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Abstract: Range anxiety and battery cycle life are two major factors which restrict the development
of electric vehicles. Battery degradation can be reduced by adding supercapacitors to create a Hybrid
Energy Storage System. This paper proposes a systematic approach to configure the hybrid energy
storage system and quantifies the battery degradation for electric vehicles when using supercapacitors.
A continuous power-energy function is proposed to establish supercapacitor size based on national
household travel survey statistics. By analyzing continuous driving action in standard driving
cycles and special driving phases (start up and acceleration), the supercapacitor size is calculated to
provide a compromise between the capacitor size and battery degradation. Estimating the battery
degradation after 10 years, the battery capacity loss value decreases 17.55% and 21.6%, respectively,
under the urban dynamometer driving schedule and the US06. Furthermore, the battery lifespan
of the continuous power-energy configured system is prolonged 28.62% and 31.39%, respectively,
compared with the battery alone system.

Keywords: battery; super-capacitor; electric vehicle; hybrid energy storage system; continuous
power-energy

1. Introduction

Electric vehicles (EVs) offer an effective transportation solution to reduce fuel consumption and
greenhouse gas emissions [1–3]. Chemical batteries are the primary energy storage method used, with
various lithium-ion chemistries dominating the market due to their energy density, safety, and cost [4].
However, the issues of battery capacity degradation and vehicle range anxiety restrict the promotion
and widespread market penetration of electric vehicles [5]. These two topics are linked because the
battery capacity degradation reduces the vehicle range over its lifetime.

For lithium-ion batteries, the degradation rate increases at high current rates [6] and at temperature
extremes. Extreme temperatures also restrict battery power and it is preferable to operate the batteries
within a controlled temperature range, for example 0–40 ◦C [7]. Thermal control systems are included
in vehicles to manage battery temperatures in extreme ambient or driving conditions. In order to meet
the vehicle power requirements, the battery pack design may be dominated by power requirements
rather than energy storage. This can lead to different cell or chemistry selection, or adding more
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cells, which can worsen the battery balancing problem [8]. Vehicle driving patterns require frequent
charging and discharging during acceleration and braking [9], often under extreme temperatures.
These high-power operations seriously reduce the battery lifespan [10].

To mitigate these issues, a supercapacitor (SC) can be combined with the battery to create a hybrid
energy storage system (HESS) [11]. These two kinds of power sources have their individual advantages:
the SC has longer lifespan, higher power density and wider working temperature range [12–14] to deal
with high power transients [15]. The battery can store energy on a large scale and supply sufficient
energy for the trip. According to previous reports, the first feature of the HESS is the protection of
the battery during high power situations [11]. Secondly, making good use of the high discharging
efficiency of SC could decrease the total energy loss in a HESS [13]. Thirdly, because of the physical
characteristics, the SC is more suitable for working in an extreme ambient environment. Equally, the SC
is helpful to alleviate the battery degradation rate effectively under aggressive driving situations [15].
Fourthly, since the SC can store the regenerative braking energy, the lithium battery is able to avoid
frequent charging [14,16]. Taking advantage of the high discharging efficiency of SCs can also decrease
the total energy loss in HESS.

This paper addresses the sizing of the SC to mitigate battery degradation while minimizing
cost and size of the additional components. The control strategy and battery degradation models
are critical components of this problem. Previous work has quantified the battery capacity loss
according to SC size. Odeim et al. researched the power management between SC and battery by
using a genetic algorithm and Pareto front analysis in a framework of multi-objective optimization [17].
Blanes et al. proposed a FPGA controlled interleaved bidirectional converter which is smaller than
the common DC/DC converter to prolong battery life combined with SC [18]. Song et al. replaced
the bi-directional DC/DC converter with un-directional DC/DC converter and added a diode into
the topology to minimize the system cost. The paper also quantifies the battery capacity loss by
using different SC sizes [12]. As to the battery decay estimation, recent studies have shown many
kinds of battery degradation prediction models [6,19–22]. The demanded power, which consist of the
combination of driver behaviors, auxiliary power needs, vehicle specifications, ambient temperature,
is regarded as the main factor that influences the battery degradation rate. For batteries, the current
value and cumulative charge are the direct elements that influence the degradation process. Carter et al.
illustrated improved lead-acid battery life by using SC [23]. Wang et al. addressed empirical formulas
which contain calendar and cycle degradation by summarizing large scale experiment data [6,22].
Besides individual research on battery degradation, some other literatures analyze battery capacity
loss by using SCs [13,24,25]. Omar et al. used electrical-double layer capacitors to enhance battery
energy efficiency and voltage performance, rather than increase the vehicle range [24]. A lithium-ion
battery increases the lifespan about 30% to 40% in the proposed topology. Chen et al. quantified
the LiFePO4 battery cycle life when the vehicle is running under different discharging current rates
with a battery/SC semi-active structure [25]. Shen et al. considered cycle life degradation on the
urban dynamometer driving cycle (UDDS) and used the dividing rectangles (DIRECT) algorithm to
evaluate the configuration between battery and SC [13]. However, as to the lithium-ion battery and SC
configuration, there is no authoritative theory on size matching between these two power sources [26].
The main contribution of this paper is a simple metric and method to evaluate the power and energy
requirements of various drive cycles, and from that derive an appropriate capacitor size. This metric
is termed the continuous power-energy (CPE) function. Rather than run a complete multi-objective
optimization with simultaneous optimization of hardware and controller, this method allows a rapid
estimate for an appropriate capacitor size. We justify the use of this method by considering all possible
capacitor sizes, calculating their best-case performance using a controller with a priori knowledge,
and demonstrating that the CPE method estimates a capacitor size similar to that determined by a full
optimization. The purpose of this article is to develop a systematic approach to configure the HESS
size and evaluate LiFePO4 battery lifespan improvement under different load profiles. Compared with
the previous studies, the features of the paper may be listed as the following:
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(a) Previous studies only considered the integral of total demanded power, neglecting the power
contribution of the battery operating with constant power output. This paper calculates the
integral of power difference between the power and power threshold. The proposed CPE
function is an integral function to compare the cumulative demanded power for electric vehicles.

