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Abstract: A B-spline neural networks-based adaptive control technique for angular speed reference
trajectory tracking tasks with highly efficient performance for direct current shunt motors is proposed.
A methodology for adaptive control and its proper training procedure are introduced. This algorithm
sets the control signal without using a detailed mathematical model nor exact values of the parameters
of the nonlinear dynamic system. The proposed robust adaptive tracking control scheme only
requires measurements of the velocity output signal. Thus, real-time measurements or estimations of
acceleration, current and disturbance signals are avoided. Experimental results confirm the efficient
and robust performance of the proposed control approach for highly demanding motor operation
conditions exposed to variable-speed reference trajectories and completely unknown load torque.
Hence, laboratory experimental tests on a direct current shunt motor prove the viability of the
proposed adaptive output feedback trajectory tracking control approach.

Keywords: DC shunt motors; adaptive speed control; model-free control; neural networks

1. Introduction

Electrical machines are part of a wide variety of applications for use from domestic and industrial
to remote research applications on land, air, water, and finally in space, each one with its own
characteristics and specific protections [1]. Modern systems are complex, and new approaches in
electric motor control are demanded, having high-precision requirements of speed and position under
variable load torque. Consequently, it is necessary to develop new proposals for control and protection
of electric motors [2,3].

Although direct current (DC) machines have been widely studied, there are still many possibilities
for their use as motors and generators [4]. An open research topic about DC shunt motor control is
addressed to achieve a highly efficient and robust performance by using measurements of the output
signal to be controlled. In fact, it is widely known that energy efficiency is related to operation costs.
Certainly, this problem is quite challenging when some detailed mathematical model of the nonlinear
dynamic system exposed to time-varying disturbances is not available. Moreover, in several practical
engineering applications, the exact values of the system parameters are also unavailable. Thus, control
policies for electric motors installed in industrial plants should be performed by using measurements
of the output signal and a single voltage input.
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On the other hand, speed reference trajectory tracking controllers for motors based on
efficient motion planning could demand measurements of several state variables, increasing control
implementation costs. Therefore, motors must demonstrate a satisfactory performance in a wide range
of operating conditions and adaptability characteristics to face the changing demands of the load
torque and environmental conditions. For instance, DC motors are used in many areas such as mobile
robotics, industrial robotic arms, electric vehicles, elevators, cranes and drills, which demand variable
operating conditions.

Diverse control approaches have been reported in the literature for electric motors. Robustness and
an acceptable transient response for the practical closed-loop system are some relevant main objectives
to be considered in the controller synthesis. However, those control performance requirements are
still an open and challenging research problem for scenarios where a detailed mathematical model
and accurate values of the system parameters are unavailable, and a minimal (optimal) number of
sensors and actuators is preferred for reduction of implementation costs. Moreover, a nonlinear
dynamic system could be subjected to unknown endogenous and exogenous disturbances affecting
the performance indicators specified for the system response. There are several controllers based
on sliding modes [2], predictive control [4], conventional proportional-integral-derivative (PID)
techniques [5-8], robust control [9], neural networks [1,10], and fuzzy logic [11]. Some relevant
aspects of these contributions are described in the next paragraphs. Nevertheless, most of them
require full or partial information of the mathematical model and motor parameters, limiting their
application because controllers are depending on the availability of these values [4,10,11]. Motors as
electric actuators are employed in many practical engineering systems; therefore, obtaining this
information is an additional task, and it is possible that the controller performance could be degraded.
Moreover, some of them have a high computational cost which could restrict their operation for
real time applications [10]. For instance, radial basis function neural networks are formed by
three layers (input-hidden-output), and the number of neurons in each layer is also an important
issue for correct performance. This fact increases the number of calculations to obtain a desired
performance; furthermore, an offline learning rule may be necessary due to the amount of system
data required for the training process. These aspects restrict the training stage and include a wider
range of operating conditions. For B-spline neural networks, only a layer is required and an on-line
learning rule is used. The number of computational calculations is based on basic operations (sum,
subtraction, multiplication) with a smaller number of layers and neurons. In addition, only the
evaluation of two basis functions is necessary. Therefore, B-spline neural networks qualify as an
adequate option to be applied in the synthesis of some adaptive and robust tracking control scheme
with low computational costs.

