20, xt−23
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3.4. Forecasting Model for Wind Speed Based on WRELM

After determining the input vector, WRELMs are used to predict the IMFs decomposed by VMD.
Using MAPE as the index, and randomly selecting 10 days as the test set, the activation function and the
number of hidden layer neurons of WRELM are determined using the cross-validation method [25,28].
The forecasting accuracies with different characteristics of WRELM are shown in Table 4. As Table 4
shows, the WRELM with the “sine” activation function and 20 hidden layer neurons has the highest
forecasting accuracy. Thus, the characteristics of WRELM will be selected by the result.

Table 4. Forecasting accuracy with different characters of WRELM.

Activation Function
MAPE(%) of Different Hidden Layer Numbers

5 10 15 20 25 30

Sine 11.7280 10.7585 10.7009 10.6955 10.7110 10.7631
Sigmoid 12.0360 10.7611 10.7357 10.7356 10.7398 10.7623

Triangular basis 12.4982 10.8987 10.7276 10.7135 10.7130 10.7922
Hard-limit 13.0039 10.7667 10.7727 10.8188 10.8289 10.7881

Radial basis 11.7583 10.8961 10.9217 10.8683 10.7957 10.8254

3.5. Forecasting Results of the New Hybrid Model

To comprehensively evaluate the prediction performance of the new hybrid model, four days
in different quarters of 2004 are used to predict wind speed. The one-step and multi-step prediction
(from two steps ahead to three steps ahead) results are shown in Figures 6–10.Energies 2016, 9, 989 13 of 20 
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3.6. Comparison Experiments and Discussion

Figures 7–10 show that, although the wind speed curves on different dates have different
fluctuations and ranges of speed, the new model could accurately predict wind speed. One-step-ahead
prediction results are very close to the actual wind speed curve. The forecasting accuracy of
two-step-ahead and three-step-ahead predictions declined to different degrees. However, the results
of the multi-step-ahead forecasting of the new approach are still close to those of the real wind speed.
The experiments illustrate the stability and adaptability of the new approach.

The experiment with five types of hybrid wind speed forecasting methods is proposed in this
section in order to show the advancements of the new hybrid approach. The wind speed data from
20 February 2004, 20 May 2004, 20 August 2004, and 20 November 2004 are used to verify the accuracy
of the different approaches. The one-step-ahead and multi-step-ahead forecasting results of the
different approaches are shown in Figures 11–14. The mean forecasting errors with five types of wind
speed approaches, in four days, are shown in Table 5.

The methods used for the experiments include VMD + ELM, VMD + WRELM, EMD + PACF
+ WRELM, VMD + PACF + ELM, and VMD + PACF + WRELM. The predictors without the feature
selection step use the variables from lag 1 to lag 24 as the input vectors. The ELM characteristics of
each method are optimized by cross-validation [21,22].

The contrast methods used to verify the advancement of the new approach do not consider
methods with different intelligent algorithms because existing research has illustrated the advanced
nature of ELM relative to traditional intelligent algorithms, such as Back Propagation Neural Networks
(BPNN) and Support Vector Machine (SVM) [23,24]. The experiments mainly show the advancement
of PACF and WRELM used in the new approach.

As shown in Figures 11–14, the new approach has the highest accuracy out of the five approaches.
The forecasting curve of the new approach is closest to that of the true wind speed curve. Detailed
analyses are performed based on Table 5.
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Table 5. Mean forecasting error of different methods.

