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Abstract: Chemical flooding has been widely utilized to recover a large portion of the oil remaining in
light and viscous oil reservoirs after the primary and secondary production processes. As core-flood
tests and reservoir simulations take time to accurately estimate the recovery performances as well as
analyzing the feasibility of an injection project, it is necessary to find a powerful tool to quickly predict
the results with a level of acceptable accuracy. An approach involving the use of an artificial neural
network to generate a representative model for estimating the alkali-surfactant-polymer flooding
performance and evaluating the economic feasibility of viscous oil reservoirs from simulation is
proposed in this study. A typical chemical flooding project was referenced for this numerical
study. A number of simulations have been made for training on the basis of a base case from the
design of 13 parameters. After training, the network scheme generated from a ratio data set of
50%-20%-30% corresponding to the number of samples used for training-validation-testing was
selected for estimation with the total coefficient of determination of 0.986 and a root mean square
error of 1.63%. In terms of model application, the chemical concentration and injection strategy were
optimized to maximize the net present value (NPV) of the project at a specific oil price from the just
created ANN model. To evaluate the feasibility of the project comprehensively in terms of market
variations, a range of oil prices from 30 $/bbl to 60 $/bbl referenced from a real market situation
was considered in conjunction with its probability following a statistical distribution on the NPV
computation. Feasibility analysis of the optimal chemical injection scheme revealed a variation of
profit from 0.42 $MM to 1.0 $MM, corresponding to the changes in oil price. In particular, at the
highest possible oil prices, the project can earn approximately 0.61 $MM to 0.87 $MM for a quarter
five-spot scale. Basically, the ANN model generated by this work can be flexibly applied in different
economic conditions and extended to a larger reservoir scale for similar chemical flooding projects
that demand a quick prediction rather than a simulation process.

Keywords: optimization; artificial neural network; chemical flooding; net present value; enhanced
oil recovery

1. Introduction

After a period of time of producing oil from natural energy reservoirs using primary and
secondary extraction methods, enhanced oil recovery (EOR) methods are commonly considered to
extract the large amounts of oil often remaining in reservoirs. The tertiary stage is basically categorized
into three essential processes: thermal oil recovery, gas miscible/immiscible flooding, and chemical
flooding [1]. Thermal methods are suitable for heavy-oil or bitumen, while gas injection is widely used
where sufficient gas supplies are available. Most importantly, oil recovery by carbon dioxide injection
requires specific reservoir conditions to maintain the optimal sweep efficiency [2], particularly the
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reservoir pressure must be continuously monitored to enhance the gas storage [3]. The favorability
of chemical flooding methods, which include alkaline (A)-surfactant (S)-polymer (P) flooding, is that
these methods can be operated continuously in conjunction with water flooding without any addition
complex integrated system [4,5]. The application of chemical agents for extracting crude oil has been
commercially deployed, not only for conventional light oil, but also in some viscous oil fields over
the world. Indeed, according to the reports of the journal Oil & Gas, the successful polymer flooding
project in the Pelican Lake field in Canada could profitably produce more than 9540 m3/day in 2014,
whereas the pilot project in the Gudong field also recovered approximately 13.4% of the original oil
in place (OOIP) in 1998 by ASP flooding [6–8]. However, like other EOR methods, the successful
application of chemical injections still depends on many factors including reservoir conditions, the
type of crude oil or operating conditions, and most importantly the economic feasibility of the project.

Conventionally, core-flood tests and simulations are always considered to forecast the EOR
performance of chemical flooding before deploying it in a real field. On the other hand, the large time
consumed and high cost are always in concerns because injection jobs inevitably have high uncertainty.
Further, an injection strategy is essential to achieve optimization of either the technical or economic
aspects [9]. With a low number of numerical simulations, the optimization methodology proposed
by Zerpa et al. for a full field scale was used to investigate surrogate models for two ASP flooding
scenarios and could be applied more generally to other ASP injection scenarios [10]. Their later work
demonstrated the use of response surface methodology (RSM) as an effective optimization tool for an
ASP pilot project with the optimal polymer slug size 68.6% smaller than that suggested by laboratory
design [11]. In addition to chemical flooding, this mathematical tool has been also widely applied in
other EOR processes for diverse professional analyses. Dai et al. conducted a response surface analysis
for two objective functions using the results of 2000 Monte Carlo simulations for optimizing the
CO2-EOR process; they implied that understanding the uncertainty of the reservoir characterization
would be critical in terms of economic decision and cost-effectiveness of the process [12]. Their
subsequent work proposed a response surface-based economic model to compute the profitability of
CO2-EOR for the Farnsworth Unit site taking into account the oil price; they stated the importance of
oil price on the possibility of profit from 1000 realizations [13]. Principally, a more proper prediction
made by RSM, a larger number of designed samples is required, especially when a large number of
variables is involved in the response function [14].

