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Abstract: A nonlinear coupled dynamic model of a rod fastening rotor under rub-impact and initial
permanent deflection was developed in this paper. The governing motion equation was derived
by the D’Alembert principle considering the contact characteristic between disks, nonlinear oil-film
force, rub-impact force, unbalance mass, etc. The contact effects between disks was modeled as a
flexural spring with cubical nonlinear stiffness. The coupled nonlinear dynamic phenomena of the
rub-impact rod fastening rotor bearing system with initial permanent deflection were investigated by
the fourth-order Runge-Kutta method. Bifurcation diagram, vibration waveform, frequency spectrum,
shaft orbit and Poincaré map are used to illustrate the rich diversity of the system response with
complicated dynamics. The studies indicate that the coupled dynamic responses of the rod fastening
rotor bearing system under rub-impact and initial permanent deflection exhibit a rich nonlinear
dynamic diversity, synchronous periodic-1 motion, multiple periodic motion, quasi-periodic motion
and chaotic motion can be observed under certain conditions. Larger radial stiffness of the stator will
simplify the system motion and make the oil whirl weaker or even disappear at a certain rotating
speed. With the increase of initial permanent deflection length, the instability speed of the system
gradually rises, and the chaotic motion region gets smaller and smaller. The corresponding results can
provide guidance for the fault diagnosis of a rub-impact rod fastening rotor with initial permanent
deflection and contribute to the further understanding of the nonlinear dynamic characteristics of the
rod fastening rotor bearing system.

Keywords: rod fastening rotor; contact; D’Alembert principle; coupled dynamic characteristic;
bifurcation; initial permanent deflection

1. Introduction

The rotor-stator rub-impact is one of the most typical faults in rotor bearing systems, and it
will result in strong vibration and even catastrophic accidents of the machines if not caught quickly.
Actually, the clearance between rotor and stator is inevitable in rotating machines. The existing
studies indicate that the smaller clearance between rotor and stator will improve the efficiency greatly.
For demand of high efficiency, high rotating speed and high power in modern machines, minimizing
radial clearance between rotor and stator is designed, which results in an increase of the probability
of rotor-stator rub-impact. Meanwhile, the oil-film instability and larger imbalance can also give
rise to the occurrence of rotor-stator rub-impact. The rotor-stator rub-impact can induce the severe
vibration of the machine and lead to the permanent deflection of the shaft. Thus, it is essential to
analyze the nonlinear coupled dynamic behavior of the rod fastening rotor under rub-impact and
initial permanent deflection.
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During the past few decades, much literature has been reported in the field of failure mechanisms
and complicated dynamic response of rub-impact rotor systems. Faulty rotor-stator rub-impact is
a typical nonlinear issue. Many nonlinear dynamic phenomena, such as bifurcation, synchronous
vibration, sub-synchronous vibration, super-synchronous vibration and chaos motion can be observed
in rub-impact rotor bearing systems [1]. Ma et al. [2–4] focused their studies on the nonlinear dynamic
response and fault feature extraction of rub-impact rotor bearing systems, the dynamic responses under
different rubbing forms were discussed, and some signal analysis methods were developed to recognize
the rub-impact fault. Weaver et al. [5] established a three-disk nonlinear rotor dynamic model due to
the unbalanced driven rub, and proposed a method to solving rub-impact problems by adjusting a
combination of bearing parameters. For occasional and partial rubbing forms, Goldman et al. [6]
established the model of a rotor/stator system with external excitation and studied the chaotic
dynamic behavior of the system. Xiang et al. [7] modeled an asymmetric double-disc rotor-bearing
system under rub-impact and oil-film forces and studied the coupled nonlinear dynamics of the
system. Wang et al. [8] investigated the dynamic response of rotor systems with sudden unbalance and
rub-impact caused by blade loss using theoretical and experimental methods. Generally, the rub-impact
rotor bearing system is assumed with symmetric support stiffness, and the asymmetric support is
not considered in the dynamic model. For the first time, Varney et al. [9] emphasized the influence
of asymmetric support stiffness on the nonlinear dynamic behaviors of the rub-impact rotor bearing
system. Tai et al. [10] modeled a single rub-impact rotor system considering the gyroscopic effect, and
analyzed the stability and steady-state response of the rotor system. The rotor orbits can reflect the
faults of rotor bearing systems to a certain extent. Many researchers have paid attention to the fault
classification of rotating machines using the rotor orbits method. Nembhard et al. [11,12] did some
experimental observations in the shaft orbits with different rotor related faults and applied them to the
fault classification of rotating machines.