Methods
MAPE (%) RMSE (m/s)

One-Step Two-Step Three-Step One-Step Two-Step Three-Step

VMD + ELM 11.8011 16.4512 18.4901 0.2853 0.4845 0.5854
VMD + WRELM 11.4518 15.3523 17.6016 0.2634 0.4769 0.5536

EMD + PACF + WRELM 16.6350 18.7262 20.7317 0.5540 0.8835 1.2644
VMD + PACF + ELM 11.3644 15.8224 17.8260 0.2758 0.4691 0.5491

VMD + PACF + WRELM 11.0912 14.6710 16.7378 0.2590 0.4378 0.5382

Compared to VMD + ELM without PACF, VMD + PACF + ELM reduced MAPE from 11.8011,
16.4512, and 18.4901 to 11.3644, 15.8224, and 17.8260, respectively. Compared to the VMD + WRELM
method, VMD + PACF + WRELM reduced MAPE from 11.4518, 15.3523, and 17.6016 to 11.0912,
14.6710, and 16.7378, respectively. The accuracy evaluated by the RMSE was also higher using the
methods that included PACF. These verified the benefits of PACF relative to the improvement of the
forecasting accuracy of the entire model.

Meanwhile, according to Table 5, the hybrid method with WRELM has a higher forecasting
accuracy than methods with ELM in each type of multi-step forecasting. The method with VMD
decomposition has a much higher forecasting accuracy than the EMD-based method. The experimental
results verified the advancements of WRELM and VMD.

To further illustrate the effectiveness and advancement of the new approach, it was used to predict
wind speeds in a longer time interval (five days). In this experiment, the new approach is compared
with the Autoregressive Integrated Moving Average (ARIMA) and Support Vector Regression (SVR)
based methods. SVR is used instead of WRELM to construct a contrast method with VMD, PACF,
and SVR. The kernel function charaters of SVR are set according to References [10,39]. The optimal
penalty factor and kernel function variance of SVR are determined using the cross-validation method.
The characteristics of ARIMA are set according to References [5,12]. The experimental results of the
long interval are shown in Figure 15 and Table 6.

Figure 15 shows that the new approach has the best prediction accuracy in the experiment.
The prediction results of the new approach accurately track the change trends of the true wind speed,
especially in the time interval of 100 to 150 sample points. When the real wind speed suddenly changed
from a high speed to a low speed, the new approach predicted the change trend much more accurately
than the other methods. Table 6 shows that the MAPE and RMSE of the new approach are much
lower than those of the other methods. The experimental results fully verified the advancement of the
new approach.
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Table 6. The mean forecasting errors of different methods.

Methods
MAPE (%) RMSE (m/s)

One-Step Two-Step Three-Step One-Step Two-Step Three-Step

ARIMA 20.3974 26.6640 30.6191 0.2773 0.5405 0.6149
VMD + PACF + SVR 14.9761 18.4143 20.1438 0.2662 0.4665 0.6093

VMD + PACF + WRELM 13.6665 16.6635 18.9372 0.2652 0.4512 0.5943

4. Conclusions

To improve the short-term wind speed forecasting accuracy, a new hybrid wind speed
forecasting approach, based on VMD, PACF, and WRELM, is proposed. This new approach has
the following advantages:

(1) The wind speed series is decomposed by VMD with an optimal decomposing layer selected
through center frequency analysis in order to reduce the influences of randomness and volatility.
The results of VMD are more precise than those of EMD, and show that it is suitable for
hybrid forecasting model construction with fewer amplitude fluctuations in the IMFs of a low
frequency range.

(2) PACF, which is used for the correlation analysis of IMFs, determines the optimal input vector
of each predictor. It effectively reduces the feature dimension and complexity of the model and
leads to the improvement of prediction efficiency and accuracy.

(3) WRELM is used to build the predictors of the hybrid model. The weights of WRELM are adjusted
automatically according to different training sets. WRELM improves the prediction accuracy by
avoiding the negative effects of the outlier samples in the data set.

The experimental results show that the new method is effective and advanced.

Acknowledgments: This work is supported by the National Nature Science Foundation of China (No. 51307020),
the Science and Technology Development Project of Jilin Province (No. 20160411003XH) and the Science and
Technology Foundation of Department of Education of Jilin Province (2016, No. 90).

Author Contributions: Nantian Huang put forward to the main idea and designed the entire structure of this
paper. Chong Yuan did the experiments and prepared the manuscript. Guowei Cai guided the experiments and
paper writing. Enkai Xing completed data preprocessing.

