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Abstract: The power industry is the main battlefield of CO2 emission reduction, which plays an
important role in the implementation and development of the low carbon economy. The forecasting
of electricity demand can provide a scientific basis for the country to formulate a power industry
development strategy and further promote the sustained, healthy and rapid development of the
national economy. Under the goal of low-carbon economy, medium and long term electricity demand
forecasting will have very important practical significance. In this paper, a new hybrid electricity
demand model framework is characterized as follows: firstly, integration of grey relation degree
(GRD) with induced ordered weighted harmonic averaging operator (IOWHA) to propose a new
weight determination method of hybrid forecasting model on basis of forecasting accuracy as induced
variables is presented; secondly, utilization of the proposed weight determination method to construct
the optimal hybrid forecasting model based on extreme learning machine (ELM) forecasting model
and multiple regression (MR) model; thirdly, three scenarios in line with the level of realization of
various carbon emission targets and dynamic simulation of effect of low-carbon economy on future
electricity demand are discussed. The resulting findings show that, the proposed model outperformed
and concentrated some monomial forecasting models, especially in boosting the overall instability
dramatically. In addition, the development of a low-carbon economy will increase the demand for
electricity, and have an impact on the adjustment of the electricity demand structure.

Keywords: electricity demand forecasting; multiple regression (MR); extreme learning machine
(ELM); induced ordered weighted harmonic averaging operator (IOWHA); grey relation degree
(GRD); carbon emission

1. Introduction

As one of the leading pioneers of national economy advancement, the electricity sector shoulders
the responsibility of ensuring a stable electricity consumption and economic expansion rapidly at home
and abroad [1]. Relevant to the characteristics of the electric power commodity, such as instantaneous
production, transport and consumption as well as non-storability, future power demand prediction
seems imperative and inevitably required. Accordingly, such sort of prediction is beneficial to the

Energies 2016, 9, 941; doi:10.3390/en9110941 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/journal/energies


Energies 2016, 9, 941 2 of 22

entire electricity development planning process by allowing scientifically and timely adjustment of
power demand variation conditions towards sustainability [2].

With the increasing attention to climate change and greenhouse gas (GHGs) emission abatement
worldwide, China has initially attempted to extend a low-carbon economy pattern, namely in the
pursuit of adoption of technical progress and institutional innovation to transform energy utilization
patterns, enhance energy efficiency and optimize the energy sector structure [3]. Among GHGs
forms, CO2 is on the top of list, accounting for 77% of global warming potential [4]. In China, CO2

emissions generated by fossil energy consumption not only account for approximately 80% of total
global greenhouse emissions, but also account for more than two-thirds of the responsibility for
adverse greenhouse effect [5,6]. This adverse effect is representative and deteriorates seriously China’
electricity sector. Regarding this, China has taken considerable countermeasures to address low-carbon
issues, like climate deterioration, late environmental-protection starting of power sectors and so forth.
In 2007, “Energy Saving Generation Dispatching” was published to decrease the carbon emission
coefficient mainly caused by the thermal power structure [7]. Since 2013, much focus been placed on
the emission-reducing effects of renewable energy sources, like zero release terms, and the National
Development and Reform Commission (NDRC) in China has issued the so-called “12th five-year plan
of renewable energy development” to further raise the proportion of renewable energy sources in
the energy consumption mix to 15% [8] by 2020. As the largest emission-cutting participant in the
clean development mechanism (CDM), China has obtained large emissions reductions from zealous
participation and introduction of low-carbon technology and funds, whose checked emission reduction
(CERs) reached 50% of the global share [9]. Generally, electricity demand forecasting research from the
perspective of low-carbon economy proves much practical significance and practical value.

Currently, in the existing macroeconomic background, both domestic and international,
numerous countries have selected appropriate variables and models to forecast electricity demand,
such as Italy [10], Spain [11], USA [12], Brazil [13], Japan [14], Singapore [15], Thailand [16]
and Indonesia [17]. In general, electricity demand forecasting methods can be decomposed into
two aspects, namely traditional forecasting models and modern intelligent forecasting models.
When it comes to traditional forecasting models, time series [18–20], regression analysis [21],
Gray forecasting [22], fuzzy forecasting [23], index decomposition method [24] and so forth, are
implemented widely. Pappas et al. [19,20] applied auto regressive moving average (ARMA) model to
model the electricity demand loads in Greece, respectively using the Akaike corrected information
criterion (AICC) and multi-model partitioning algorithm (MMPA). Hussain et al. [18] integrated
Holt-winter with autoregressive integrated moving average (ARIMA) models on time series secondary
data covering 1980–2011 in Pakistan, to predict overall and segmental electricity consumption. García
and Carcedo [21] present an alternative analysis of electricity demand, on the basis of a simple growth
rate decomposition scheme that allows vital factors behind this evolution to be identified. Similarly,
Torrini et al. [22] employed the extended properties of fuzzy logic methodology to forecast the long-run
electricity consumption in Brazil; while Zhao et al. [23] recommended an improved GM (1,1) model
using Inner Mongolia as object. Further, multiple linear regression analysis and a quadratic regression
analysis were performed deeply by Fumo et al. [24] on hourly and daily data from a research house.
Inevitably, these traditional models have been comparatively proved to display a simple range of
application and low-accuracy prediction thorough validated tools and simplified calculation. As for
modern intelligent forecasting models, Günay [25] proposed artificial neural networks to forecast
annual gross electricity demand using predicted values of social-economic indicators and climatic
conditions. Son and Kim [26] applied support vector regression with particle swarm optimization
algorithms to forecast the residential sector's electricity demand. Modern intelligent forecasting models
have demonstrated excellent performance, including simplified regression course, transformation
inference realization from training samples to predicted samples as well as avoidance towards
the traditional process from induction to deduction [27]. However, they are easily trapped in
over-fitting, local optima and so on. As a new type of single-hidden layer feedforward neural network
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primarily proposed by Huang et al. [28], extreme learning machine (ELM) embodies the features of
adaptive ability, autonomic learning and optimal computation needed for unstructured and imprecise
disciplines. Only by designing the suitable hidden layer nodes before training, bestowing value on
input weight and partial hidden layer randomly in process, as well as simultaneously fulfilling at once
without iterative, a sole optimum solution will be obtained.