(b) During HESS configuration, previous studies just considered the total driving cycle rather than
individual driving phases. This article combines the driving cycles and individual driving
phases together.

(c) The previous papers fail to compare the battery life improvement with the ideal potential
on mitigating battery degradation. This paper evaluates the battery degradation mitigation
compared to the best-case controller using a priori knowledge.

(d) The previous references failed to quantify battery degradation during different driving cycles.
This paper quantifies the battery degradation in different driving cycles, especially for the mild
and aggressive cycles.

2. Calculating Power and Energy Requirement

The overall component diagram of the electric vehicle is shown in Figure 1. For the battery only
diagram, the power source is a battery. As to the HESS diagram, the vehicular power source comprises
a SC, battery and DC/DC converter. There are many kinds of HESS topologies, such as the battery/SC
and SC/battery diagram, semi-active, fully active and multiply input converter topology [12,27].
Except for DC/DC cost, the effects of battery protection in battery/SC and SC/battery topologies
among the above topologies are similar. Since the purpose of the article is to verify the novel HESS
configuration method, this paper does not consider the DC/DC cost. As to the adopted topology,
considering that: (1) the SC has higher efficiency to retrieve regenerative braking energy; (2) batteries
should avoid frequent charging actions; (3) battery life is more sensitive to the driving cycle than
the SC, the harmonic effect to the battery should be decreased as much as possible, therefore, the
battery/SC structure is chosen as the HESS topology in this paper.
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Figure 1. Electric vehicle (EV) power system diagrams: (a) EV component diagram
(b) Battery/supercapacitor (SC) topology (c) SC/Battery topology.

2.1. Energy Calculation

Table 1 lists the statistical data of the daily mileage according to the national household travel
survey (NHTS) database. Most (80%) of the vehicles drive less than 51 miles (82 km) per day. Sixty
miles (96.6 km) range can satisfy 85% of the total drivers. Figure 2 gives the daily driving range
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distribution and cumulative mile range, respectively. For most drivers, the daily range is focused on
short distances [28]. In general, electric vehicles are appropriate for the majority of drivers.

Table 1. Driving distance distribution.

Distance Range (Miles) 0–30 0–34 0–39 0–44 0–51 0–60 0–73 0–101

Percentage 60% 65% 70% 75% 80% 85% 90% 95%Energies 2016, 9, 903 4 of 22 
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The average driving distance for all statistical vehicles is 35 miles per day. According to the
prior research [29–35], the battery must be replaced for vehicle applications once the battery capacity
is reduced to70%-80% of the original rated capacity (20%–30% degradation). In reality, since many
drivers just drive vehicles within limited miles, the definition of battery lifespan is not appropriate for
all vehicles [36]. However, for the purpose of evaluating the battery degradation, this paper adopts
the definition that the battery is retired once the capacity decreases 30% compared with the original
capacity. Referring to the NHTS statistical information, the energy source should be configured to
satisfy 85% of the vehicles. These two factors mean that the vehicle range at the end of life is at least
60 miles (96.6 km). Since energy capacity fading is a more limiting factor governing retirement than
power fading, this paper considers the energy degradation as the battery degradation index [36].

According to the previous literature [37–40], there are many factors that influence the battery
degradation, including the auxiliaries, tire types, powertrain efficiency, ambient temperatures, velocity
and terrain. The tire type and powertrain efficiency are determined by the vehicle properties.
The auxiliaries, velocity, terrain and temperature can contribute to the demanded power, which
is the connection bridge between the battery degradation and vehicle properties. During driving,
the demanded power is determined by the driver behavior. By converting the vehicle properties
to demanded power, most of the above factors can be simplified on a certain vehicle and driving
cycle. This paper simplifies these factors and uses the driving behaviors to analyze the battery
degradation. Under the same ambient environment, aggressive driving usually leads to larger battery
degradation than mild driving for the same driving distance. According to the energy consumption
of a Nissan Leaf measured by Argonne National Laboratory (ANL, Lemont, IL, USA) at room
temperature [41], the average energy consumption rate is 173 Wh/mile (107 Wh/km, UDDS) and
276 Wh/mile (171.4 Wh/km, US06).

In this study, a vehicle energy consumption model is created. Except for power sources, this paper
adopts the same components as a Nissan Leaf in the vehicle model [42,43]. In order to cover 85% of
the statistical daily distance requirement (60 miles) at the end of life (70% capacity remaining), the
usable energy should be no less than 10.38 kWh in UDDS. The original energy configuration should
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be higher than 14.83 kWh. If the driving cycle is US06, the usable energy of HESS should be more
than 16.56 kWh, while the configured energy should be at least 23.66 kWh. Owing to different driving
behaviors, HESS is configured by using the higher energy consumption driving behavior (US06),
so 23.66 kWh is selected as the total energy requirement for HESS.