The artificial neural network (ANN) has been applied widely in many aspects of the petroleum
industry, but despite the diversity of its applications, there have been few studies of this method in
chemical flooding. Using an ANN, Jawad and Jreou determined the horizontal well location in the
AB unit of South Rumaila oil field with reasonable accuracy; they also affirmed the value of this tool
for cases with a large amount of historical data rather than adequate engineering data [15]. Instead of
analyzing and predicting the production data by decline curves, Elmabrouk et al. utilized network
models to match the history production data and provide an estimation from those data sets of an oil
field in the Sirte Basin in Libya with a mean absolute error of approximately 10% [16]. Further, the
accurate estimation for horizontal well production performance by ANN to calculate the pseudo skin
factor by Ahmadi et al. opened a potential coupling of their suggested model with commercial software
to improve the accuracy and decrease the simulation time [17]. Regarding EOR processes, Alizadeh et
al. pointed out the superior prediction of ANN on predicting the oil recovery factor in the immiscible
water alternating gas process compared to a mathematic tool [18]. Their later work also on three-phase
fluids flow in heterogeneous porous media affirmed the applicability of the ANN model based on the
Scaling Group for accurately estimating the oil recovery potential in any given reservoir. In particular,
the method can be useful for detecting the key parameters in a large database for immiscible WAG
flooding [19]. Beside the network model, an optimization tool also needs to be integrated for fully
evaluating the performance of the models and figuring out the most dominant screening values in
achieving the target. Shafiei and Dusseault developed a new screening tool based on ANN integrated
with a Particle Swarm Optimization (PSO) method to predict recovery factors and cumulative steam
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to oil ratios in steam flooding for viscous oil in naturally fractured carbonate reservoirs, potentially
opening the possibility of merging PSO-ANN with viscous oil recovery modeling software [20]. They
demonstrated that PSO-ANN is superior to BP-ANN at forecasting in this type of oil field with the
maximum error of less than 8%.

In terms of chemical flooding, Wang et al. constructed EOR and IPR models for polymer
flooding in reservoir blocks of the Shengli oil field by orthogonal design and a BP neural network
with three oil prices; the model could potentially supply technical guidance for polymer injection
implementation [21]. Moreover, the ANN model for surfactant-polymer flooding has been built
successfully with approximately 3% average absolute error from a set of 499 simulation data with
18 dimensionless groups involved in the input layer by Al-Dousari and Garrouch; they clearly stated
that the model can save significant time in performance prediction compared to the simulation on SP
flooding with reliable accuracy [22].

Obviously, while the applications of a neural network are diverse and highly applicable,
as presented in the literature there is still no representative model for estimation of the viscous
oil reservoir situation as the use of chemical flooding in this type of oilfield has not been widely
considered. Based on the abovementioned idea, this work aimed to generate an applicable network
model to predict the ultimate oil recovery of chemical flooding process in a quarter five-spot pattern
for a viscous oil reservoir. The numerical case study is referenced from a typical ASP flooding project
in China, a validation for simulation in terms of chemical designs will be also presented in order to
assure the reliability of the work. A huge number of samples collected from simulation results will
be used to train the neural network, a best scheme of training will be also determined to achieve the
most reliable model. Sensitivity and feasibility studies in terms of economic evaluation are proposed
as the applications of the generated network model in which the oil prices are notably considered that
represents the risk of economic condition.

The generated ANN model in this work can absolutely be reused in similar projects that basically
have similar reservoir characteristics where there is a need to quickly predict the possible recovery
factor for ASP flooding, particularly for further feasibility analysis that can also be flexibly carried out
for different economic conditions.

2. Reservoir Description

This study uses for analysis numerical data in which the reservoir model and injection strategy
were mainly referenced from a typical successful pilot ASP flooding project in the Gudong oil field in
China [8,23] (Table 1).

Table 1. Reservoir properties for simulation as referenced from the Gudong oil field.