Various forecasting models vary greatly from the perspective of distinct points to reflect economic
variation tendencies, thus strengthening the weakness of lower accuracy using a single forecasting
model. It was Bates and Granger [29] who firstly advocated combination forecasting approaches
in 1969, and since then a considerable volume of studies have been conducted in many fields by
domestic and overseas scholars [30–32]. The essence of combined forecasting is to solve the weighted
average of single forecasting models. However, existing traditional combination forecasting models
have fallen into a paralogism, namely different single forecasting models with distinguished weight
coefficients, while constant combination models have unchanged weight coefficient [33]; in reality,
the weight coefficient of a single forecasting model is supposed to be a function of time. Problems
posed by traditional thought, are comprehensively conquered by the establishment of IOWHA
operator-based forecasting models [34] in a concept of distinguished weight coefficients with the
same single forecasting model over time [34,35]. Furthermore, the forecasting accuracy of the IOWHA
operator shows an overdependence on the reciprocal error sum of squares which similarly is influenced
by outliers to magnify the errors. Regarding this, the relevant properties of the grey relation degree
(GRD) were devised and integrated with the IOWHA operator such as robust index combination,
including dominance combination forecasting, non-pessimum forecasting and redundancy degree [36].

Hence, based on previous literature, a new framework of combination forecasting electricity
demand model is characterized as follows: firstly, integration of GRD with the IOWHA operator
to propose a new weight determination method of combination forecasting model on the basis of
forecasting accuracy as induced variables; secondly, utilization of the proposed weight determination
method to construct the optimal combination forecasting model based on the ELM forecasting model
and multiple regression model; thirdly, three scenarios in line with the realization level of various
low-carbon economy targets and dynamic simulation of the effects of low-carbon economy on future
electricity demand. The remainder of this paper is organized as follows: Section 2 discusses low-carbon
target scenario setting. In Section 3, a new combined GRD-IOWHA operator forecasting model is
proposed. Sections 4 and 5 discuss the combination forecasting model and model results of electricity
demand in China, respectively. Overall conclusions are summarized in Section 6.

2. Low-Carbon Economy Simulation Scenarios

2.1. Variation Tendency Analysis of China’s Electricity Demand

By 2014, electricity consumption in China approached approximately 5626.31 million MW·h,
which accounted for a quarter of world’s total electricity consumption and ranked the first. Thus,
electricity demand of China is representative and outperformed in terms of both applicability
and feasibility.

As Figure 1 depicts (the data is sourced from the China Statistical Yearbook), in 2000–2014,
the annual electricity demand of China enjoyed stable and relatively fast growth, with an average
annual growth rate of 10.82%; During that period, the steepest increasing emerged in 2003, with a
growth rate of 16.53%. From 2000 to 2007, electricity demand still maintained a high upward trend at
an average growth rate of 13.54%; meanwhile, power demand in 2008–2009 slowed down, especially
for export-oriented areas (such as East China and Guangdong at merely 5.59% and 7.21%) due to
several constraint factors, including the crunch in domestic credit, Renminbi (RMB) appreciation,
changes in international market demand, adjusted import-export policy, and regulatory resources,
climate change, etc.
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Along with the comprehensive implementation of “12th Five-Year Program”, China has been
accelerating the shifting in economic growth model to achieve sound and fast economic growth,
together with attempts to support strategic emerging industries and upgrade traditional industries.
Subsequently, the continuously adjusted consumption structure has curbed the excessive expansion of
the heavy energy-consuming industry (including chemical industry, building materials, black metal
smelting and smelting non-ferrous metal) and suppress China’s electricity demand at a lower level.
Typically in 2014, China shows a year-on-year electricity demand growth of 3.8% together with a
year-on-year growth rate drop 5.12%. Under the existence of multiple uncertainties, electricity demand
prediction is worthy of further exploration for prospective programming.

1 

 

 

Figure 1. Annual electricity consumption of China.

2.2. Scenario Mode

With the objective to clarify the effect of energy-efficient and emission-cutting constraints on
future electricity demand, three scenarios are set here to dynamically simulate future electricity
demand forecasting:

(1) Baseline scenario mode. Under this mode, electricity demand growth is stimulated by economic
advancement and booming population in the direction of a scheduled economic growth rate of a
moderately prosperous society and population progress the same as usual.

(2) Low-carbon scenario mode. Low-carbon mode is aimed at fulfilling emission-reducing
responsibilities promised during international climate talks and simultaneously promoting
economic advancement by technical progress, industrial restructuring and so forth. Excluding
the impact factors of economic development and population growth, electricity demand is also
restrained by carbon emissions quotas.

(3) Intensified low-carbon scenario mode. Along with the thorough implementation of
energy-conserved and emission-reducing policies and economic development pattern
transformation towards three-low issues (low consumption, low emissions and low pollution),
a low-carbon economy is well achieved by converted energy utilization patterns, enhanced energy
efficiency, adjusted energy structures and so on. In this intensified mode, electricity demand is
largely influenced by economic development, population growth, policy constraint and so forth.

2.3. Scenario Parameter Setting

In views of factor diversity and variability, there is a necessity to elaborate future development
trend of electricity demand impact factors especially in a mid-and long term. Numerous factors are
involved in China’s electricity demand variation, such as economic development level, electricity price,
population growth and policy constraint [24–32]. While considering the data availability and typicality,
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this paper merely took into account of gross domestic product (GDP), booming of the population and
energy policy constraints (specifically explained in Section 2.3.3), described in Table 1.