2.2. Power Calculation

For the same driving distance, different driving behaviors lead to different energy consumption
patterns. This paper considers two kinds of driving styles: mild (UDDS) and aggressive (US06) styles.
According to ANL measurement data, the vehicular power distribution is shown in Table 2. 1 CP is
defined as the power value at which battery could discharge all energy in 1 h. For an EV equipped
with a 24 kWh battery, 1 CP = 24 kW. Since the energy density of a SC is much smaller than that of a
battery, this paper assumes all energy is stored in a lithium-ion battery.

Table 2. Power distribution on different driving cycles.

Power UDDS 1 HWFET 2 US06

0–0.3 CP 0.86 0.72 0.52
>0.3 CP 0.14 0.28 0.48
>0.4 CP 0.09 0.14 0.43
>0.5 CP 0.05 0.07 0.37
>0.6 CP 0.03 0.04 0.31
>0.7 CP 0.02 0.01 0.25
>0.8 CP 0.01 0.01 0.20
>0.9 CP 0.01 0.00 0.17
>1 CP 0.00 0.00 0.14

1 UDDS represents the urban dynamometer driving schedule. 2 HWFET represent the highway fuel economy
test cycle.

As to driving cycle, the UDDS and HWFET are the common driving cycles which are adopted by
the U.S. Environmental Protection Agency (EPA) to estimate the fuel economy of vehicles. This paper
also adopts the UDDS and HWFET as basic cycles to calculate the demanded power. The UDDS
represents city driving or mild driving behavior, and its demanded power is smooth. US06 represents
an aggressive driving style. The high power usage accounts for a larger percentage in US06 than in
UDDS and HWFET. According to the control strategy, the battery supplies the basic demanded power
while the SC acts as assistant power when the demanded power is high. In a theoretical case, when the
SC size is infinite in the battery/SC structure, the battery can discharge on the constant average power.
Figure 3 shows the cumulative energy used on the cycle, calculated by integrating the road power.
This is the energy the battery would deliver if it was the only energy storage. This case is compared to
a vehicle with a large capacitor, which allows the battery to discharge at constant power yet deliver
the same total energy. The difference between the two is the energy deviation that must be stored in
the capacitor. In order to realize the ideal effect like an infinite SC case, the energy deviation stored in
the SC will be as high as 300 Wh on a single US06 cycle (Figure 3). Here, we assume the powertrain
efficiency of driving is 85%, and the recovery efficiency of the regenerative braking efficiency is 20%.
The “battery only” case is the cumulative energy used on the cycle, calculated by integrating the road
power. The hybrid battery-SC vehicle with a very large SC allows the battery to discharge at constant
power (dashed blue line) yet deliver the same total energy. The difference between the two is the net
energy that must be stored in the capacitor (red solid line). According to [44,45], the average cost of a
SC is 10,000–15,000 $/kWh. Large capacitors are cost prohibitive.
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3. Configuration of the Power Sources Using the Continuous Power-Energy (CPE) Function

In this study, the model type of battery is the VL45E LiFePO4. The SC is a BCAP 2000 SC from
Maxwell Technology [13].

3.1. Calculate the Maximum Power for HESS

The factors influencing the maximum current for a battery and SC are different. For the battery,
degradation is the main factor which limits the maximum discharging current. In order to protect the
battery, the allowed maximum discharging current for battery cell should be smaller than 3 C [46].
In this paper, the maximum charging/discharging current for battery is set as 3 C. For the purpose of
mitigating battery degradation, the battery current should be controlled as low as possible.

For the SC, the efficiency is the main reason which constrains the maximum power value. As to
discharging/charging parameter limitations, the calculation process is as follows:{

Discharging : ηSC = OCVSC−IRSC
OCVSC

Charging : ηSC = OCVSC
OCVSC+IRSC

(1)

where, ηSC refers to the SC efficiency; OCVSC represents the open-circuit voltage; I is the current; and
RSC is the internal resistance. This study sets the lowest limit for efficiency as 0.9 when calculating the
current limit of SC during charging/discharging process. This is shown in Equation (2):{

Discharging : IlimitD = OCVSC/10RSC

Charging : IlimitC = OCVSC/9RSC
(2)

where, IlimitD and IlimitC represent the current limits of SC when discharging/charging, respectively.
Using the terminal voltage and current limits for charging/discharging, the power limit of the SC
during charging/discharging could be calculated using Equation (3):{

Discharging : PSClimitD = 9
100 OCV2

SC/RSC

Charging : PSClimitC = 10
81 OCV2

SC/RSC
(3)

where, PSClimitD and PSClimitC represent the power limit of the SC during discharging/charging,
respectively. According to Equation (3), the maximum discharging current/power for each SC cell is
771 A/1875 W, the maximum charging current/power for each SC cell is 857 A/2571 W.
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Different from a chemical battery, a SC stores energy in physical characteristic. When an SC is
used as power source, theoretically 100% of the energy can be delivered [27]. However, considering
the security and protection of the SC, the discharging action should be terminated once the voltage is
below half the maximum voltage [47]:  ESC = 1

2 CV2

SOCSC =
1
2 CV2

1
2 CV2

max

(4)

When the voltage of SC is equal to 1
2 Vmax, SOC of SC is 0.25. The total usable energy for a SC cell

is [18,47]:

ESC_usable =
3
4
·ESC_rated =

3
4
·1
2

CV2
max = 1.52 wh (5)

Table 3 lists battery and SC cell parameters.