Speed control of a DC motor with known input delay and unknown disturbances is presented
in [4]. Controllers based on a predictive technique are used to obtain a satisfactory performance in
the presence of disturbances. A simplified transfer function of the DC motor with a retarded input
is employed for design purposes. Experimental and simulation studies are included to show the
introduced controller performance. In [5], a fractional-order technique is integrated into PI/PID
linear controllers as a method to enhance their performance. The controller behavior is shown
by a DC motor system where its dynamics are described by a conventional first-order model plus
dead time. Here, simulation and experimental results are also presented. Ref. [9] combines robust
design with robust control and presents results of the coupling between them. An objective function
based on these two concepts in the presence of uncertainty is proposed. Moreover, simulation
results are exhibited for design performance evaluation. In particular, the analysis and design of
DC motor controllers is emphasized for so-called direct current permanent magnet, or separate
excitation, reaching simple linear models, and justifying its performance against certain operating
conditions [4,8,10,11]. Its operation is guaranteed around some equilibrium point and is also highly
dependent on the knowledge of the motor parameters. In this configuration, the inrush current is only
limited by the armature resistance, which is relatively high for small motors and, thus, there are no
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large current problems. However, for motors of several electric powers, the armature resistance is small,
and then an excessively high armature current is present in a starter condition at rated voltage [12].
Therefore, a starter resistor is connected in series to the armature winding, causing losses and the need
to include and turn off starting resistors.

The use of adaptive control algorithms offers an attractive alternative for speed tracking of DC
motors [10,11,13,14]. A direct adaptive fuzzy logic controller is exposed in [11]; it is estimated from
two levels—one uses a Mamdani fuzzy controller and the other is an inverse model based on a
Takagi-Sugeno method. Experimental results validate the controller behavior. In [10], an adaptive
neural controller for the tracking problem of a DC motor is presented. The neural networks are used
to estimate the unknown functions included in the systems. The state variables of the DC motor
are required to be constrained in the compact set in controller design procedure. Simulation results
validate the stability analysis of the design.

The DC shunt motor configuration discussed in this paper considers its nonlinear dynamics,
which makes the design of some robust speed control scheme a non-simple task [12]. In this paper,
robustness is considered against parametric uncertainty and disturbances due to variable load torque.
Thus, conventional linear speed controllers could not be sufficient to suitably regulate some motor
for a wide range of possible uncertain operating conditions. This motor configuration intends that
the change in the mechanical load torque from zero to full value induces a minimal impact on the
rotor speed, including sudden changes over time. Since DC shunt motors have wide applicability,
it is required to expand the existing studies with the inclusion of adaptive control techniques to
cover highly demanding conditions, to which the motor could be exposed. Hence, the efficient and
robust control of electric motors using a minimum number of sensors is a challenging, relevant and
pertinent research topic, and its solutions admit a wide variety of real applications in the development
of engineering products and systems.

On the other hand, artificial neural networks (ANN) are able to model and control nonlinear and
non-stationary systems on-line. The nature of this technique makes the controller robust, adaptive and
optimal for use in independent or hybrid configurations with existing techniques. These features
offer an important option to practicing engineers facing uncertain changes in physical systems and
high demands of connected loads. ANN are particularly attractive for controlling electric motors.
At the same time, they consider the complexity of the physical system and provide a realistic control
with less computational time for an efficient and robust control in a wide operating range. In this
regard, B-spline neural networks (BSNN) are a particular class of neural networks that have exhibited
important results in various practical physical systems [15-20]. This paper presents the design and
performance assessment of an adaptive tracking control approach based on B-spline neural networks
with the capabilities required for real-time applications of DC shunt motors, without requiring
a detailed mathematical model and values of the parameters of the nonlinear dynamic system.
The results exhibit its ability to adapt and face changes in motor speed conditions and variable
load torque disturbance inputs. The proposed controller shows that only a previous off-line training
for some operating conditions is required and based on weights updating together with the base
functions shape, it adapts to changes in the original design without losing its high performance.
The result is an adaptive and robust control scheme that enhances the motor operation even in
operating conditions different to where the design was done. In the present study, a high tracking
performance refers to achieving small deviations from the speed reference trajectory planned for
the closed-loop motor dynamics, in spite of endogenous and exogenous disturbances due to load
torque and system parameters which are assumed to be unknown. Moreover, the proposed tracking
control scheme only requires measurements of the speed output signal. Real-time measurements or
estimations of acceleration, current and disturbance signals are then avoided. Experimental results
confirm the effectiveness of the proposed control approach for highly demanding motor operation
conditions subjected to variable speed reference trajectories and completely unknown load torque.
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Therefore, laboratory experimental tests on a DC shunt motor prove the viability of the proposed
adaptive output feedback trajectory tracking control approach.