Table 1. Historical data of scenario parameter.

Year Electricity Demand
(105 MW·h)

GDP
(1012 Yuan)

Population
(108 People)

CO2 Emission Per
GDP (104 Tons
Standard Coal)

Energy Consumption
Per GDP (104 Tons

Standard Coal)

2000 13,472.4 9.98 12.67 0.97 1.49
2001 14,633.5 11.03 12.76 0.92 1.43
2002 16,331.5 12.10 12.85 0.91 1.42
2003 19,031.6 13.66 12.92 0.95 1.45
2004 21,971.4 16.07 13.00 0.94 1.44
2005 24,940.3 18.59 13.08 0.93 1.42
2006 28,588.0 21.77 13.14 0.86 1.32
2007 32,711.8 26.80 13.21 0.76 1.16
2008 34,541.4 31.68 13.28 0.65 1.01
2009 37,032.2 34.56 13.35 0.63 0.97
2010 41,934.5 40.89 13.41 0.56 0.89
2011 47,000.9 48.41 13.47 0.52 0.81
2012 49,762.6 53.41 13.54 0.48 0.75
2013 54,203.4 58.80 13.61 0.45 0.71
2014 56,263.1 63.61 13.68 0.42 0.67

2.3.1. Economic Development Level and Population

(1) GDP. Here GDP is chosen to represent economic development level. According to deepening
target released in the 18th national congress of the communist party of China [37], GDP will double by
2020 with an annual growth rate at 7% roughly. Table 2 and Figure 2 illustrated GDP growth by 2020.

Table 2. Scenario parameter setting.

Year GDP
(1012 Yuan)

Population
(108 People)

CO2 Emission Per GDP
(104 Tons Standard Coal)

Energy Consumption Per GDP
(104 Tons Standard Coal)

2015 68.06 13.75 0.40 0.65
2016 72.83 13.82 0.39 0.63
2017 77.92 13.88 0.37 0.61
2018 83.38 13.95 0.36 0.59
2019 89.22 14.02 0.34 0.57
2020 95.46 14.09 0.33 0.55

Data source: NBS (National Bureau of Standards) and National Development and Reform Commission Energy
Research Institute.

1 

 

 

Figure 2. Scenario parameter setting.
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(2) Population growth. Based on constraint conditions, population forecasting variables mainly
adopted direct influential parameters, like birth rate, death rate and mobility ratio. Empirical model
can be interpreted as:

Nt = Nt0 ek(t−t0) (1)

where Nt means gross population at t; is the population base at t = t0; k denotes natural population
growth rate; e is the base of natural logarithms (e = 2.718). In line with the stable natural population
growth rate over 2009–2014, we assume k = 4.92‰. Besides, population base is set as gross population
in 2014, namely =13.68.

2.3.2. Electricity Price

Due to inexhaustive electric power system reformation and an immature electricity market,
electricity price is determined by governmental macroeconomic regulation rather than an open market.
Thus electricity price is failed to be predicted and ignored.

2.3.3. Energy Policy

Policy on energy conservation and emission reduction have energetically affected China’s
electricity demand variation and provided a more explicit target. Here CO2 emissions per GDP
and energy consumption per GDP are picked as explained variables:

Energy consumption per GDP = Gross primary energy consumption÷GDP

CO2 emissions of primary energy at i =Primary energy consumption at i

×CO2 emissions factor

where primary energy includes coal, oil, natural gas and nuclear power, hydropower, wind power and
so on; According to the National Development and Reform Commission Energy Research Institute
in 2003, CO2 emission factors of coal, oil, natural gas, nuclear power, hydropower and wind power
are separately 0.7476, 0.582 5, 0.443 5, 0, 0 and 0 [38]. From the requirements of the 13th Five Year
Plan [39], up to 2020, CO2 emissions per GDP and energy consumption per GDP are reduced by 18%
and 15% respectively. This study chooses the average value of 2015, namely CO2 emissions per GDP at
3.6% and energy consumption per GDP at 3%, and then calculates their values in 2020, as Table 2 and
Figure 2.

3. Combination Forecasting Model of Electricity Demand Using GRD-IOWHA Operator

3.1. Regression Analysis

3.1.1. Multiple Linear Regression

Multiple linear regression, aiming at investigating the linear relationship between dependent
variable and multiple independent variables, is written as below [40]:

Y = β0 + β1X1 + β2X2 + β3X3 + · · ·+ β jXj + · · ·+ βkXk + ε (2)

where k is the quantity of explanatory variable; βj (j = 1,2, . . . ,k) means regression coefficient; ε denotes
the random error after eliminating the effect of independent variables on Y. Stochastic equations can
be expressed as Equation (3). Besides, if X is column full rank, ordinary least squares estimate could
be adopted to Equation (3), boiled down to Equation (4):

Y = Xβ + ε (3)

β̂ =
(
X′X

)−1 X′Y (4)
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3.1.2. Ridge Regression

Serious multicollinearity may lead to the failure of regression models, thus providing invalid
results. Ridge regression has been exclusively used to eliminate multicollinearity by abandoning
unbiasedness of least square method [41]. For the linear regression model in Equation (3), regressed
parameter β can be transformed as [39]:

β̂(k) =
(
X′X + kI

)−1 X′Y (5)

where k > 0 is ridge parameter. Varies greatly from various k, thus deeming as estimator clan.
Estimator clan can be drawn by a portrait of along the k.