Parameters Values

Gridblock size 2.195 × 2.195 × 2.195 m3

Reservoir size 43.90 × 43.90 × 11 m3

Well distance 50 m
Porosity 0.35

Average absolute permeability
- Layer 1 3596–3850 mD
- Layer 2 3342–3596 mD
- Layer 3 3088–3342 mD
- Layer 4 2834–3088 mD
- Layer 5 2580–2834 mD

Average absolute permeability kH × 0.1 mD
Reservoir temperature 68 ◦C

Reservoir pressure 12.7 MPa
Initial oil saturation 0.6

Oil viscosity 41.3 cp
Oil gravity 17.45 ◦API

Salinity of connate water 1393 ppm
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In detail, the real project consisted of four injectors and nine producer wells in a four inverted
five-spot pattern with an area of 30,977 m2 and a net thickness of 11 m; the designed well distance
was 50 m. From this practical information, this paper proposes a relatively similar reservoir model
at a quarter five-spot pattern scale with one producer and one injection well that is built entirely in
a STARS (CMG) simulator. The permeability of the reservoir varies downward with a factor of 0.33
and heterogeneously within a layer in sandstone rock system. However, presumably the insignificant
difference of permeability between layers will not remarkably influence the flooding performances,
particularly in a thin reservoir [24]. The other parameters are almost identical to those of the real
Gudong field.

According to Dusseault and Shafiei, viscous oil is defined as crude oil which has viscosity ranging
from 100 to 10,000 cp or specific gravity lower than 20 ◦API [25]. Therefore, despite the fact the oil
viscosity is just 41.3 cp, the crude oil in this study can be considered as viscous since it has 17.45 ◦API;
in other words, this work absolutely considers a high viscosity oil reservoir.

3. Chemical Injection Design

Basically, the use of alkali aims to generate a surfactant in-situ in the reservoir by reacting with
the acid components of crude oil, thereby reducing the interfacial tension between the oil and the
aqueous phases and making the oil moveable [26]. The addition of a synthetic surfactant to an alkali
solution will increase the level of IFT reduction, but the combined alkali-surfactant injection can easily
cause a severe viscous channeling phenomenon because oil will be easily bypassed by the displacing
fluid, thereby leaving behind a large amount of oil. This problem can be tackled principally by using
a polymer that makes the solution more viscous, thereby achieving the proper mobility control and
significantly improving the sweep efficiency [27,28]. On the other hand, a high viscosity solution
has decreased injectivity and consequently this results in a slower response at the producing well
compared to the case where non-viscous fluids are injected [29].

Regarding the simulation for chemical flooding, interpolation is basically the main numerical
scheme of STARS for processing the variations in rock wettability, which is represented by the
residual oil saturation, corresponding to the surfactant concentrations. This relationship originated
fundamentally from the dependence of the residual saturation on the capillary number following the
direct formula proposed by Pope and Nelson [30], as presented below:

Sor = a + b log(Nc) (1)

where a and b are constants, Sor is the residual oil saturation, and Nc is the capillary number. Obviously,
since b is negative, the increase in capillary number primarily decreases Sor, which finally straightens
the relative permeability curves. Quy and Labrid developed the mechanism of oil displacement
according to the range of capillary numbers in surfactant flooding, as oil can be displaced totally if
ln(Nc) > −6.725 and displaced partially if −8.255 < ln(Nc) < −6.725 [31]. The capillary number can be
calculated as [32]:

Nc = µu/σ (2)

where µ is the viscosity of the injected fluid, u is the Darcy velocity and σ is the interfacial tension
between oil and water. As the IFT relationship is established initially for alkali and surfactant
concentrations, it will be interpolated adaptably during the simulation processes. The interpolation
of rock wettability in this work is represented by the changes in the relative permeability curves, as
shown in Figure 1.
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Figure 1. Relative permeability curves at: (a) low; (b) intermediate; and (c) high capillary number. 
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Figure 1. Relative permeability curves at: (a) low; (b) intermediate; and (c) high capillary number.

In terms of viscosity, the predefined viscosity table for an aqueous phase when adding a polymer
will automatically generate a nonlinear mixing function, fN, which limits the polymer concentration
during the simulation. The function is formulated as [32]:

fN =
[
ln
(
µp
)
− ln(µw)

]
/
[
ln
(
µpmax

)
− ln(µw)

]
(3)

where µw is the water viscosity, µp is the viscosity of polymer solution, and pmax is the maximum
viscosity of the injected solution.