2. DC Shunt Motor Model

There are various configurations of DC motors, where one in particular provides important
operating characteristics where the rotor speed does not change appreciably as the load torque varies
from zero to its nominal value [12]. Figure 1 shows a connection diagram of the motor under the
present study.

Figure 1. Equivalent circuit of a direct current shunt motor.

In this figure, we can distinguish in the field winding the following elements: L f is the field
winding inductance, ryis the field resistance, Tfx is an external variable resistance, i ris the field
current, and u ¥ is the field voltage. In the armature winding, the elements available are: L, is the
armature winding inductance, R, is the armature resistance, i, is the armature current, and u, is the
armature voltage. L, is the mutual winding inductance and w is the rotor speed.

We can see that the voltage source supplies both the field winding and the armature winding;
therefore, the total current i; is the sum of the two circulating currents iy = i, + i Iz Considering the
voltage-current relation for resistive and inductive elements, and grouping the field resistive elements
in R¢ = r¢x + 15, the DC motor model is obtained as

d . .
LfEZf = *Rflf + ug, 1)

d, . .
L”El” = —Ryi; — Lufsz + u,. (2)

The relationship among electrical and mechanical systems is determined by

d .
Ew = —bw+ Laflflu — 1L, (3)

where | is the moment of inertia of the rotor, b is the viscous damping coefficient, and T, is the
load torque. Here, the electric torque is T, = L,fifi,. The mathematical model exhibits a coupled
nonlinear dynamic system. Therefore, conventional linear controllers can only guarantee a satisfactory
operation around a certain equilibrium point. From the mathematical model, the equilibrium points of

the system can be determined as
_ Ui

ip=-, 4)
f Rf

(bRJ% +RsL, er) u

i{l = 2 2 2 ’ (5)
Laf”in + bRng
Y —RaR31, + LufRfufn’ ©
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where u;, = u, = uy. It can be seen that the equilibrium points depend on the voltage applied on
terminals, the load torque and motor parameters. Therefore, the motor has multiple equilibrium points
depending precisely on the desired operating condition.

3. Control Design Approaches Based on the Mathematical Model

In this section, two conventional control design methodologies based on the use of some
mathematical models of the dynamic system are described in order to show the main differences of
the robust adaptive control approach proposed in this paper. The first control method is based on a
linear mathematical model. Hence, the linear controller is only valid around some specific equilibrium
operation point. The second control method is based on sliding modes that consider a mathematical
model of the system that is available. Moreover, some values of the system parameters are required for
controller implementation. In spite of good performance indicators of both control design methods,
the use of some mathematical model and the knowledge of system parameters could be a relevant
limitation for the implementation of several nonlinear control techniques in real shunt electric motors.

Therefore, the proposed adaptive control approach represents a very good alternative choice for
speed reference trajectory tracking tasks planned for DC shunt electric motors subjected to disturbances
due to system uncertainty and completely unknown variable load torque. Thus, the use of a detailed
nonlinear mathematical model of the dynamic system, a priori knowledge of exact values of machine
parameters and real-time measurements or estimation of acceleration, current and load torque become
unnecessary in our robust control approach based on B-spline neural networks.

3.1. Linear Controller Design

The linear model representation can be obtained by small signal analysis around an equilibrium
point, defining x; = i, xo = iz, X3 = w, the linearized form of Equations (1)-(3) are given by

Ax = A Ax + B Auy, @)

Ay = C Ax+ D Auy,, 8)

where u,,; = u;, and u,;p = 7 are the control and torque inputs, respectively, of the DC motor, and

% % %, ;ﬁ y

X1 X X; Um1 U2

A— | o2 o2 oh B— | of oh
dxq dxy dx3 4 Ay Ay ’
ifs ofs fs ofs  ofs
0xq Xy ox3 Oty Ity
C:[oo 1} D =0,

where f1, f, and f3 are related to the nonlinear model described by Equations (1)—(3).