3.2. Extreme Learning Machine (ELM)

Different from a traditional feed forward neural network, ELM uses a non-iterative hidden layer,
random selection of input weight and node and successive computed-output weight. ELM is aimed at
achieving minimum training error. Excitation function G, having hidden layer N is interpreted as [28]:

fN =
N
∑

i=1
βiG

(
ai, bi, xj

)
= tj j = 1, 2, · · · , N (6)

where ai = [a1, a2, · · · , an]
T is the weight vector of hidden node i; βi = [β1, β2, · · · , βn]

T means the
weight vector of input node and output node; bi is polarization of node i; denotes hidden node quantity.
For simplicity, Equation (6) is transformed as:

Hβ = T (7)

H
(
a1, · · · , aN , b1, · · · , bN , x1, · · · , xN

)
=

 G (a1, b1, x1) · · · G
(
aN , bN , x1

)
...

. . .
...

G (a1, b1, xN) · · · G
(
aN , bN , xN

)


N·N

(8)

 β =
[

βT
1 , · · · , βT

N

]
N·m

T =
[
tT

1 , · · · , tT
N
]

N·m

(9)

where H means output matrix of hidden layer. Output weight can be obtained from least square
solution Equation (11) of Equation (10):

||Hβ− T|| = ||HH+T− T|| = min
β
||Hβ− T|| (10)

β = H+T (11)

where H+ is Moore-Penros generalized inverse matrix of .

3.3. IOWHA Operator

Supposing 〈u1, a1〉 , 〈u2, a2〉 , · · · , 〈un, an〉 as two-dimensional array, W = (w1, w2, · · · , wn)
T

means a weighted vector related to Hw, and
n
∑

i=1
wi = 1. By definition, Hw points to induced ordered

weighted harmonic averaging (IOWHA) operator [35] as Equation (12):

Hw (〈u1, a1〉 , 〈u2, a2〉 , · · · , 〈un, an〉) = 1

/
n

∑
i=1

wi
au − index (i)

(12)

where ui is the induced value of ai; u − index(i) denotes the subscript of ui. Weight coefficient wi has
nothing to do with position and size of ai, but position of its induced value.
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3.4. IOWHA Operator-Based Combination Forecasting Model

Among existence of m kinds of single forecasting models, we assume xit as the forecasting
value of i at t and suppose l1,l2, . . . ,lm as the weighted coefficient of single forecasting models in
combination forecasting:

ait =

{
1− |(xt − xit) /xt| , |(xt − xit) /xt| < 1

0, |(xt − xit) /xt| ≥ 1
, i = 1, 2, · · · , m, t = 1, 2, · · · , N (13)

where ait means the forecasting accuracy of model i at t; i = 1,2, . . . ,m; t = 1,2, . . . ,N.
Taken forecasting accuracy ait as induced value of xit, assumed 〈a1t, x1t〉 , 〈a2t, x2t〉 , · · · , 〈amt, xmt〉

as a two-dimensional array of m and arranged forecasting accuracy a1t,a2t, . . . ,amt, then Equation (14)
is summarized, termed as IOWHA operator-based combination forecasting value by a1t,a2t, . . . ,amt:

x̂t = H (〈a1t, x1t〉 , 〈a2t, x2t〉 , · · · , 〈amt, xmt〉) = 1

/
m

∑
i=1

li
xa−index(it)

, t = 1, 2, · · · , N (14)

In average combination forecasting, time series is processed by selecting reciprocal error for
convenience. S, reciprocal error sum squares of IOWHA operator-based combination forecasting,
is written in Equation (15). Abridged weighting coefficient vector of single forecasting methods as,
then we can transform Equation (15) into Equation (16) [5]:

S =
N
∑

t=1

(
1
xt
− 1

x̂t

)2

=
N
∑

t=1

(
m
∑

i=1
li
(

1
xt
− 1

xa−index(it)

))2
=

m
∑

i=1

m
∑

j=1
lilj

(
N
∑

t=1
ea−index(it)ea−index(jt)

)
(15)

where ea−index(it) =
1
xt
− 1

xa−index(it)
.

minS (L) =
m
∑

i=1

m
∑

j=1
lilj

(
N
∑

i=1
ea−index(it)ea−index(jt)

)

s.t.


m
∑

i=1
li = 1

li ≥ 0, i = 1, 2, · · · , m

(16)

3.5. GRD-IOWHA Operator-Based Combination Forecasting Model

IOWHA operator-based combination forecasting model, usually exploits reciprocal error sum of
squares to reflect forecasting accuracy. While, reciprocal error sum of squares is easily influenced by
outliers thus leading to error amplification. Regarding this, grey relation degree (GRD) is introduced
to maintain robust forecasting.

Both sides of Equation (14) are handled by reciprocal like Equation (17):

1
x̂
=

m

∑
i=1

li
xa−index(it)

, t = 1, 2, · · · , N (17)

Seen from Equation (17):

min
1≤i≤m

1
xit

= min
1≤i≤m

1
xa−index(it)

≤ 1
x̂
≤ max

1≤i≤m

1
xa−index(it)

= max
1≤i≤m

1
xit

, t = 1, 2, · · · , N (18)

et is assumed as the reciprocal error between combination forecasting value and actual value at t,
therefore Equation (19) appears. We can call Equation (20) GRD of reciprocal series between single
forecasting method forecasting values and real values of i. Likely, Equation (21) is named the GRD of
reciprocal series between IOWHA operator-based forecasting value and real values of i.
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et =
1
xt
− 1

x̂t
=

m

∑
i=1

li
1
xt
−

m

∑
i=1

li
1

xa−index(it)
=

m

∑
i=1

li

(
1
xt
− 1

xa−index(it)

)
=

m

∑
i=1

liea−index(it) (19)

γi =
1
N

N

∑
t=1

min
1≤i≤m

min
1≤t≤N

|eit|+ ρ max
1≤i≤m

max
1≤t≤N

|eit|

|eit|+ ρ max
1≤i≤m

max
1≤t≤N

|eit|
(20)

γ =
1
N

N

∑
t=1

min
1≤i≤m

min
1≤t≤N

|eit|+ ρ max
1≤i≤m

max
1≤t≤N

|eit|

|et|+ ρ max
1≤i≤m

max
1≤t≤N

|eit|
(21)

where eit = 1/xt − 1/xit means the reciprocal errors between forecasting values and real values of i
and ρ ∈ (0, 1) is the resolution coefficient, usually at 0.5.