Effects of salinity on viscosity inevitably occur as this composition helps decide the quality of the
microemulsion when the polymer and surfactant are mixed contemporarily in an artificial brine. In
addition, because the reservoir water always has a certain level of salinity, the initial expected viscosity
of the displacing fluid might not be reached as a consequence. The consideration of salinity in STARS
is expressed basically as [32]:

µp = µ0
p(

xsalt
xmin

)
sp

for xsalt > xmin; and µp = x0
p for xsalt ≤ xmin (4)

where µp is the solution viscosity with salinity, µ0
p is the defined viscosity of the polymer solution

without salinity; xsalt and xmin are the salinity and effective threshold salinity of the solution,
respectively; sp is the slope of the log-log plot of the polymer viscosity versus ratio of current salinity
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over xmin. The viscosity of polymer solution can be estimated more accurately before and during the
simulation process because a specific salinity has been determined for artificial brine.

Based on the chemical properties, including IFT relationship, solution viscosity, and adsorption
characteristics of the Gudong field project, this work applies these properties relatively completely
for the simulation, as presented in Figure 2. Practically, a combined alkali-surfactant-polymer (ASP)
is often considered instead of a single agent following a relevantly designed injection sequence to
extract oil most thoroughly in terms of the technical or economic point of views [33]. As the flooding
sequence of ASP injection in Gudong field has already been proven to be a typically effective sequence,
this study also used the same injection strategy for the simulation. Table 2 provides details of the
chemical injection schemes. Owing to the different scale between the real project and this work, the
precise injection rate was redesigned based on the referenced rate by dividing the practical rate by 16.
A preflushing water slug is also proposed before injecting the chemical slugs simultaneously.Energies 2016, 9, 1081 6 of 19 
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Table 2. Chemical injection design for the simulation and the real project in Gudong field [22].

Injection Design Gudong Field This Work

Injection scheme

Water flooding→ Polymer slug (0.05
PV)→ AS slug (0.05 PV)→ ASP slug
(0.35 PV)→ Polymer slug (0.1 PV)→

postflushing water flooding

Water flooding→ Polymer slug→ AS
slug→ ASP slug→ Polymer slug→

postflushing water flooding

Chemical injection rate 240 m3/day 15 m3/day

Water injection rate 400 m3/day 25 m3/day

4. ANN Model

4.1. ANN Structure

The applications of an ANN as a learning machine for estimating unavailable data from a sufficient
amount of input and target samples by the network have been widely reported. The network normally
consists of several layers, which can be an input layer, an output layer, and one or more hidden
layers [34,35]. Fundamentally, the layers connect with each other by a linking system, which can
be represented principally by weights, biases, and activating functions that are applied directly to
the neurons of each layer [36]. Systematically, in a three-layer network, the neurons of the input
layer connect with each neuron in the hidden layer through the specific weights, which indicates the
contribution of the individual neurons in the input layer to that neuron in the hidden layer, and a
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transfer (activating) function with the existence of a bias value [37]. As all neurons of the hidden layers
are generated, they connect directly with the output (final layer) by the same process. Figure 3 presents
a schematic model of the ANN structure for data learning process of this work.
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while there are 8 neurons in the Hidden layer and 1 neuron in Output layer.

The ANN structure of this work is a multilayer neural network that has been applied successfully
and demonstrated to be an effective learning machine schemer. A total of 13 parameters were set as
13 neurons in the input layer, including the alkali concentration in AS slug (A1), alkali concentration
in the ASP slug (A2), polymer concentration in the first polymer slug (P1), polymer concentration in
the ASP slug (P2), polymer concentration in the second polymer slug (P3), surfactant concentration in
AS slug (S1), surfactant concentration in ASP slug (S2), first polymer slug size (P1_size), AS slug size
(AS_size), ASP slug size (ASP_size), second polymer slug size (P3_size), slug size of preflushing water,
and well distance.

First, the consideration of the water slug size can represent the influence of oil saturation in the
reservoir on the flooding performance. Second, the well distance was first taken into account in this
work as a parameter for examining the spatial effect on the oil production performance because it
represents the well pattern design.

The hidden layer contains eight neurons connecting with its lower layer by weights and a
transfer function:

a1
i = tansig(yi + b1

i ), i = 1− 8 (5)

with : yi =
13

∑
j=1

Xij, Xij = Xj × w1
ij

where Xj represents the variable in the input layer, w1
ij is the corresponding weight of the jth neuron of

the input layer to connect with the ith neuron of the hidden layer, and b1
i is bias value for the ith neuron

in the hidden layer. The transfer function used on activation is a tan-sigmoid function as follows:

tansig(n) =
2

1 + e−2n − 1 (6)
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A linear relationship is proposed for the final link between the neurons in the hidden layer and the
output, with connecting weights wi

2 and bias b2 introduced correspondingly between the ith neuron
and the output layer. Generally, NPV was normally considered for the output value. On the other
hand, as the oil price is becoming more sensitive for the project, this work proposes the ultimate oil
recovery factor (RF) as the output of the network instead of the NPV.