Table 3. Cell parameters for the lithium-ion battery and SC.

Parameter Battery SC

Cell Capacity 44 Ah 2000 F
Internal resistance (mΩ) 3.6 0.35

Voltage range (V) 2.5–3.6 1.35–2.7
Rated voltage (V) 3.3 N/A

Rated energy (Wh) 145 2.025
Max. discharging current (A) 132 771
Max. discharging power (w) 435 1875

Max. charging current (A) 132 857
Max. charging power (w) 435 2571

P/E during discharging (1/h) 3 1270
Weight (kg) 0.9 0.36

3.2. CPE Function

HESS performance refers to the ability to satisfy the power demand, which is determined by the
individual performance parameters, including energy capacity and charging/discharging limits of the
battery and SC packs. The great difference in power and energy performance between batteries and
SCs results in two problems during application: (i) difficulty in determining an appropriate method
to evaluate the performance characteristics of HESS; (ii) difficulty in establishing a clear relationship
between the performance of batteries and SCs. Consequently, it is difficult to determine HESS
component size. To address these issues, this paper proposes the concept of continuous power-energy
(CPE) function. The following four conditions are used to determine whether HESS could satisfy the
power requirement:

I. Prequired (demanded power) should be less than the sum of power limits PBATlimit (battery
power) and PSClimit (super-capacitor power), which is:

Prequired ≤ (PSClimit + PBATlimit) (6)

II. SCs should satisfy any power demand that exceeds the power limits of battery. However, PSC

(power required by SCs) cannot exceed ESC (energy capacity of SCs), which is:

∫ T

0
PSCdt ≤ ESC, PSC =

{
Prequired − PBATlimit, Prequired > PBATlimit

0, Prequired ≤ PBATlimit
(7)

III. The energy required for the entire process when charging/discharging should be smaller than
the sum of the energy capacity of EBAT and ESC, which is:
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∫ T

0
Prequireddt ≤ ESC + EBAT (8)

In order to simplify to the above equations, the concept of PE function is introduced. The function
is defined as Equation (9):

E = F (P) (9)

where, P refers to the demarcation power (kW). E is the energy consumption (kWh), which represents
the integral value of the power versus time when power demand is greater than P. The details are
shown in Equation (10):

E =
∫ T

0
f (t) dt, f (t) =

{
0, P (t) < P

P (t)− P, P (t) ≥ P
(10)

where, P(t) is the power-demand function in terms of time (unit: kW). This function is known as the
PE function. Equations (6)–(8) can be rewritten using this function as follows:

F (PSClimit + PBATlimit) = 0 (11)

F (PBATlimit) ≤ ESC (12)

F (0) ≤ ESC + EBAT (13)

IV. In previous studies, the SC is configured based on total driving cycles [13]. Considering the
special features of a SC in a HESS whereby the SC could discharge and charge quickly, a continuous
discharging part could be used to configure SC. This paper considers the situation that SC should
meet required energy in an independent continuous action. In a total trip, calculate F (PBATlimit) for
every continuous segment, and choose the maximum F (PBATlimit). Referring to Figure 4, supposing
PBATlimit is 4 kW, calculate every continuous segment which is higher than PBATlimit (shadow area),
finally, choose the maximum F (PBATlimit) as CF (PBATlimit). Therefore:

CF (PBATlimit) =
∫ t4

t3

(P − PBATlimit)dt (14)

F1 (PBATlimit) =
∫ t2

t1

(P − PBATlimit)dt (15)

F2 (PBATlimit) =
∫ t4

t3

(P − PBATlimit)dt (16)

CF (PBATlimit) = max [F1 (PBATlimit) , F2 (PBATlimit)] (17)
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3.3. SC Configuration for HESS

The CPE function is used to calculate the maximum continuous cumulative energy when the
demanded power is higher than a constant battery power value during driving. A SC has lower energy
and higher power density than a battery. As to the low demanded power area, the battery should
supply the energy, while in a high demanded power situation, the SC should assist the battery by
supplying the excess power. The problems are how to make sure the appropriate CPE function and the
demarcation power point. In order to use this CPE concept to size an effective SC, we must understand
how to select the demarcation power point and how it relates to the CPE maximum energy. Next
we consider the combination of driving cycles and special driving phases to find the largest energy
consumption in this research.

3.3.1. Driving Cycle Analysis

As to the driving cycles, the UDDS and HWFET are the common driving cycles which are adopted
by the U.S. EPA to estimate the fuel economy. In this study, CPE results are calculated on these two
driving cycles which represent common driving situations.

The CPE function results for UDDS and HWFET are shown in Figures 5 and 6. On the blue curve,
the horizontal axis represents the battery power limit, and the vertical axis is the lower limit of the
SC size. In these two cycles, most of power is focused in the low power area. The red line in Figure 7
represents the larger CPE value at every power point combining these two cycles.
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The northeast area above the red curve is the appropriate area for SC configuration to ensure
sufficient energy capacity.

3.3.2. Specific Driving Phase Analysis

In a HESS, the SC acts as an assisted power source which aids the battery instantaneously. Besides
driving cycles, specific driving phases should also be considered during CPE calculations. During
daily driving, a large power requirement occurs frequently in the starting and acceleration periods.