Based on Equation (19), GRD of reciprocal series between combination forecasting values and
actual values, i.e., γ can be rewritten as below:

γ =
1
N

N

∑
t=1

min
1≤i≤m

min
1≤t≤N

|eit|+ ρ max
1≤i≤m

max
1≤t≤N

|eit|∣∣∣∣ m
∑

i=1
li
(

1
xt
− 1

xa−index(it)

)∣∣∣∣+ ρ max
1≤i≤m

max
1≤t≤N

|eit|
(22)

where γ is the function of weighting coefficient vector of single forecasting model, called γ(L).
A higher γ, the more effective combination forecasting model will be. Hence, IOWHA operator-based
combination forecasting model is summarized as:

maxγ (L) =
1
N

N
∑

t=1

min
1≤i≤m

min
1≤t≤N

|eit|+ ρ max
1≤i≤m

max
1≤t≤N

|eit|∣∣∣∣∣ m
∑

i=1
li

(
1
xt
− 1

xa−index(it)

)∣∣∣∣∣+ ρ max
1≤i≤m

max
1≤t≤N

|eit|

s.t.


m
∑

i=1
li = 1

li ≥ 0, i = 1, 2, · · · , m

(23)

Plugging into Equation (24) to perform GRD-IOWHA operator-based combination forecasting:

x̂t = H (〈a1t, x1t〉 , 〈a2t, x2t〉 , · · · , 〈amt, xmt〉) = 1/
m

∑
i=1

l∗i
xa−index(it)

, t = N + 1, N + 2, · · · , (24)

where during interval [N+1,N+2, . . . ,], the size of forecasting accuracy series a1t,a2t,. . . ,amt,
is determined by the distance to average fitting accuracy. In other words, the forecasting accuracy in
interval N + k is substituted by average fitting accuracy 1/k ·∑N

t=N−k+1 ait of step k.
Regression analysis is termed as RA, while grey relation degree and modified IOWHA operator is

short for GRD-IOWHA operator. Thus far, based on modified GRD-IOWHA operator, combination
forecasting modeling is constituted by multiple regression as well as ELM, and completely fulfilled.
Figure 3 depicts the operational process concretely, where the left demonstrates two single forecasting
modeling and the right explains combination forecasting modeling.
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Figure 3. GRD-IOWHA operator-based combination forecasting modeling process. 

4. Electricity Demand Forecasting in China 

This section took full advantage of the above-proposed combination forecasting model to predict 
China’s electricity demand under three types of low-carbon scenarios. Among that, for MR 
forecasting, we use data in 2000–2008 to simulate and data in 2009–2014 to test. The same occurs for 
ELM, where training sample is derived from data in 2000–2008, and test sample is from 2009–2014.  

4.1. Baseline Scenario Forecasting 

4.1.1. Forecasting of RA and ELM 

Let GDP be x1 and population be x2, linear regression model is boiled down to the following: 

86264862932155931427 21 .x.x.y −+=   

Deduced from calculation, modified fitting degree R2 = 0.997. Moreover, in the significance level 
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4. Electricity Demand Forecasting in China

This section took full advantage of the above-proposed combination forecasting model to predict
China’s electricity demand under three types of low-carbon scenarios. Among that, for MR forecasting,
we use data in 2000–2008 to simulate and data in 2009–2014 to test. The same occurs for ELM,
where training sample is derived from data in 2000–2008, and test sample is from 2009–2014.

4.1. Baseline Scenario Forecasting

4.1.1. Forecasting of RA and ELM

Let GDP be x1 and population be x2, linear regression model is boiled down to the following:

y = 427.31x1 + 21559.93x2 − 264862.86

Deduced from calculation, modified fitting degree R2 = 0.997. Moreover, in the significance
level of α = 0.05, statistics F = 2406.802 > F0.05(2,12) = 2.81 and each statistics T > t0.025(12) = 2.179,
respectively, which means that regressed model has passed significance testing and embodies a better
imitative effect. Tables 3 and 4 separately discussed test process using data from 2009–2014 and single
forecasting covering data from 2015–2020.

Referencing the achievements of Huang et al. [28], this paper adopted the Matlab software to
compile the ELM toolkit, together with the “Sigmoid function” to activate neurons in the hidden layer.
The number of neurons of the hidden layer is set at 9. As for ELM forecasting in Table 3, data covering
2000–2008 is plugged in for training and data in 2009–2014 to test the well-trained model; Then,
single forecasting of China’s electricity demand in 2015–2020 is carried out, as shown in Table 4.
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Table 3. Single test result in baseline scenario.

Year
Electricity Demand

(105 MW·h)

RA ELM

Value (105 MW·h)
Forecasting

Accuracy Value (105 MW·h)
Forecasting

Accuracy

2009 37,032.2 37,730.04 0.9812 36,680.39 0.9905
2010 41,934.5 41,728.51 0.9951 42,509.00 0.9863
2011 47,000.9 46,235.47 0.9837 47,442.71 0.9906
2012 49,762.6 49,881.22 0.9976 48,473.75 0.9741
2013 54,203.4 53,693.62 0.9906 53,276.52 0.9829
2014 56,263.1 57,258.17 0.9823 55,908.64 0.9937

Table 4. Single forecasting result in baseline scenario.