4.2. ANN Processing

A set of 988 samples from simulation results was used to process the ANN network in the
MATLAB Network Toolbox. As the network pattern has been defined, the next important step is
the division of the data set for training, validation, and testing under a back-propagation algorithm.
Theoretically, this algorithm initiates with the first weight and bias vectors, and the output is then
calculated from those initial values in the feedforward network. The error between simulated result
and computed output is used to evaluate the accuracy of the estimation, weights and biases are then
adjusted using the Levenberg-Marquardt algorithm, which is popularly used in the least squares curve
fitting problem. This gradient descent formula is described as [38]:

xk+1 = xk −
[

JT J + ωI
]−1

JTe (7)

where x represents the values considered for adjustment (weights and biases), J is the Jacobian matrix
that contains the first derivatives of the network errors, ω is a factor aiming to shift the formula toward
Newton’s method, and e is a vector of the network errors. The weights and biases will be updated
throughout the training process; principally, a more accurate network can be obtained with a larger
volume of data for training [39,40]. On the other hand, as the use of an inadequate number of data for
training can inevitably cause overfitting, which provides very high accuracy for estimating the training
data but fails to perform in different data sets. In contrast, selecting insufficient data for training also
does not fully adapt the network for the estimation. The validation data set is utilized mainly to tackle
the problem of overfitting and underperformance by the early stopping technique. In other words, the
technique targets to optimize the network performance by controlling the number of epochs, which
represent the iteration process during training by ensuring the minimal errors of the system [41]. The
testing data set is then used to test the validation of the network for completely blind data, which does
not participate in the training process. Presumably, the large number of testing data being well fitted
evidently performs the high accuracy of the network on predicting the unavailable data.

To determine the suitable data set division, this study verifies three ratio cases for
training-validation-testing data including 60%-20%-20%, 55%-20%-25%, and 50%-20%-30%. The results
were evaluated through the root mean square error (RMSE) and determination coefficient (R2),
as formulated for the simulated target xi,sim, correspondingly estimated output xi,ANN and average
target xi,sim [1]:

R2 = 1− ∑n
i−1(xi,sim − xi,ANN)

2

∑n
i−1(xi,sim − xi,sim)

2 (8)

RMSE =

√
1
n

n

∑
i−1

(xi,sim − xi,ANN)
2 (9)
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The available data were normalized to avoid the effects of different magnitudes of data on the
training process as follows:

X = 0.1 +
Xsim − Xmin

Xmax − Xmin
(10)

where X represents any data point of the input and output data set, and Xmin and Xmax are the
minimum and maximum values of each variable used in the network. A constant value of 0.1 was
proposed to keep all variables falling from 0.1 to 1.1 to stabilize the training process. Note that
normalization does not affect the final results as the real values will be converted for further analysis.
Table 3 lists the maximum and minimum of all data points, the actual parameters also ranged within
those thresholds for the analysis and optimization procedures in the later stages.

5. Results and Discussion

5.1. Simulation Results

A total of 988 samples data were obtained from simulation results in which 13 independent
parameters were varied within their constraints. The results of the ultimate recovery factor ranged
from 21.92% to 86.95%, indicating the sufficient alteration of variables, guaranteeing the quality of data
set for further processes, such as sensitivity analysis and optimization. Figure 4a shows the production
performance of a case that mimics almost the entire injection strategy and chemical design as well as
the well distance of the real project in the Gudong field. Like other cases, this simulation case ends
after injecting approximately 0.6 PV of post-flushing water.

As described in the figure, water flooding only recovers about 17.12% original oil in place (OOIP)
after injecting over two PV volume, while the utilization of a sequence of chemical injection remarkably
enhances the production by approximately 44% OOIP at the end of project. This indicates evidently
the high efficiency of using chemical for extracting the viscous oil after a period of water flooding.