(i) Start-Up Phase

When the EV is driven in the city, the vehicle has to stop and start repeatedly. The model sample
used in this study should have the ability to start up after halting for 60 s and then speed up to 30 mph.
Figure 8 shows the velocity and demanded power curve during start-up. The corresponding CPE
function is shown in Figure 9. Both figures reflect the speed, demanded power and CPE itinerary.
On the blue curve, the horizontal axis represents the battery power limit, and the vertical axis is the
lower limit of the SC size.
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(i) Acceleration Phase

The vehicle requires the motor to supply high power during acceleration. The sample vehicle
model in this study is required to accelerate from 0 to 50 mph within 20 s. Just like the figures in the
start-up phase, the power demand and CPE function in acceleration mode (as shown in Figure 10) can
be used to determine the SC size in a HESS. The area above the blue curve is the configuration range
for the SC in Figure 11.
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3.3.3. Calculate the HESS Component Size

Combining the above two common driving cycles and two special driving phases, the final CPE
results are shown in Figure 13. The red dashed line represents the largest CPE function among the
four situations.

Energies 2016, 9, 903 12 of 22 

Combining the above two common driving cycles and two special driving phases, the final CPE 

results are shown in Figure 13. The red dashed line represents the largest CPE function among the 

four situations. 

 

Figure 13. CPE curves on driving cycles and special phases. 

Corresponding to Figure 13, the dark circles which represents the CPE function results are listed 

in Table 4. Different 𝑃BATlimit could lead to different 𝐶𝐹(𝑃BATlimit) values. As 𝑃BATlimit becomes larger, 

the CF(𝑃BATlimit) value decreases. 

Table 4. CPE values for different powers. 

Battery Power Threshold Minimum SC Energy (Wh) SC cells Number 

0.1 CP 167.7 111 

0.2 CP 114.5 76 

0.3 CP 86.5 57 

0.4 CP 75.0 50 

0.5 CP 64.2 43 

0.6 CP 54.4 36 

0.7 CP 45.9 31 

0.8 CP 38.2 26 

0.9 CP 31.5 21 

1.0 CP 24.8 17 

To ensure the 𝑃BATlimit  is appropriate, the power distribution in driving cycles should be 

analyzed. For the common driving cycles (UDDS and HWFET), the demanded power distribution is 

calculated in Table 5. 

Table 5. Power distribution in UDDS and HWFET. 

Power Range 0–0.1 CP 0.1–0.2 CP 0.2–0.3 CP 0.3–0.4 CP 0.4–0.5 CP 0.5–0.6 CP >0.6 CP 

Percentage (%) 45.6 15.6 10.7 7.1 4.8 3.8 12.5 

The power demarcation point should cover most of the daily driving power requirements. The 

UDDS and HWFET represent the most commonly used driving cycles, and the majority (61.2%) of 

the driving power is located in the range of 0–0.2 CP. This paper adopts 0.2 CP as the battery power 

demarcation point. The number of SC cells could be calculated as follows: 

𝐶𝐹(𝑃BATlimit)
𝐸SC_usable

=
𝐶𝐹(0.2CP)
𝐸SC_usable

=
114.5wh

1.52wh
= 75.3  (18) 

The number of SC cells is chosen as 76. According to Equation (3), the maximum discharging 

power for SC package is 142.5 kW, which is as high as 5.9 CP. This power threshold is large enough 

Figure 13. CPE curves on driving cycles and special phases.

Corresponding to Figure 13, the dark circles which represents the CPE function results are listed
in Table 4. Different PBATlimit could lead to different CF (PBATlimit) values. As PBATlimit becomes larger,
the CF (PBATlimit) value decreases.

Table 4. CPE values for different powers.

Battery Power Threshold Minimum SC Energy (Wh) SC cells Number

0.1 CP 167.7 111
0.2 CP 114.5 76
0.3 CP 86.5 57
0.4 CP 75.0 50
0.5 CP 64.2 43
0.6 CP 54.4 36
0.7 CP 45.9 31
0.8 CP 38.2 26
0.9 CP 31.5 21
1.0 CP 24.8 17

To ensure the PBATlimit is appropriate, the power distribution in driving cycles should be analyzed.
For the common driving cycles (UDDS and HWFET), the demanded power distribution is calculated
in Table 5.

Table 5. Power distribution in UDDS and HWFET.

Power Range 0–0.1 CP 0.1–0.2 CP 0.2–0.3 CP 0.3–0.4 CP 0.4–0.5 CP 0.5–0.6 CP >0.6 CP

Percentage (%) 45.6 15.6 10.7 7.1 4.8 3.8 12.5

The power demarcation point should cover most of the daily driving power requirements.
The UDDS and HWFET represent the most commonly used driving cycles, and the majority (61.2%) of
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the driving power is located in the range of 0–0.2 CP. This paper adopts 0.2 CP as the battery power
demarcation point. The number of SC cells could be calculated as follows:

CF (PBATlimit)

ESC_usable
=

CF (0.2CP)
ESC_usable

=
114.5wh
1.52wh

= 75.3 (18)

The number of SC cells is chosen as 76. According to Equation (3), the maximum discharging
power for SC package is 142.5 kW, which is as high as 5.9 CP. This power threshold is large enough to
cover most of the driving power needs in daily driving. Considering the regenerative energy efficiency
of the motor, the discharging power of the HESS is higher than the maximum charging power of the
vehicle from the regenerative braking. As the maximum allowable discharging power is lower than
the maximum allowable charging power for SC according to Equation (3), this paper just considers the
discharging situation for HESS.