Conflicts of Interest: The authors declare no conflicts of interest.



Energies 2016, 9, 989 18 of 19

References

1. Men, Z.X.; Yee, E.; Lien, F.S.; Wen, D.Y.; Chen, Y.S. Short-term wind speed and power forecasting using
an ensemble of mixture density neural networks. Renew. Energy 2016, 87, 203–211. [CrossRef]

2. Potter, C.W.; Lew, D.; McCaa, J.; Cheng, S.; Eichelberger, S.; Grimit, E. Creating the dataset for the western
wind and solar integration study (U.S.A.). Wind Eng. 2008, 32, 325–338. [CrossRef]

3. Heng, J.N.; Wang, C.; Zhao, X.J.; Xiao, L.Y. Research and application based on adaptive boosting strategy and
modified CGFPA algorithm: A case study for wind speed forecasting. Sustainability 2016, 8, 235. [CrossRef]

4. Hu, Q.; Zhang, S.; Yu, M.; Xie, Z. Short-term wind speed or power forecasting with heteroscedastic support
vector regression. IEEE Trans. Sustain. Energy 2016, 7, 241–249. [CrossRef]

5. Cadenas, E.; Rivera, W.; Campos-Amezcua, R.; Heard, C. Wind speed prediction using a univariate ARIMA
model and a multivariate NARX model. Energies 2016, 9, 109. [CrossRef]

6. Noorollahi, Y.; Jokar, M.A.; Kalhor, A. Using artificial neural networks for temporal and spatial wind speed
forecasting in Iran. Energy Convers. Manag. 2016, 115, 17–25. [CrossRef]

7. Doucoure, B.; Agbossou, K.; Cardenas, A. Time series prediction using artificial wavelet neural network and
multi-resolution analysis: Application to wind speed data. Renew. Energy 2016, 92, 202–211. [CrossRef]

8. Zhao, J.; Guo, Z.H.; Su, Z.Y.; Zhao, Z.Y.; Xiao, X.; Liu, F. An improved multi-step forecasting model based on
WRF ensembles and creative fuzzy systems for wind speed. Appl. Energy 2016, 162, 808–826. [CrossRef]

9. Sfetsos, A. A novel approach for the forecasting of mean hourly wind speed time series. Renew. Energy 2002,
27, 163–174. [CrossRef]

10. Santamaría-Bonfil, G.; Reyes-Ballesteros, A.; Gershenson, C. Wind speed forecasting for wind farms:
A method based on support vector regression. Renew. Energy 2016, 85, 790–809. [CrossRef]

11. Wang, J.Z.; Zhang, F.Y.; Liu, F.; Ma, J.J. Hybrid forecasting model-based data mining and genetic
algorithm-adaptive particle swarm optimisation: A case study of wind speed time series. IET Renew.
Power Gener. 2016, 10, 287–298. [CrossRef]

12. Lydia, M.; Kumar, S.S.; Selvakumar, A.I.; Kumar, G.E.P. Linear and non-linear autoregressive models for
short-term wind speed forecasting. Energy Convers. Manag. 2016, 112, 115–124. [CrossRef]

13. Hu, Q.H.; Zhang, R.J.; Zhou, Y.C. Transfer learning for short-term wind speed prediction with deep neural
networks. Renew. Energy 2016, 85, 83–95. [CrossRef]

14. Hill, D.C.; McMillan, D.; Bell, K.R.W.; Infield, D. Application of auto-regressive models to U.K. wind speed
data for power system impact studies. IEEE Trans. Sustain. Energy 2012, 3, 134–141. [CrossRef]

15. Liu, H.; Erdem, E.; Shi, J. Comprehensive evaluation of ARMA–GARCH(-M) approaches for modeling the
mean and volatility of wind speed. Appl. Energy 2011, 88, 724–732. [CrossRef]

16. Cassola, F.; Burlando, M. Wind speed and wind energy forecast through kalman filtering of numerical
weather prediction model output. Appl. Energy 2012, 99, 154–166. [CrossRef]