Figure 4b,c also present the IFT profile after 0.05 PV of AS slug and water viscosity profile after
0.05 PV of the first polymer slug, respectively. Firstly, the IFT value can be definitely reduced to very
low value, about 0.002 dyne/cm, expressing the expected design of alkali and surfactant ratio on
dealing with the IFT value. Secondly, the first polymer solution viscosity can reach approximately
16 cp, compared to the design of the practical Gudong field for this slug—16.5 cp—demonstrating
that the chemical properties and chemical designs of this study tightly follow the typical design of the
considering real project.
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Table 3. Thresholds of the data points for either input or output values and practical values of the real project.

Type of
Values

A1
(wt %)

A2
(wt %)

P1
(wt %)

P2
(wt %)

P3
(wt %)

S1
(wt %)

S2
(wt %)

P1_Size
(PV)

AS_Size
(PV)

ASP_Size
(PV)

P3_Size
(PV)

Preflushing
Water Size (PV)

Well
Distance (m) RF (%)

Min 0.25 0.25 0.025 0.025 0.025 0.05 0.05 0.0204 0.0204 0.0612 0.0204 0.967 34.15 21.92
Max 2 2 0.15 0.15 0.15 0.5 0.5 0.204 0.204 0.449 0.204 2.901 58.98 86.95

Gudong field 1.5 1.5 0.1 0.1 0.05 0.4 0.4 0.05 0.05 0.35 0.1 _ 50 _
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0.05 PV of AS slug; (c) Profile of viscosity of displacing fluid after 0.05 PV of the first polymer slug. The IFT in the swept region can be reduced to 0.002007 dyne/cm,
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5.2. ANN Model—Generation and Validation

From 988 samples, three different network schemes were trained to verify the validation of data
division to select the optimal network that can adapt the training data most appropriately and estimate
accurately a significant number of samples. Figures 5 and 6 compare the three schemes in terms of
the error charts with the number of epochs and determination coefficient, respectively. Principally,
the adequate division of data is recognized as the error curves of the validation set and the testing
set has a similar optimal point, which indicates the minimal error of the network system after a
number of iterations (epochs). From Figure 5, the appropriate divisions of data for three schemes
can be visualized easily because their performance of validation and testing curves have similar
characteristics. In particular, the optimized epochs are similar between schemes. The large error
diagrams also highlight the quality of the training processes by describing the distribution of the
instances following the difference between the simulated and estimated output values.
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Figure 5. Error diagrams and epoch performances of network training for three data division schemes:
(a) 60%-20%-20%; (b) 55%-20%-25%; (c) 50%-20%-30%. The best validation performances of three cases
stopped below 80 epochs corresponding with the minimum errors achievement. As the percentage of
testing data increases, the density of errors in testing also raises correspondingly.
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(b) 55%-20%-25%; (c) 50%-20%-30%. The rise of data set for testing reduces the accurate estimation in
blind data by small value of about 0.002, thereby all these schemes of training can certainly guarantee
the quality of the network model.

Quantitatively, the root mean square errors of the three schemes are 2.63%, 2.46%, and 2.51% for
the cases of 60%-20%-20%, 55%-20%-25%, and 50%-20%-30%, respectively. The verification results
evidently express the quality of the sample data and the success of the learning machine because the
three cases gave errors of less than 3% in training, validation and testing. In particular, even in the
scheme using only 50% data for training (494 data points), the R2 value of a blind estimation (30% data
points) can still reach 0.977, indicating the acceptability of the network. Furthermore, as the errors of
the blind data points are sufficiently low for different schemes, the network with the larger number of
testing data should be selected for further steps as a most optimal network compared to the others.
Table 4 lists the weights and biases of the network for the selected scheme. Once the pattern of the
network has been determined, it will be used compute for further applications such as sensitivity,
feasibility or optimization studies. These applications will be discussed in the upcoming part of the
work for a specific economic condition.

Table 4. Values of the weights and biases in the network.