The studies on the rub-impact rotor system mainly focus on the lateral vibration characteristics.
The effect of rub-impact between rotor and stator on the torsional vibration of the rotor system is
often neglected. Edwards et al. [13] highlighted the importance of considering the torsional effects
in the rub-impact model and discussed the influence of rub-impact between rotor and stator on
torsional responses of the system. Sun et al. [14] modeled a bending-torsional coupling rub-impact
rotor system and analyzed the nonlinear dynamic characteristics of the system. The existence of
fiction force during rotor-stator rub-impact will generate the coupled effect on lateral and torsional
motion. Khanlo et al. [15] modeled a mathematical model of a rotating flexible shaft-disk system
considering the lateral-torsional coupling effects. The rotor system with rotor-stator rub-impact and
fatigue crack of the shafts displays strong nonlinearity, and Patel et al. [16] developed a coupled
bending-torsional dynamic model of a rotor with rub-impact and crack. Hilbert-Huang transform was
evaluated as an effective method to unravel some unique features of these faults that may be useful for
fault identification. Yuan et al. [17] established a full-degree-of-freedom model of Jeffcott rotor with a
rotor’s axial rub-impact. The results indicated that the dynamic responses were quite different from
those of radial ones. Meanwhile, the bending-torsion coupling phenomenon was disclosed.

For the rotor system, manufacture deviation, unfitting assembly, misalignment and thermal
bending can result in the residual shaft bow. Nicholas et al. [18] carried out a systematic study on the
effect of the residual shaft bow on unbalance response of a single mass flexible rotor. Song et al. [19]
presented a theoretical-experimental study on the dynamic response of a rotor with the residual shaft
bow. The results indicated that the residual shaft bow can obviously affect the rotor vibration as
the eccentricity and the damping ratio are relatively small. Darpe et al. [20] formulated the motion
equations of a bowed rotor with a transverse surface crack and investigated the steady state and
transient response. Flack and Rooke [21] compared the theoretical and experimental synchronous
unbalanced response of a Jeffcott rotor with a bow on different types of fluid film bearings using the
transfer matrix method.

The research above concentrated on the integral rotor bearing system instead of the rod fastening
rotor. The rod fastening rotors have been widely applied in the gas turbine and aero-engines for
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the advantages of being light weight, strong and being easy to cool. The effect of rod pre-tightening
force on the critical speeds of a rod fastening rotor was studied through experimental methods [22].
The experimental results were in accordance with theoretical analysis results. The nonlinear flexural
stiffness of the contact interfaces in disks affects the dynamic response of the rod fastening rotor directly,
and Yuan et al. [23] calculated the contact stiffness using the finite element method, and the harmonic
balance method was adopted to analyze the dynamic behavior of the rotor system. The dynamic
responses of laminated rotor are potentially different from the integral rotor, and Mat Isa et al. [24]
developed the model of a laminated rotor and designed a test-rig of laminated rotor to verify the
numerical results. Hei et al. [25,26] modeled the rod and contact surfaces of disks as resistance bending
springs with nonlinearity, and then investigated the nonlinear dynamic response of a rod fastening
rotor bearing system. For a particular aero-engine, the high pressure rotor dynamic response presented
an obvious bistable characteristic when equipped. Cheng et al. [27,28] established a dynamic model
of the aero-engine rod fastening rotor, and the response was calculated using the harmonic balance
method. Under certain system parameters, the bistable response phenomenon could be observed,
and the nonlinear contact stiffness was the main factor causing the bistable characteristic.