17. Barbounis, T.G.; Theocharis, J.B. A locally recurrent fuzzy neural network with application to the wind speed
prediction using spatial correlation. Neurocomputing 2007, 70, 1525–1542. [CrossRef]

18. Shrivastava, N.A.; Lohia, K.; Panigrahi, B.K. A multiobjective framework for wind speed prediction interval
forecasts. Renew. Energy 2016, 87, 903–910. [CrossRef]

19. Huang, G.-B. What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and
John von Neumann’s puzzle. Cogn. Comput. 2015, 7, 263–278. [CrossRef]

20. Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing
2006, 70, 489–501. [CrossRef]

21. Wang, J.Z.; Hu, J.M.; Ma, K.L.; Zhang, Y.X. A self-adaptive hybrid approach for wind speed forecasting.
Renew. Energy 2015, 78, 374–385. [CrossRef]

22. Liu, H.; Tian, H.Q.; Li, Y.F. Four wind speed multi-step forecasting models using extreme learning machines
and signal decomposing algorithms. Energy Convers. Manag. 2015, 100, 16–22. [CrossRef]

23. Zong, W.W.; Huang, G.B.; Chen, Y.Q. Weighted extreme learning machine for imbalance learning.
Neurocomputing 2013, 101, 229–242. [CrossRef]

24. Zhang, K.; Luo, M. Outlier-robust extreme learning machine for regression problems. Neurocomputing 2015,
151, 1519–1527. [CrossRef]

25. Sun, W.; Liu, M.H. Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China.
Energy Convers. Manag. 2016, 114, 197–208. [CrossRef]

http://dx.doi.org/10.1016/j.renene.2015.10.014
http://dx.doi.org/10.1260/0309-524X.32.4.325
http://dx.doi.org/10.3390/su8030235
http://dx.doi.org/10.1109/TSTE.2015.2480245
http://dx.doi.org/10.3390/en9020109
http://dx.doi.org/10.1016/j.enconman.2016.02.041
http://dx.doi.org/10.1016/j.renene.2016.02.003
http://dx.doi.org/10.1016/j.apenergy.2015.10.145
http://dx.doi.org/10.1016/S0960-1481(01)00193-8
http://dx.doi.org/10.1016/j.renene.2015.07.004
http://dx.doi.org/10.1049/iet-rpg.2015.0010
http://dx.doi.org/10.1016/j.enconman.2016.01.007
http://dx.doi.org/10.1016/j.renene.2015.06.034
http://dx.doi.org/10.1109/TSTE.2011.2163324
http://dx.doi.org/10.1016/j.apenergy.2010.09.028
http://dx.doi.org/10.1016/j.apenergy.2012.03.054
http://dx.doi.org/10.1016/j.neucom.2006.01.032
http://dx.doi.org/10.1016/j.renene.2015.08.038
http://dx.doi.org/10.1007/s12559-015-9333-0
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1016/j.renene.2014.12.074
http://dx.doi.org/10.1016/j.enconman.2015.04.057
http://dx.doi.org/10.1016/j.neucom.2012.08.010
http://dx.doi.org/10.1016/j.neucom.2014.09.022
http://dx.doi.org/10.1016/j.enconman.2016.02.022


Energies 2016, 9, 989 19 of 19

26. Deng, W.; Zheng, Q.; Chen, L. Regularized extreme learning machine. In Proceedings of the IEEE Symposium
on Computational Intelligence and Data Mining, Nashville, TN, USA, 30 March–2 April 2009; pp. 389–395.