j 1 2 3 4 5 6 7 8

w1j
1 −0.05317 0.059647 0.110892 −0.14878 −0.02883 0.000403 0.028145 −0.00786

w2j
1 −0.37675 0.250536 0.88839 −1.40629 −0.10828 −0.06751 0.006682 −0.17366

w3j
1 −0.16367 0.02348 −0.0231 0.110563 0.01053 0.058102 0.111981 0.037069

w4j
1 0.406167 −0.34404 0.238361 −0.32506 0.338091 0.097043 0.358702 0.352538

w5j
1 0.008692 0.157214 −0.07209 0.113924 0.021002 −0.02121 −0.13751 0.11576

w6j
1 0.024874 0.031684 0.0064 −0.01566 −0.04848 −0.0024 0.035321 0.006683

w7j
1 −0.00995 0.035437 0.059562 −0.11203 −0.0457 −0.01015 0.01763 −0.00079

w8j
1 −0.18875 0.096359 −0.02628 0.06889 0.105716 0.072962 0.06106 −0.02006

w9j
1 −0.06525 0.222975 −0.01587 0.00846 0.032625 0.008633 −0.03909 −0.02651

w10,j
1 0.241146 0.233057 −0.25614 −0.03199 0.354793 0.092027 0.146056 −0.12469

w11,j
1 −0.10924 −0.35605 0.065394 0.034155 −0.05449 −0.23064 −0.14875 −0.23028

w12,j
1 0.194045 −0.22242 −0.20442 0.240037 −0.27042 −0.10344 0.162447 −0.03963

w13,j
1 0.014732 −0.00058 −0.03338 0.094753 −0.05561 0.006522 0.026331 0.047186

wj
2 −1.32429 1.167326 −1.44324 −0.64451 1.306281 −4.64704 1.648443 2.400282

bj
1 0.80425 1.319694 −0.43374 0.40918 0.558037 0.445683 −0.22422 0.950068

b2 −0.71648 - - - - - - -
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5.3. Applications of the Network Model

Owing to the unstable oil price, this work proposes a consideration of various oil prices in the
NPV computation to evaluate comprehensively the feasibility of a chemical flooding project following
a market transformation. According to the past market situation and predictions made by the U.S.
Energy Information Administration (EIA) group from January 2015 to December 2017, the referenced
oil price in this work will change from 30 $/bbl to 60 $/bbl, as illustrated in Figure 7. The other costs
for operating and chemical injection costs are referenced from Kamari et al. with a suitable conversion
scale from the pattern having nine producers and four injectors to a quarter five-spot pattern in this
work [42], as presented in Table 5.
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with the estimation was made from September 2016. Oil price varied from 30 $/bbl to 60 $/bbl during
this period.

Table 5. Assumed chemical prices, operating costs, and initial investment for calculating the NPV.

Components Values

Initial cost -
Facilities and equipment $76,923

Operating costs -
Water flood operating cost 625 $/month

Chemical slug injection cost 0.0393 $/m3

Polymer drive injection cost 0.0393 $/m3

Produced water cost 0.0692 $/m3

Oil treatment cost 0.0692 $/m3

Chemical prices -
Alkali price 1.32 $/kg

Surfactant price 4.06 $/kg
Polymer price 3.68 $/kg

A real discount rate of 0.1 is applied to calculate the NPV associated with the assumed component
costs. To understand the contribution of the individual parameter on the target values including the
recovery factor and NPV, the sensitivity study was analyzed, in which the base case describes the
injection strategy, the same as in the referenced real project.
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Figure 8 presents the impact magnitude of each variable on the ultimate recovery factor and
NPV of the project. Obviously, the polymer concentration in the main slug (P2) and ASP slug size
have the strongest effect on the output, while the driving chemical slugs do not influence the flooding
process significantly. Moreover, although both polymer slugs had the same constraints in terms of the
polymer concentration and injected volume, the buffering polymer solution has a dominant effect on
the performance compared to the other. In practically physical point of views, these results reflect
correctly the magnitude of effects of chemical slug parameters on the flooding performance, and
confirm the quality as well as reliability of the network model and simulation data.
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Figure 8. Sensitivity of the designed parameters on: (a) RF; (b) NPV (at 45 $/bbl). Polymer
concentration in the ASP slug is most sensitive, second is ASP slug size, while polymer concentration
in buffering slug contributes more dominantly than in first polymer and AS slugs. Pre-flushing water
size has least effect on recovery factor but significantly impacts NPV.
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Regarding the spatial contribution, the distance of the wells appears to contribute linearly to the
production performance as the upper constraint gives the highest profit. This indicates the reasonable
installation of approximately 59 m on the distance between a producing and injection well, suggesting
the possibility of extending this interval in future research. Figure 9 presents a schematic diagram of
the interactions of high-impact variables on the output.
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Figure 9. Interaction of high-impact parameters on NPV value (at 45 $/bbl): (a) ASP_size and A2;
(b) ASP_size and P2; (c) ASP_size and P3_size; (d) P3 and P3_size. The increase of ASP slug size
enhances NPV with a higher magnitude than other parameters.