As to battery configuration, the essential energy from battery should be:

EBattery = EHESS − ESC = 23660 − 76 × 1.525 = 23544.1 wh (19)

The number of battery cells should be:

EBattery

Energycell
=

23544.1
145

= 162.4 (20)

where, Energycell represents the rated energy of battery cell. EBattery refers to the needed rated capacity
of the battery package.

Considering the topology of battery cells, the number of battery cells should be configured as 164.
The HESS diagram is shown in Figure 14.
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As to the energy consumption calculation, it is not easy to create an accurate model since a large
numbers of factors influence the energy consumption, so it will be very useful if a reference or similar
true vehicle were measured. According to [25], for similar vehicles, there is an energy consumption
relationship between different vehicles. For model, the total energy consumption can be calculated
approximately as:

FEHESS =
MHESS + Mcommon

MBattery + Mcommon
× FELeaf (21)

where, FEHESS refers to fuel economy for HESS model, MHESS refers to the weight of HESS which
contains a DC/DC converter, battery package and SCs [25]. MBattery represents the battery package
weight on the Nissan Leaf. Mcommon represents the weight of common components between the model
and the Leaf. FELeaf refers to the fuel economy of the Leaf which is measured by ANL. Table 6 is the
component weight comparison between the model and Leaf.
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Table 6. Component configuration.

Components Leaf (kg) Model (kg)

Common mass 1463 1463
Battery 182 147
DC/DC N/A 10

SC N/A 27.36
Total mass 1645 1647

According to Equation (21), the fuel economy of the model and Leaf are very close. In theory,
the deviation between these two models is 0.12%, so this paper uses the Leaf demanded power
measured by ANL on different driving cycles to represent the model demanded power.

4. Control Strategy

The SC is used to compensate the demanded power once the power is higher than the battery
power threshold [17]. The diagram of the control strategy is shown in Figure 15. In the control strategy,
action B represents a case where the battery has to discharge at a high current rate while the SC does
not have enough energy to assist the battery. Action B is harmful to battery life and should be avoided.
In contrast, actions C and E could reduce the frequency of occurrence of action B. As to control strategy,
Pmin is the key factor which balances the charging and discharging of the capacitor. If the Pmin is too
large, the SC cannot minimize the battery degradation as much as possible; while if Pmin is too small,
the frequency of occurrence of action B would increase because of the limited SC capacity, which is
also not good for mitigating battery degradation. In this paper, the average power of UDDS is chosen
as the Pmin. Pmin should be close to the average power demand for the trip. If not, the energy flowing
between the battery and SC could lead to additional consumption which increases the battery loss.
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In order to assist the battery as much as possible, this study adopts sectional functions to charge
the SC in actions A, B and C, which is different from the previous research on SC control as listed in in
Equations (22) and (23), which is not able to deal with different driving cycles [23,48]:

SOCexp = 1 − 3·Speed
160

(22)
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Vexp =

√
1 − 3·Speed

160
·Vmax (23)

where, SOCexp is the expected SOC of SC, Speed refers to the vehicle velocity, Vexp is the expected SC
voltage, Vmax is the maximum SC voltage. In this study, Vmax is defined as 2.7 V per SC cell or 205.2 V
for a pack of 76 SCs. For the control strategy in this paper, the SOCexp is set 0.75. For the control
strategy, the details are as follows:

Actions A and B: the usable SOC range of SC is from 25% to 100%. Once the SOC is higher than
50%, the SC could supply all needed power (Preq − Pmin). When the SOC is lower than 50%, the SC
just supplies a certain percentage of the total needed power (Preq − Pmin).

Actions C and D: When the required power is less than Pmin, the battery will supply all required
power to the motor. Furthermore, the battery also charges the SC if the SC SOC is lower than 50%. As to
the charging current, it equals the min (sectional value, Current limitation-Current required). Current
limitation represents the maximum allowable discharging current of a battery. Current required
represents the demanded current for the motor. Sectional value represents the charging current from
the battery to the SC. If the SC SOC is less than 50%, the sectional value is 0.5 C; if the SC SOC
is in the range [0.50, 1], the sectional value is 0.2 C. With these two driving situations, the control
strategy will guarantee the SC has enough energy stored to assist the battery in the next peak power
requirement situation.

Action E: Battery could charge the SC when the SC SOC is lower than SOCexp. During range
[SOCexp, 1], the regenerative energy will charge the SC.

This control strategy could help the SC adapt different kinds of driving behaviors. Once the
vehicle demanded power is low, the battery will charge the SC to a certain SOC level. Though the
situation that two peak power demand cases may appear, the time interval between them should
be long enough to recharge the SC for the next big power demand. Besides, the probability of two
continuous peak power demand cases is also small. For the SC, the charging time is very short (just
1–10 s) [45]. The target of the proposed control method is to cover the majority of driving situations,
so the aforementioned situation of two continuous big peak power situations is not considered in this
paper because of the low probability of occurrence.