27. Martínez-Martínez, J.M.; Escandell-Montero, P.; Soria-Olivas, E.; Martín-Guerrero, J.D.; Magdalena-Benedito, R.;
Gómez-Sanchis, J. Regularized extreme learning machine for regression problems. Neurocomputing 2011, 74,
3716–3721. [CrossRef]

28. Meng, A.B.; Ge, J.F.; Yin, H.; Chen, S.Z. Wind speed forecasting based on wavelet packet decomposition and
artificial neural networks trained by crisscross optimization algorithm. Energy Convers. Manag. 2016, 114,
75–88. [CrossRef]

29. Fei, S.W. A hybrid model of EMD and multiple-kernel RVR algorithm for wind speed prediction. Int. J.
Electr. Power Energy Syst. 2016, 78, 910–915. [CrossRef]

30. Wang, S.X.; Zhang, N.; Wu, L.; Wang, Y.M. Wind speed forecasting based on the hybrid ensemble empirical
mode decomposition and GA-BP neural network method. Renew. Energy 2016, 94, 629–636. [CrossRef]

31. Hu, J.M.; Wang, J.Z. Short-term wind speed prediction using empirical wavelet transform and Gaussian
process regression. Energy 2015, 93, 1456–1466. [CrossRef]

32. Hu, J.M.; Wang, J.Z.; Ma, K.L. A hybrid technique for short-term wind speed prediction. Energy 2015, 81,
563–574. [CrossRef]

33. Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544.
[CrossRef]

34. Lahmiri, S. Intraday stock price forecasting based on variational mode decomposition. J. Comput. Sci. 2016,
12, 23–27. [CrossRef]

35. Sun, G.Q.; Chen, T.; Wei, Z.N.; Sun, Y.H.; Zang, H.X.; Chen, S. A carbon price forecasting model based on
variational mode decomposition and spiking neural networks. Energies 2016, 9, 54. [CrossRef]

36. Wang, Y.X.; Markert, R. Filter bank property of variational mode decomposition and its applications.
Signal Process. 2016, 120, 509–521. [CrossRef]

37. Zhang, Y.C.; Liu, K.P.; Qin, L.; An, X.L. Deterministic and probabilistic interval prediction for short-term
wind power generation based on variational mode decomposition and machine learning methods.
Energy Convers. Manag. 2016, 112, 208–219. [CrossRef]

38. Guo, Z.H.; Zhao, W.G.; Lu, H.Y.; Wang, J.Z. Multi-step forecasting for wind speed using a modified
EMD-based artificial neural network model. Renew. Energy 2012, 37, 241–249. [CrossRef]

39. Hu, Q.H.; Zhang, S.G.; Xie, Z.X.; Mi, J.S.; Wan, J. Noise model based v-support vector regression with its
application to short-term wind speed forecasting. Neural Netw. 2014, 57, 1–11. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.neucom.2011.06.013
http://dx.doi.org/10.1016/j.enconman.2016.02.013
http://dx.doi.org/10.1016/j.ijepes.2015.11.116
http://dx.doi.org/10.1016/j.renene.2016.03.103
http://dx.doi.org/10.1016/j.energy.2015.10.041
http://dx.doi.org/10.1016/j.energy.2014.12.074
http://dx.doi.org/10.1109/TSP.2013.2288675
http://dx.doi.org/10.1016/j.jocs.2015.11.011
http://dx.doi.org/10.3390/en9010054
http://dx.doi.org/10.1016/j.sigpro.2015.09.041
http://dx.doi.org/10.1016/j.enconman.2016.01.023
http://dx.doi.org/10.1016/j.renene.2011.06.023
http://dx.doi.org/10.1016/j.neunet.2014.05.003
http://www.ncbi.nlm.nih.gov/pubmed/24874183
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Structure and Methodology of the New Hybrid Model 
	Variational Mode Decomposition (VMD) 
	Partial Autocorrelation Function (PACF) 
	Weighted Regularization Extreme Learning Machine (WRELM) 

	Case Study 
	Data Sets and Evaluation Criteria 
	Decomposition of the Wind Speed Series Based on VMD 
	Optimal Feature Vector Construction Based on PACF 
	Forecasting Model for Wind Speed Based on WRELM 
	Forecasting Results of the New Hybrid Model 
	Comparison Experiments and Discussion 

	Conclusions 