As presented, the increase in the ASP slug size remarkably enhances the profit, while the level
of NPV improvement is lower for other parameters, and the maximum target value is achieved at
the upper constraints of these parameters except for A2, which has the optimal value at a certain
point within the minimum and maximum constraints. Indeed, the optimal design of all considered
parameters expressed in Table 6 was achieved at the upper constraints of P2, P3 and the ASP slug
size. The optimal preflushing water slug size, which represents the impact of the oil saturation profile
on chemical flooding, also stands in between the two constraints, highlighting the importance of
considering the water flooding schedule before processing the chemical injection.

Regarding to the uncertainty of the market circumstances, as the oil price is unstable and uncertain,
it is necessary to take into account the NPV at various oil prices as well as its possibility to evaluate the
project comprehensively. The aforementioned collection of the oil price used in this work was assumed
to be a normal distribution with a mean of 45.3 $/bbl and a standard deviation of 5.90. Figure 10
shows the range of NPV and its possibility corresponding to the variation of the oil price from 30 $/bbl
to 60 $/bbl.
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Table 6. Optimal design of the 13 parameters for providing the maximal NPV.

A1
(wt %)

A2
(wt %)

P1
(wt %)

P2
(wt %)

P3
(wt %)

S1
(wt %)

S2
(wt %)

P1_Size
(PV)

AS_Size
(PV)

ASP_Size
(PV)

P3_Size
(PV)

Preflushing
Water Size (PV)

Well
Distance (m) RF (%)

0.25 1.0101 0.1386 0.15 0.15 0.5 0.05 0.0204 0.05104 0.449153 0.1429 2.0502 58.98 86.95Energies 2016, 9, x FOR PEER REVIEW 16 of 19 
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As shown the figure, the project is fully profitable in the entire oil price range with the NPV
from 0.42 $MM to 1.00 $MM for the quarter five-spot scale. In terms of statistics, the highest possible
oil price apparently corresponds to a NPV of approximately 0.72 $MM at 45.3 $/bbl. According to
the figure, the reliable range, in which the NPV possibilities are higher than half of the peak value,
determines that the project can benefit nearly 0.61 $MM to 0.87 $MM corresponding to the highly
probable economic context. Practically, a consideration of the oil price and its probability consolidates
the profitability of the project, particularly when the market is quite sensitive and contributing to most
of the decisions in the petroleum industry.

Since the ANN model was generated for quickly estimating the ultimate oil recovery in ASP
injection processes in a quarter five-spot pattern, the abovementioned studies on sensitivity, feasibility
and optimization have proven the flexibility and favorability of the model in professional analyses for
such a viscous oil reservoir. It is needed to mention that since this ANN model has been generated
for thin viscous oil reservoir in which the chemical flooding performance is not seriously affected by
the heterogeneity of permeability between layers, the model might yield much less accurate results in
considerably complicated reservoir structures such as the existence of imbedded impermeable layers
or the coexistence of different geological facies that alter significantly the flow system.

6. Conclusions

An artificial neural network has been successfully generated for chemical flooding using a set of
simulation data which referenced the practical situation of a viscous oil field for a quarter five-spot
pattern scale. The feasibility of the current reservoir scale was also studied by using this applicable
network model with various oil prices. The conclusions for this work are summarized as follows:

- The network model was successfully generated by a huge of simulation data which were basically
referenced from a typical chemical project in terms of reservoir and chemical properties, thereby
the model can be extended into a higher reservoir scale that have identical characteristics. Owing
to the highly accurate estimation between the outputs calculated by ANN with that by simulation,
the model thereby can absolutely simulate the performance of ASP flooding with a wide variation
of parameters within their thresholds

- The sensitivity study affirmed the prevailing contribution of ASP slug size on the success of the
injection process compared to others, particularly the driving polymer slug performed more
predominantly than the first polymer and AS slugs. These findings reflect substantially the
physical aspects of the model, absolutely confirm the quality and reliability of the model as well
as the numerical results.

- The feasibility of the project by the optimal chemical designs and injection strategy under given
expenses surely presents the profitability of the chemical project for the high viscosity oil reservoir.
This assigned condition clarifies the potential utilizations of the generated ANN on economic and
uncertainty analyses in other projects. In other words, the proposed output of the model being
ultimate recovery factor instead of NPV helps the model adapt flexibly the change of market
situation that is represented by the alteration of oil price.

As chemical flooding is still suspected to be beneficial, and the use of commercial simulators is
expensive and time-consuming, the available ANN model for viscous oil fields proposed in this work
promises to make the estimations of identical issues quicker and more practical in either technical or
economic analyses.
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