5. Battery Degradation Model

According to [22], battery degradation is divided into two parts: calendar life loss and cycle life
loss. Calendar life loss is a function which is related to the temperature and time, while the cycle
life loss is related to current rate, cumulative current and temperature. In the research, the following
equations are used to calculate the battery degradation [49]:

DCycleLoss =
(

a·T2 + b·T + c
)

exp [(d·T + e) ·Irate] ·AhThrough (24)

DCalendarLoss = f ·t0.5·exp [−Ea/ (R·T)] (25)

DLoss = DCycleLoss + DCalendarLoss (26)

where
(
a·T2 + b·T + c

)
and f are pre-exponential factors, T is the absolute temperature, a/b/c/d/e

are fitted from curve, Irate is the current C rate, AhThrough represents the amount of charge delivered
by the battery during cycling, T is the days, Ea is the activation energy in J·mol−1, and R is the gas
constant. These parameters values are listed in the Table 7.
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Table 7. Parameter value.

Parameter Value Parameter Value

a 8.61 × 10−6, 1/Ah-K2 Irate C-Rate
b −5.13 × 10−3, 1/Ah-K t Days
c 7.63 × 10−1, 1/Ah Ea 24.5, kJ·mol−1

d −6.7 × 10−3,
1/K-(C-rate)

R 8.314, J·mol−1·K−1

e 2.35, 1/(C-rate) T K
f 14,876, 1/day1/2 - -

The calendar degradation portion is almost the same for different structures or topologies. In this
paper, the battery package temperature is assumed as room temperature (293 K). The cycle degradation
part is the exact portion which is influenced by the SC.

According to Equation (24), the battery cycle loss rate is related to the discharging rate and total
integral of the current. In terms of energy, since the battery density is much higher than that of the SC,
the lithium-ion battery is the main energy source in HESS. However, in terms of power, the SC plays a
significant role in power supply, and the SC can reduce the battery current when the demanded power
is high.

The energy flow between battery and SC leads to energy consumption. However, except for
regenerative braking, all SC energy is transferred from the battery. This paper supposes the efficiency
of the DC/DC converter is 95% [50], and the coulombic efficiency of the SC is 92% [51]. Considering
the DC/DC converter and SC consumption, the cumulative discharging energy from the battery will
increase as the discharging current rate threshold of the battery decreases. For example, supposing the
battery capacity is 100 Ah, and the demanded current is 1 C (100 A):

(1) When the battery discharging threshold of the current rate is 1 C (100 A), the battery will
discharge 100 Ah (neglecting the battery consumption);

(2) When the battery discharging threshold of the current rate is 0.4 C (40 A, which is smaller than
the demanded current), in order to protect the battery, the SC will supply the other demanded
current portion (0.6 C). Compared to situation I and neglecting the energy from regenerative
braking, all energy discharged from the SC originates completely from the battery and will
experience DC/DC converter and SC consumption, so the total energy flow from battery is:
0.4 × 100 + (1 − 0.4)× 100/(ηDC/DC·ηSC), which exceeds 100 Ah.

Though the low current rate threshold is good for battery life, the cumulative current discharged
from the battery becomes larger, which is harmful for battery life according to Equation (24), so there
is a mathematical contradiction between the battery current limitation and the cumulative current
when discharging.

Considering the DC/DC converter and SC efficiency, Figure 16 shows the relative battery
degradation value for different discharging current rate thresholds and combines the contradictory
effects of lower battery currents implying more total energy use. Battery degradation rate increases
with the battery current increasing. In the meantime, it shows that the degradation slope becomes larger
as the discharging current increases. The conclusion could be reached that the battery discharging
current Irate has a heavier weight in battery degradation than AhThrough. To decrease the battery current
value could be an effective method to prolong the battery life. In the control strategy, the target of the
SC is to reduce the battery discharging current. The ideal case is that the battery could discharge at
constant average power.
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6. Simulation Results

The following Figures 17–21 compare the battery currents used for a vehicle with a battery only,
a HESS system with the capacitor configured based on the CPE, and an ideal HESS with infinite SC.
The battery only type refers to the structure that the power source of EV is a single battery package.
The CPE configured type represents the HESS structure which consists of a battery and SC sized based
on the CPE method. Finally, the infinite SC type represents the ideal case where the battery current can
be strictly controlled to the average current. The infinite SC type does not exist in reality, but provide a
useful benchmark. After simulation, battery results for different driving cycles are listed as follows:
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Figures 17 and 18 show that the compound power sources receive all regenerative braking
energy, and it can eliminate the peak current area effectively compared with the battery only structure.
Figures 19 and 20 are the battery current distribution histogram, where the high current percentage
becomes much lower while the low battery current area percentage becomes higher. These phenomena
indicate that the battery discharging current rate has decreased, which prolongs battery life.
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As to daily driving distance in the simulation, since the average driving distance is 35 miles
(56 km), this paper uses the same driving distance to simulate UDDS and US06. The cumulative
degradation for 10 years is shown in Table 8, which contains the battery degradation results on
different driving cycles with the above control strategy and configuration.

Table 8. Battery degradation percentage over vehicle lifetime.