The above partial derivatives are evaluated at the equilibrium point about which the small
perturbation is being analyzed. Around this operating condition, some linear control scheme can
be easily designed from basic control fundamentals. Therefore, satisfactory velocity regulation can
be guaranteed in a small neighborhood operation where the system dynamics can be conveniently
approximated by the linear mathematical model.

Notice that eigenvalues of the linearized system model depend on the motor parameters and
operating conditions. Thus, system poles are moving in the complex plane depending on the operating
conditions of the machine. Hence, the system damping and natural frequency could be changed in
several manners. There are different ways for tuning a linear controller. From this representation,
it is clear that controller gains and time constants are dependent on motor operating conditions.
In any case, an acceptable and stable controller performance can only be guaranteed around a specific
equilibrium point.
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3.2. Super-Twisting Sliding Mode Control Design

In this subsection, a modern control approach based on sliding modes is described. In fact,
the sliding mode control methodology is quite known due to the controller robustness with respect to
parametric uncertainty and exogenous disturbances. Interested readers are referred to the excellent
book about sliding mode control [21].

First of all, the speed tracking error variable is defined as: e = w; — w, where wj; is the reference
shaft speed. To design a controller, we define the state variables as: z; = ¢ and zp = é. A control
algorithm for the DC shunt motor based on second order sliding modes can be proposed as follows:

Uy = —1q \/Esign (s) +o, 9)
0 = —upsign (s), (10)

with 1 > 0, up > 0and s = kz; + Z;, where k > 0 is the controller gain. Note that the sliding surface s
also demands measurements of the acceleration signal.

Differentiating s with respect to time and considering Equations (9) and (10), the dynamics of the
sliding variable is given by

Efjitl = Zy, (11)
4z _ —b1z1 —b1zo + ¢ (t) — cuqu (12)
dt fr
where by =b/], ¢ = Lys/JLfLs, and ¢ is defined as
. . TL TL .. b) . .
o (t) =wg+ @z + T + T baifia — bngw — byusiq — bsifwuy, (13)

where b;, i = 2,...,5 are constants, depending on the uncertain motor parameters. The system motion
in sliding mode is independent of parameters b;, c and disturbances in ¢. The Lyapunov function to
determine the stability of the proposed system is given by [21]

1
V=2)/582+ Ms|. (14)

The stability proof consists of a time derivative of the Lyapunov function and second derivative
of s to make an evaluation of the uncertainty behavior, on the basis of which can be shown that the
uncertain state trajectory in the plane twists around the origin converging to it in finite time as in [22].

The super-twisting sliding mode controller implementation is done by simultaneously solving
Equations (9)—(13) in each sample time and the actual rotor speed must be available. To improve the
input voltage, a low pass filter can be included in the control signal, and another alternative is by
means of the concept of equivalent control. In this case, all motor parameters are required.

4. Proposed Adaptive B-Spline Controller Design

Considering the nonlinear nature of DC motors described in section two and a linear controller,
a problem arises with the regulation of the interest variables. If it is possible, the control law must get
a driver that is robust, even tracking speed trajectories over time. A number of neural networks-based
structures have been developed to improve the system robustness. B-spline has been used for solving
a great deal of mathematical and practical problems, demonstrating fast and precise results [18-20].
In that sense, in this work, an adaptive controller based on B-spline neural networks is proposed.
Its design consists of two stages: first in defining the structure and characteristics of the inputs and the
training rule; the second part is an on-line learning where the ANN by itself can determine changes in
the reference signal, load torque and motor parameters.
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There are several examples where the conventional techniques are changed or improved with
adaptive algorithms in different applications fields. In [20], neural networks training is presented
with an on-line procedure for power electronic applications. Figure 2 presents the B-spline neural
network structure where only a layer with two basis functions is necessary; this is the basic concept
to understand the adaptive scheme requirements. This structure consists of an input space, a layer
formed with basis functions output and a weight vector and the BSNN output. Some parameters
have to be specified, such as inputs, the number and shape of basis functions and the learning rate;
however, once the BSNN is specified, it achieves a good performance over wide range of operating
conditions. We defined these features in an off-line stage, where the performance is verified by collected
data of the DC shunt motor. The adaptive controller has the same form that is showed in Figure 2:
(1) an input (error between actual and reference speed); (2) two basis functions of three orders that have
the same form that is exhibited in Figure 2, and it is considered that the input signal is normalized;
(3) two weights that are updating each sampling time; and (4) the output that is the sum of two
elements: the product between basis function output and weights.