Year RA Forecasting (105 MW·h) ELM Forecasting (105 MW·h)

2015 60,670.01 58,713.27
2016 64,215.07 63,592.23
2017 67,687.05 66,181.66
2018 71,527.12 70,297.18
2019 75,530.34 74,664.38
2020 79,708.15 78,938.27

4.1.2. GRD-IOWHA Forecasting

Two single forecasting results are exploited to construct forecasting accuracy and relevant in
sample interval, t = 1,2, . . . ,6. The IOWHA operator-based forecasting value is displayed as below:

x̂1 = H(〈a11, x11〉 , 〈a21, x21〉) = 1/(l1/36680.39 + l2/37730.04)

x̂2 = H(〈a12, x12〉 , 〈a22, x22〉) = 1/(l1/41728.51 + l2/42509.00)

x̂3 = H(〈a13, x13〉 , 〈a23, x23〉) = 1/(l1/47442.71 + l2/46235.47)

x̂4 = H(〈a14, x14〉 , 〈a24, x24〉) = 1/(l1/49881.22 + l2/48473.75)

x̂5 = H(〈a15, x15〉 , 〈a25, x25〉) = 1/(l1/53693.62 + l2/53276.52)

x̂6 = H(〈a16, x16〉 , 〈a26, x26〉) = 1/(l1/55908.64 + l2/57258.17)

where l1 and l2 show weighting coefficients of two single forecasting models in combination forecasting.
With its direct substitution into Equation (23), the most effective weight coefficient of combination

forecasting model is expressed as below with ρ = 0.5.

l∗1 = 0.7325, l∗2 = 0.2675

Taking the average accuracy of former 6 as each single forecasting accuracy, we can obtain the
combination forecasting results of China’s electricity demand in baseline scenario covering 2015–2020,
shown in Table 5.
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Table 5. Combination forecasting results in baseline scenario of 2015–2020.

Year GRD-IOWHA Forecasting (105 MW·h)

2015 60,133.92
2016 64,047.27
2017 67,277.69
2018 71,193.91
2019 75,296.73
2020 79,500.74

4.2. Low-Carbon Scenario Forecasting

4.2.1. Forecasting of RA and ELM

In order to eliminate the multicollinearity of selected variables, the low-carbon scenario and
intensified scenario necessarily employed ridge regression to achieve efficient fitting. Similarly, let GDP
be x1, population be x2 and CO2 emissions per GDP be x3. Besides, take the logarithm term to remove
variable heteroscedasticity. SPSS 20.0 software was used to conduct the ridge regression shown in
Figures 4 and 5.
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From the ridge trace, when K is nearly close to 0.2, all parameters tend to be stable; Even when
K exceeds 0.2, the determination coefficient presents a stable decline without drastic fluctuation.
Setting K = 0.2 and R2 = 0.9709, the ridge regression model is fitted as follows:

ln y = 0.28ln x1 + 7.86ln x2 − 0.27ln x3 − 10.98

In the significance level of α = 0.05, statistics F = 156.913 > F0.05(3,12) = 2.61 and each statistics
T > t0.05(12) = 2.179 all demonstrated that regressed model had passed through significance testing
with a well-fitting level, as shown in Tables 6 and 7. Results of ELM method forecasting are shown
there also.

Table 6. Single test result in low-carbon scenario.

Year
Electricity Demand

(105 MW·h)

RA ELM

Value
(105 MW·h)

Forecasting
Accuracy

Value
(105 MW·h)

Forecasting
Accuracy

2009 37,032.2 36,540.79 0.9867 37,683.97 0.9824
2010 41,934.5 40,878.39 0.9748 42,408.36 0.9887
2011 47,000.9 45,390.34 0.9657 47,461.51 0.9902
2012 49,762.6 49,709.48 0.9989 50,265.20 0.9899
2013 54,203.4 53,914.26 0.9947 55,531.38 0.9755
2014 56,263.1 58,759.43 0.9556 56,893.25 0.9888

Table 7. Single forecasting result in low-carbon scenario.

Year RA Forecasting (105 MW·h) ELM Forecasting (105 MW·h)

2015 62,954.49 59,313.86
2016 67,435.32 64,549.11
2017 71,839.90 68,457.73
2018 76,984.74 72,365.06
2019 82,518.03 79,509.00
2020 88,473.96 85,959.43

4.2.2. GRD-IOWHA Operator-Based Combination Forecasting

Iterative steps like above-mentioned, GRD-IOWHA operator-based combination forecasting is
summarized as below:

x̂1 = H(〈a11, x11〉 , 〈a21, x21〉) = 1/(l1/36540.79 + l2/37683.97)

x̂2 = H(〈a12, x12〉 , 〈a22, x22〉) = 1/(l1/42408.36 + l2/40878.39)

x̂3 = H(〈a13, x13〉 , 〈a23, x23〉) = 1/(l1/47461.51 + l2/45390.34)

x̂4 = H(〈a14, x14〉 , 〈a24, x24〉) = 1/(l1/49709.48 + l2/50265.20)

x̂5 = H(〈a15, x15〉 , 〈a25, x25〉) = 1/(l1/53914.26 + l2/55531.38)

x̂6 = H(〈a16, x16〉 , 〈a26, x26〉) = 1/(l1/56893.25 + l2/58759.43)

With utilization of the optimal tool in the Matlab software, the combination forecasting model
shows the most powerful coefficient, are shown as below. Future electricity demand in China is
predicted in Table 8.

l∗1 = 0.6981, l∗2 = 0.3019
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Table 8. Combination forecasting result in low-carbon scenario.

Year GRD-IOWHA Forecasting (105 MW·h)

2015 60,367.81
2016 65,394.08
2017 69,444.76
2018 73,700.24
2019 80,394.04
2020 86,703.37

4.3. Forecasting in Reinforced Low-Carbon Scenario

4.3.1. Forecasting of RA and ELM

Likewise, let GDP be x1, population be x2 and CO2 emissions per GDP be x3, energy consumption
per GDP be x4. Taking variables in logarithm terms, the ridge trace and K variation are displayed in
Figures 6 and 7.
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Based on ridge trace, when K is nearly close to 0.2, all parameters tend to be stable; Even when
K exceeds 0.2, the determined coefficient presents a stable declination without drastic fluctuation.
Setting K = 0.2 and R2 = 0.9623, the ridge regression model is fitted as follows:



Energies 2016, 9, 941 15 of 22

ln y = 0.25ln x1 + 7.29ln x2 − 0.18ln x3 − 0.22ln x4 − 9.36

In the significance level of α = 0.05, statistics F = 90.430 > F0.05(3,12) = 2.61 and each statistics
T > t0.05(12) = 2.179 all demonstrated that the regressed model had passed through significance testing
with a well-fitting level, as shown in Tables 9 and 10. Also, like the previous scenario’s parameter
setting, test results and forecasting results of ELM method are shown here.