Years 1 2 3 4 5 6 7 8 9 10

Calendar loss (%) 7.2 10.2 12.4 14.4 16.1 17.6 19.0 20.3 21.5 22.7
Battery only on UDDS (%) 9.2 14.3 18.6 22.6 26.4 30.0 33.4 36.8 40.1 43.3

CPE configured on UDDS (%) 8.5 12.7 16.3 19.5 22.5 25.4 28.1 30.7 33.2 35.7
Infinite SC on UDDS (%) 8.4 12.6 16.2 19.3 22.3 25.0 27.7 30.2 32.7 35.1
Battery only on US06 (%) 11.1 18.1 24.4 30.3 35.9 41.4 46.8 52.1 57.3 62.5

CPE configured on US06 (%) 9.8 15.4 20.3 24.9 29.2 33.3 37.4 41.3 45.2 49.0
Infinite SC on US06 (%) 9.5 14.8 19.5 23.7 27.8 31.7 35.4 39.1 42.7 46.2

For a mild driving style like UDDS, the influence of SC on mitigating battery degradation is
effective. After 10 years, a CPE configured structure could mitigate the battery degradation from 43.3%
to 35.7%. For the infinite SC case, the battery degradation could be mitigated from 43.3% to 35.1%.
The battery mitigation percent comparing the battery alone case is given by:

43.3% − 35.7%
43.3%

× 100% = 17.55% (27)

Converting to the mitigation percentage based on the battery alone case, the CPE configuration
realizes the result that it mitigates 17.55% of the battery degradation. Equally, comparing the battery
alone case, 17.55% of the primary battery degradation could be mitigated by using the CPE-configured
capacitor. Using the same method, 18.94% of the primary battery degradation is mitigated in an infinite
SC case.

In terms of the realization percentage, compared to the battery alone case, the CPE-configured
structure realizes 92.68% of the maximum battery mitigation:

(43.3% − 35.7%)

(43.3% − 35.1%)
× 100% = 92.68% (28)

For US06, which represents the aggressive driving behavior, the CPE-configured structure could
mitigate 21.6% of the battery degradation compared to the battery degradation in the battery only
structure after 10 years. For an infinite SC case, the largest mitigation of battery degradation is 26.08% in
this case. The CPE-configured battery/SC structure realizes 82.82% of the maximum battery mitigation.

Considering the concept of battery life that the battery should be replaced in the vehicle once the
remaining capacity reaches 70%, Figure 21 shows the simulation results of battery life span in different
structures and driving cycles. For UDDS, the CPE-configured case could prolong battery life 28.62%
compared with the battery only case:

7.73 years − 6.01 years
6.01 years

× 100% = 28.62% (29)

Similarly, for the infinite SC case, it can prolong battery life 31.45% which represents the maximum
potential for prolonging battery life. Based on the previous calculation, the CPE-configured structure
realizes 91.01% of the maximum potential on prolonging battery life:

7.73 years − 6.01 years
7.9 years − 6.01 years

× 100% = 91.01% (30)



Energies 2016, 9, 903 20 of 23

For US06, the CPE-configured case can prolong battery life 31.39%, while the infinite SC case
could prolong battery life 40.76%. The CPE-configured structure realizes 77.02% of the maximum
potential on prolonging battery life. After 30% capacity fade, the remaining capacity of the battery is
16.56 kWh, which could still drive the vehicle for up to 60 miles under the US06 regime. According to
the results, the current CPE configuration method could be effective in mitigating battery degradation
for both mild and aggressive driving behaviors.

Since the SC size is configured by the CPE function based on the UDDS and HWFET, it can meet
the power demand well in these mild driving cycles. However, in the other kinds of driving cycles,
especially the aggressive driving cycles, we would like to confirm that CPE provides an effective
method to size the SC. In order to explore the relationship between battery degradation mitigation
and SC size, we consider a different cycle, US06, with many possible SC sizes. For each possible
size, an optimization algorithm with a priori future knowledge of the cycle selects the power flow to
minimize the battery degradation. This limit represents the best possible performance of any controller
on that cycle, with that particular SC size. This gives us a baseline that is independent of controller
design, and provides a quantitative relative benefit of increasing SC size. Designers can use this curve
to understand tradeoffs between SC size and performance. The results are shown in Figure 22.Energies 2016, 9, 903 20 of 22 
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Using the 76-cell SC size configured by the CPE function can decrease the battery degradation
from 0.002% to 0.0015%, realizing 68.8% of the potential reduction in cycle degradation. This is a
reasonable design point to select, as larger SC size starts to provide diminishing returns. It could be
realized that the battery capacity loss can be reduced rapidly when the SC cells increases in the range
of 0–76. After that, the degradation curve becomes smooth. The CPE function could get the SC size
demarcation point in the HESS configuration.

7. Conclusions

This paper introduced a systematic configuration method for the battery and supercapacitor
in electric vehicles. According to the National Household Travel Survey data and the Argonne lab
dynamometer data, the total HESS energy size can be configured to meet the cumulative energy
demand. A continuous power-energy function is proposed to calculate the total cumulative energy
which is used to assist the battery during continuous driving action. Combining common driving cycles
(UDDS and HWFET) and special phases (start-up and acceleration), the continuous power-energy result
is used to size the supercapacitor in the HESS. After the hybrid energy storage system configuration,
the discharging process of the system is simulated and battery degradation is quantified for different
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driving behaviors (mild and aggressive). In terms of the battery degradation comparison after 10 years,
the continuous power-energy configured battery/supercapacitor topology realizes 92.68% and 82.82%
of the largest mitigation in UDDS and US06, respectively. In terms of prolonging the battery life, the
continuous power-energy configured battery/supercapacitor topology realizes 91.01% and 77.02% of
the largest possible mitigation under UDDS and US06 conditions, respectively. The simulation results
verify the developed continuous power-energy configured approach serves as an effective procedure
to configure the hybrid energy storage system and decrease battery degradation for electric vehicles
adopting supercapacitors as an assisted power source.
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