Input Base Weight Output
function vector

Figure 2. Proposed adaptive controller structure with the main elements.

Figure 3 depicts the B-spline neural network training procedure in the off-line stage; here, the main
elements of this structure are defined by some experiments based on the input-output (voltage-speed)
data of the DC shunt motor. In the initialization step, a layer formed with two basis functions is
defined as shown in Figure 2. This configuration is proposed due to the presence of a single error
signal, and good control performance criteria obtained in previous works [15-17]. The shape of these
basis functions permits a soft neural network output response, and different shapes are previously
analyzed with superior orders, but the performance is similar with the restriction that a greater
number of calculations is required. Finally, the weights are the same number of basis functions and
the learning rule is the same for all cases. Based on this point, it is necessary to set a learning rate,
and, for experimental purposes, a low magnitude is used: 1 x 10~3. Later, it could be adjusted more
precisely (greater or smaller) in such a way that the neural network response will be faster but the
learning rule will remain stable. These experiments are developed based on input-output system data.
In this study, the operation conditions used for off-line neural network training are showed in Table 1.
The first loop in the off-line training is exceeded if the learning rule is stable and the neural network
output is between some expected values. For this motor, the input voltage inside the range of 0 to 110
V. If this is true, it is considered that the B-spline neural network has a good performance. In this stage,
the number of inputs, learning rate, basis function number and basis function shape could be modified
if it is necessary.

The second loop in the off-line training stage, Figure 3, consists of subjecting the motor operation
with the inclusion of the adaptive controller to different operation conditions until the closed loop
response reaches the best transient evolution (settling time and overshoot). Here, the learning rate is
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the main parameter that must be adjusted because we are considering that the learning rule is stable.
Good performance is attained when the closed loop response satisfies the control objectives. In on-line
operation, a similar performance is expected where continuous learning of new operational and/or
parametric variation of the motor is presented, which is demonstrated in this paper.

For this work, we have chosen only the rotor speed deviation as a BSNN input, which allows
us to obtain a satisfactory control signal. Three testing configurations were analyzed for the basis
function definition: (a) two multivariables with three and four orders; (b) multivariables with two
and three orders and; and (c) monovariables with three orders. Each configuration has a different
performance and the number of operations depends on the type and order of the basis function.
This ANN structure has been explored in other dynamic systems showing a good performance [15-17].
The data set used in this designation is presented in Table 1. This was selected because it is a
representative set of an input—output relationship of a typical DC motor operation.

Initialization of the
parameters

v

Basis function
definition

v

Different data source

N

have good
performance?

Different data source
And update learning €
rate

To on line operation

Figure 3. Flow chart of the neural network controller in off-line training.
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Table 1. Operation conditions for off-line training.

Load Torque Rotor Speed

7 (Nm) w (rad/s)
0.5 30
0.3 100

1.25 50
1.1 70
04 120

0.75 45

Among the objectives of the proposed controller, we are looking to have robust but simple design
features and implementation on an experimental level. Laboratory results demonstrate these aspects.
In this work, the diagram in Figure 2 defines the proposed neural controller and the output is defined
by [18]

P
y= Zaiwi =a'w, (15)
i=1
where w; and 4; are the i-th weighting factor and the i-th basis function output, respectively; p is the
number of weights of the neural network structure—for this case only two, hence p = 2. The base
function output changes with a nonlinear relationship of the input values, defined by the base
function shape. For the proposed controller, two monovariable functions of third order are used [15,18].
The weight vector is updated by an instantaneous learning rule, defined by [18]

wn) = 1w ® oy 16
2 la (£)]13 W 1o

where 7 is the learning rate and e, is the error between the desired and actual rotor speed.
The update of the weights depends on the base functions output and the learning rule; therefore, the
neural network performance is not conditional to the reference type (constant or variable) or to
the actual operating conditions. With respect to the learning rate, it takes one point within the
interval [1 x 1073,1.0] as an initial value for stability purposes. This value was adjusted by some test
configurations considering a different data set. If 7 is set close to 0, the training becomes slow. On the
contrary, if this value is large, oscillations may occur. In this application, it has been settled at 1 x 1073.