Table 9. Single test result in reinforced low-carbon scenario.

Year
Electricity Demand

(105 MW·h)

RA ELM

Value
(105 MW·h)

Forecasting
Accuracy

Value
(105 MW·h)

Forecasting
Accuracy

2009 37,032.2 36,565.66 0.9874 36,295.26 0.9801
2010 41,934.5 41,044.15 0.9788 42,639.00 0.9832
2011 47,000.9 45,822.55 0.9749 47,673.01 0.9857
2012 49,762.6 50,249.02 0.9902 50,270.18 0.9898
2013 54,203.4 54,581.74 0.9930 54,837.58 0.9883
2014 56,263.1 59,514.14 0.9422 57,697.81 0.9745

Table 10. Single forecasting result in reinforced low-carbon scenario.

Year RA forecasting (105 MW·h) ELM forecasting (105 MW·h)

2015 63,665.11 64,261.28
2016 68,092.73 68,235.02
2017 72,466.81 73,265.20
2018 77,553.93 77,386.74
2019 83,027.15 82,835.97
2020 88,921.55 88,110.93

4.3.2. GRD-IOWHA Operator-Based Combination Forecasting

Similar forecasting process to above-mentioned section, IOWHA operator-based combination
forecasting results display as below:

x̂1 = H(〈a11, x11〉 , 〈a21, x21〉) = 1/(l1/36565.66 + l2/36295.26)

x̂2 = H(〈a12, x12〉 , 〈a22, x22〉) = 1/(l1/42639.00 + l2/41044.15)

x̂3 = H(〈a13, x13〉 , 〈a23, x23〉) = 1/(l1/47673.01 + l2/45822.55)

x̂4 = H(〈a14, x14〉 , 〈a24, x24〉) = 1/(l1/50249.02 + l2/50270.18)

x̂5 = H(〈a15, x15〉 , 〈a25, x25〉) = 1/(l1/54581.74 + l2/54837.58)

x̂6 = H(〈a16, x16〉 , 〈a26, x26〉) = 1/(l1/57697.81 + l2/59514.14)

With utilization of optimal took it in Matlab software, combination forecasting model shows the
most powerful coefficient, shown as below. Future electricity demand in China is predicted in Table 11.

l∗1 = 0.6459, l∗2 = 0.3541
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Table 11. Combination forecasting result in low-carbon scenario.

Year GRD-IOWHA Forecasting (105 MW·h)

2015 64,048.9
2016 68,184.57
2017 72,980.49
2018 77,445.86
2019 82,903.57
2020 88,396.27

5. Results and Discussions

Deduced from China’s electricity demand forecasting results under various scenarios,
further discussion is concluded from four perspectives.

(1) GRD-IOWHA operator-based combination forecasting model outperformed each single
forecasting model notably. Figure 8 demonstrates the forecasting accuracy comparison of single
forecasting models covering testing data in 2009–2014, where Scenario 1 means baseline scenario,
Scenario 2 represents the low-carbon scenario and Scenario 3 in the intensified low-carbon scenario.
Single forecasting models provide various forecasting accuracy at various moments. More specifically,
in the baseline scenario, the ELM model shows a superior forecasting accuracy of electricity demand
than the RA model in 2009, 2011 and 2014; while the RA model is much better in 2010, 2012 and 2013.
In the low-carbon scenario, the RA model provides better forecasting accuracy than the ELM model,
namely 2009, 2012 and 2013; while the ELM model predicts electricity demand overwhelmingly in
other years (2010, 2011 and 2014). In the intensified low-carbon scenario, the RA model provides higher
forecasting accuracy in 2009, 2012 and 2013 and lower forecasting accuracy in 2010, 2011 and 2014.
Generally, the proposed GRD-IOWHA operator-based combination forecasting model concentrates
the advantages of various single forecasting models, namely higher weight coefficient in higher single
forecasting accuracy and vice versa. According to Equations (20) and (21), Table 12 represents grey
relation degree comparison, from 2009 to 2014, in various scenarios between single forecasting model
and GRD-IOWHA operator-based combination forecasting model. Findings show that grey relation
degree of three scenarios in GRD-IOWHA operator-based combination forecasting model is better than
that of single forecasting models. Thus, the proposed combination model belongs to the dominated
forecasting combination model [36].
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Table 12. Grey relation degree comparison in various scenarios.

Scene 1

Model RA ELM GRD-IOWHA

Grey correlation value 0.6661 0.5945 0.9693

Scene 2

Model RA ELM GRD-IOWHA

Grey correlation value 0.5804 0.6078 0.8532

Scene 3

Model RA ELM GRD-IOWHA

Grey correlation value 0.7113 0.7503 0.9077

(2) The proposed GRD-IOWHA operator-based combination forecasting model predicts accurately
and more truly than the basic IOWHA operator-based combination forecasting model [35] and the
traditional combination forecasting (TCF) model [33], namely each single forecasting model with
unchanged weight coefficient. In order to compare typical combination forecasting models effectively,
this section compares the measured IOWHA operator-based combination forecasting model and
traditional combination models shown in Table 13.

Table 13. Comparison of model forecasting result.