There are some applications of adaptive controllers based on B-spline neural networks where
how to define the base functions, neural network structure and a training rule are explained [15-18].
A clearly simple structure facilitates the form of implementation and adaptation to different systems;
in addition, the number of neurons, structure and shape of base functions have similarity in all these
cases; therefore, the same structure can be extended for systems of different characteristics. It is
important to note that, for implementation of these controllers, prior knowledge of the operation
and control system analysis is required. Finally, this particular BSNN structure makes them a very
attractive structure that can be exploited in hybrid with other control strategies that can be linear,
robust or adaptive configurations. The block diagram of the control system is presented in Figure 4.
The adaptive controller has a continuous learning about DC motor operation. Equations (15) and (16)
are implemented in a digital system to obtain the laboratory results.
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Figure 4. Block diagram of the BSNN controller for DC shunt motors.

5. Experimental Assessment of the DC Shunt Motor Control Scheme

In order to evaluate the effectiveness and efficiency of the proposed speed control scheme, several
laboratory tests were performed for the controlled DC motor arrangement described in Figure 1,
under different unknown disturbance inputs. The parameters used for the off-line training are
presented in Table 2, which represent approximate values of the physical system. It is shown that the
proposed approach with an initial off-line training controller for reference tracking is sufficient to face
the change on the motor and the operation change.

For simplicity, the load torque in the simulation study (off-line training) is considered to be
proportional to the velocity as follows

T, = Bw, (17)

where the constant B is calculated by a trial and error procedure, considering current and voltage
signals measured in laboratory tests in a steady state with different load values.

Table 2. Parameters of the DC shunt motor.

Parameter Value Unit
R, 75 (@)
Ry 469.75 Q
L, 55.3 mH
L¢ 2.4123 H
Ly 2.2881 H
J 0.0013  Kg:m?
b 1x107% N-ms

5.1. Description of the Test Platform

Some experiments were designed to recognize the performance of the proposed adaptive
control scheme. The DC shunt motor was driven by a programmable DC power supply with TOSHIBA
25K2611 (Hamamatsucho, Tokyo, Japan) MOSFET modules at a switching frequency of 3 MHz,
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including a dead time of 200 ns, formed by rise, turn-on, fall, and turn-off times. The MOSFET driver
used was the Texas Instruments UCC27528-Q1 (Dallas, TX, USA). The machine is mechanically coupled
to an electrodynamometer (squirrel-cage motor) loaded by a DC excited stator (0-100 ). Field and
armature currents are measured with two hall effect sensors, which are converted through a 16 bits
A/D converter. The rotor speed is measured with a permanent magnet tacho-generator.

The experimental laboratory test bed control equipment is based on a TM4C123GH6PMI
microcontroller (Texas Instruments), a personal computer, and a multifunction data acquisition board
with £10 V analog input channels of 1 MS/s and 16 bits of resolution and; £10 V output channels of
2.86 MS/s, and 16 bits of resolution (see Figure 5). The microcontroller and the board are employed to
implement the proposed control algorithm and generate the logic driving signals. It is connected to an
Intel Xenon CPU to 2.90 GHz with 12.0 GB RAM memory. The development software operates under
Matlab/Simulink environment (2015a, Boston, MA, USA).

N e e L . [ ]
‘ o TR o ] S—
e i

Figure 5. Experimental platform.

5.2. Measurement Variables in the Laboratory Test Motor

The DC motor was exposed to four scenarios. In the first case a, all variables are zero after the
speed reference is changed to 50 rad/s, considering a constant load torque. An electrodynamometer is
connected to the motor shaft, which is used as load.

The rotor speed and total current are shown in Figures 6 and 7. The DC motor performance is in
accordance with the design stage. The proposed BSNN controller is able to regulate the speed with
a desired behavior without the knowledge of the system model and parameters. It is enough to have
collected data from the physical system—in this case, input voltage a rotor speed or an approximate
mathematical model to know some possible characteristics about interest variables in transient and
steady state conditions.

The second case b exhibits the reference tracking performance when the reference speed is changed
from O to 63 rad/s and then to 42 rad/s (Figure 8). The controller has a good evolution when the
speed reference is diminished, in the same sense to reference increases. It is clear that the main
overshoot is presented when the rotor speed changes from 63 to 42 rad /s with a constant load torque.
The oscillations are eliminated faster with the proposed adaptive controller. The settling time is less
than to 0.2 s for BSNN in both cases.
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Figure 6. Rotor speed performance for reference tracking, case a.
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Figure 7. Total current performance, case 4.
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Figure 8. Rotor speed performance for reference tracking, case b.

Case c includes a load torque with different values. First, the rotor speed achieves 70 rad/s;
after that, at = 0.5 s, an electrodynamometer is included. In the last part at t = 1 s, the load torque
is disconnected (Figure 9). The field current exemplifies the DC shunt motor performance, and all
variables attain a behavior with similar features with all presented study cases. The BSNN can be
updated to a new operating condition, improving its performance. In this case, the change in load
torque has a minimal effect in rotor velocity. Figure 10 depicts the field current performance when the
system is faced with different disturbances.

The adaptability of the proposed controller has been presented by prior off-line design.
A mathematical model with approximate motor parameters was used, and the design was performed
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by data collected by the model and laboratory test system. The performance of the proposed
adaptive controller is evaluated by results obtained experimentally. This behavior validates the
initial design methodology.
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Figure 9. Rotor speed performance for reference tracking, case c.
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Figure 10. Field current evolution, case c.

The adaptive neural controller performance is guaranteed by two main features: the off-line
training and the continuous learning in each sample time, and is reflected in the weight factor.
This evolution is exhibited in Figure 11 by one of the two weights of the B-spline neural network
structure, and the main change is presented when some of the motor system configuration changes,
and obviously, in steady state condition, its value is maintained constant because the error magnitude
is near to zero. The learning rate is related to the velocity response of the weight factors; in this case,
it has an initial value equal to 8952 obtained in the previous training. This performance is expected
while the continuous learning rule (16) is operating.

In case d, a trajectory tracking performance is presented. The first 0.8 s a steady state rotor speed
is exhibited, after the reference speed is modified as a time function for trajectory tracking evaluation.
The proposed adaptive controller achieves the reference speed requirements (Figure 12). This kind
of performance is one of the main advantages of the adaptive controller when a design structure has
been conditioned.

It is evident that the proposed controller confirms its faster response; therefore, it could maintain
similar behavior for diverse disturbances and different system requirements. In this study, this is the
only control variable; initially, the motor is operating at 52 rad/s with constant load torque. As a DC
shunt motor, the field current is variable but the magnitude presented is less than the armature
current (Figure 13). This feature allows complex load torque specifications for variable rotor speeds.
The behavior is a consequence of speed reference demands.
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Figure 11. Weight factor evolution, case c.
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Figure 12. Rotor speed performance for reference tracking, case d.
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Figure 13. Field current evolution, case d.

The performance and applicability of the proposition are proved by hardware implementation
on a laboratory DC shunt motor. This strategy allows appropriately controlling the motor speed
where the load and set point are modified and a trajectory tracking for velocity is required. The neural
control is able to adapt by itself to different operating conditions; in other strategies, it is diminished
in some situations, especially under different operating conditions for which its parameters have
been tuned. Thus, the feedback signals to the BSNN are pertinent for a suitable control of the
DC motor (shunt connected) velocity exhibiting a good performance for different operating points
without modifications in control law. The noise observed in measurements is due to the type
of speed sensor employed in this study. Thus, the introduced control scheme also presents a
satisfactory performance for scenarios where measurement signals are corrupted by reasonable
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noise levels. Hence, the applicability of the proposed control approach has been demonstrated
by real-life experimental results.

6. Conclusions

In this paper, a B-spline neural networks based adaptive control scheme for angular velocity
reference trajectory tracking tasks for DC shunt motors was introduced. The presented controller
only requires measurements of the velocity output signal. It was shown that with a prior off-line
neural network design, a robust and adaptive controller can be synthesized for this nonlinear
dynamic system. The instantaneous learning rule allows that the controller adapts by itself in each
demanded operating condition. The same behavior is exhibited with real world operating conditions of
the motor. For this proposition, it is unnecessary to use some mathematical model and the dependency
of the motor parameters is omitted. Moreover, measurements or real-time estimations of acceleration,
current and disturbance signals are also avoided. The main feature is an adaptive nature and an
easy implementation in physical motors. Experimental laboratory tests on a controlled DC shunt
motor were included to show the effectiveness and efficiency of the proposed control design for
diverse velocity operating conditions and distinct load torque inputs. In addition, the introduced
control scheme also presents a satisfactory performance for scenarios where measurement signals are
corrupted by reasonable noise levels. Therefore, we can conclude that the output feedback tracking
control scheme represents a very good alternative choice for DC shunt electric motors.
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