Year
Scene 1 Scene 2 Scene 3

IOWHA TCF IOWHA TCF IOWHA TCF

2009 37,197.81 37,268.19 37,103.58 37,386.74 36,429.97 36,297.96
2010 42,115.14 42,071.93 41,629.32 42,010.57 41,826.38 42,623.05
2011 46,831.31 46,766.66 46,402.83 46,923.01 46,729.47 47,654.51
2012 49,167.41 49,261.93 49,985.8 50,120.71 50,259.6 50,269.97
2013 53,484.26 53,510.1 54,710.87 55,110.93 54,709.36 54,835.02
2014 56,575.36 56,664.38 57,811.28 57,378.46 58,591.9 57,715.97

Unit: 105 MW·h.

According to the evaluating principle of forecasting effect, the following dimensions are
selected as the evaluation index system, including RE, SSE, MSE, MAE, MAPE, MSPE. Concretely,
only RE is used to reflect single forecasting model effect. Figure 9 illustrates electricity demand
forecasting in 2009–2014 using GRD-IOWHA operator-based combination forecasting model,
IOWHA operator-based combination forecasting model and traditional combination forecasting
model separately:

Relative error : RE = (x̂t − xt) /xt

Error of sum square : SSE =
N

∑
t=1

(xt − x̂t)
2

Mean square error : MSE =
1
N

√√√√ N

∑
t=1

(xt − x̂t)
2

Mean absolute error : MAE =
1
N

N

∑
t=1
|xt − x̂t|

Mean Absolute Percentage Error : MAPE =
1
N

N

∑
t=1
|(xt − x̂t) /xt|

where xt denotes the actual demand value, presents the predicted value.
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Compared with the other forecasting models, the proposed GRD-IOWHA operator-based
combination forecasting model is rather close to actual values. From Figure 10, under the distinguished
scenario, the relative error value of the proposed GRD-IOWHA operator-based combination forecasting
model is in much lower interval and fluctuates slightly, followed by IOWHA operator-based
combination forecasting model or traditional combination forecasting model, worst in two single
forecasting model. In a word, proposed GRD-IOWHA operator-based combination forecasting model
perform more superiority in decreasing forecasting error fluctuation and risk of tech-economic decision
making. Furthermore, Figure 11 demonstrates the overall forecasting evaluation result of various
forecasting model, especially being satisfactory and optimal condition in index SSE, MSE, MAE and
MAPE. Yet exceptional situations still exist, like lower SSE and MSE in a traditional forecasting
model than the GRD-IOWHA operator-based combination forecasting model under intensified
low-carbon scenario due to larger forecasting error caused by single forecasting models. In spite
of this, the proposed combination forecasting model outperformed both in effectiveness and feasibility
as a whole.
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Figure 9. Electricity demand forecasting of various model in 2009–2014.
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Figure 10. Relative error forecasting of various model in 2009–2014.
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Figure 11. Evaluation index of various forecasting model.

(3) Low-carbon economy advancement contributes to augment electricity demand in China.
Known from Figure 12, electricity demand under energy restriction, i.e., low-carbon scenario and
intensified low-carbon scenario, is greater than that under unrestricted energy use. Hence, China will
strive to cut down the utilization of high-emission releasing resources, like coal, oil, natural gas and
so on as well as explore the substituent effect of electricity. Under energy restriction circumstances,
electricity demand in an unchanged energy efficiency scenario is higher than that of continually
improved energy efficiency, thus emission-cutting emphasis lies in energy structure optimization
and electricity demand increasing. However, if China initially promises a lower energy efficiency
(energy consumption per GDP), like 15% declining by 2020 rather in 2015, pressure on China’s
electricity demand will be cut down tremendously.

1 

 

 

Figure 12. Electricity demand forecasting trend of various model in 2015–2020.

(4) A low-carbon economy causes a structural variation of electricity demand. Increasing
electricity demand is mainly involved in renewable clean energy, like water power, nuclear power
and wind power. With respect to a low-carbon scenario, i.e., unchanged energy efficiency, incremental
72.0263 million MW·h electricity demand is also chiefly centralized in renewable clean energy electricity
demand compared with the baseline scenario. Despite the continuous effort on electricity structure
adjustment and decreasing the ratio of coal power, the coal power ratio will not fall sharply for a
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time behind the reason of over-dependence on electricity and abundant coal resources. Illustrated
in baseline scenario of Figure 13, power generation is presumed to be 70% coal power ratio and 30%
in water power, nuclear power and wind power, which accounts for 238.5022 million MW·h in 2020.
Due to the constrained energy policy, under the unchanged energy efficiency situation, electricity
demand from clean energy approaches nearly 2601.1011 million MW·h by 2020, which accounts
for 32.72% of total electricity demand, while the coal power ratio decreased to 67.28%. Therefore,
the low-carbon economy has affected both electricity demand and its structure variation.
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6. Conclusions

In this study, a new framework of combination forecasting electricity demand model is
characterized as follows: (1) Integration of a grey relation degree with an induced ordered weighted
harmonic averaging operator to propose a new weight determination method of combination
forecasting model on basis of forecasting accuracy as induced variables; (2) utilization of the proposed
weight determination method to construct the optimal combination forecasting model based on an
extreme learning machine forecasting model and multiple regression model; (3) three scenarios in line
with realization level of various low-carbon economy targets and dynamic simulation of the effects of
a low-carbon economy on future electricity demand.

Resultant findings are obtained and clarified in detail: (1) the grey relation degree of reciprocal
series between proposed combination forecasting value and actual values is better than the single
forecasting models studied in this paper and corresponds to an optimal combination forecasting model;
(2) the proposed combination forecasting model outperformed and concentrated the advantages of
some monomial forecasting models, especially in boosting the overall instability dramatically and
providing reliable decision basis; (3) the energetic progress of a low-carbon economy causes an increase
in electricity demand and the relevant structure adjustment of electricity demand, especially in the
increasing demand of clean energy. Above all, this study is aimed at providing a reference for future
power planning issues in China.
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