For the existing work, some researchers paid attention to studies on the contact stiffness,
and natural characteristics of the rod fastening rotor. The studies about the dynamic response of
a rod fastening rotors under certain fault conditions are rarely reported in literature. Some attempts are
presented in this paper to understand the coupled nonlinear dynamic characteristics of a rub-impact
rod fastening under rub-impact and initial permanent deflection. The nonlinear contact characteristic
between disks is modeled as a flexural spring with nonlinear stiffness. The effect of rotating speed,
radial stiffness of the stator, initial deflection and eccentric mass on the dynamic response of the rod
fastening rotor bearing system are studied using fourth-order Runge-Kutta method.

2. Modeling of a Rub-Impact Rod Fastening Rotor System

A schematic of a rub-impact rod fastening rotor bearing system with initial permanent deflection
is shown in Figure 1. The lumped mass in journal bearings are mb1 and mb2, m1 and m2 are the
lumped mass of two disks, e1 and e2 are the eccentric distance of two disks, and φ is the angle between
unbalance mass of the two disks. The stiffness of shaft is k, c1 and c2 are the damping coefficient in
the journal bearing and disks, and the damping coefficient in contact layer is c3, δ0 is initial deflection.
The dynamic model of the rod fastening rotor under rub-impact and initial permanent deflection is
simplified with following assumptions: (1) the effects of rods and contacts on the system response
are modeled as a flexural spring with nonlinear stiffness; (2) the shaft connecting the bearing and
disk is flexible massless, and only lateral vibration is considered in the model; (3) the rod fastening
rotor is supported by identical oil-film bearings at both sides, and the nonlinear oil-film force of the
journal bearing is satisfied with the theory of short bearing; and (4) the rub-impact between disk 1 and
stator is elastic, the radial deformation is elastic deformation, and the tangential friction force meets
the Coulomb friction law.
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2.1. Rub-Impact Force

Figure 2 is the schematic of a rub-impact forces model with an initial clearance r0 between disk 1
and stator. Os is the stator center, Or1

′ is the geometric center of disk 1, Or1 is the initial geometric
center of disk 1.
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Figure 2. Schematic of rub-impact forces.

The radial impact force PN can be expressed following linear elastic deformation theory.
The tangential rub force PT can be represented following Coulomb law [9]:{

PN = kc(r− r0)

PT = ηPN
(r ≥ r0), (1)

where r is the radial displacement of the disk 1, r =
√

x2
1 + y2

1, kc is the radial stiffness of the stator,
and η is the friction coefficient.

The radial impact force PN and the tangential rub force PT can be written in x-y coordinates as{
Px

Py

}
=

[
−cosγ sinγ
−sinγ −cosγ

]{
PN
PT

}
= − kc(r−r0)

r

[
1 −η
η 1

]{
x1

y1

}
(r ≥ r0)

Px = Py = 0 (r < r0)

. (2)

Taking X1 = x1/c, Y1 = y1/c, c is radial clearance of the bearing. Equation (2) can be rewritten as:{
PX
PY

}
=

[
−cosγ sinγ
−sinγ −cosγ

]{
PN
PT

}
= − ckc(r−r0)

r

[
1 −η
η 1

]{
X1

Y1

}
(r ≥ r0)

PX = PY = 0 (r < r0)

. (3)

2.2. Nonlinear Oil-Film Force

The capone nonlinear oil-film force model [29] has been proved as an effective model in calculating
the nonlinear oil-film force. It is assumed that lubricating oil is isothermal, laminar flow and lubricant
dynamic viscosity are constant, and lubricating oil is an incompressible fluid.
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The oil-film bearing is shown in Figure 3. According to the Reynolds equation, the dimensionless
oil-film pressure distribution is expressed as follows [30]:(

R
L

)2 ∂

∂Z

(
h3 ∂p

∂Z

)
= Xsinθ−Ycosθ− 2(

.
Xcosθ+

.
Ysinθ), (4)

where X and Y are dimensionless displacements of journal bearing center respectively, X = x/c, Y = y/c.
Z is the dimensionless axial displacement of the journal center, and c is the radial clearance of bearing.
p is the dimensionless pressure, h is the thickness of oil-film, R is radius of bearing, and L is the length
of the bearing.
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The dimensionless pressure p can be obtained by integrating Equation (4):

p =
1
8

(
L
R

)2 (X− 2
.

Y)sinθ− (Y + 2
.

X)cosθ

(1− Xcosθ−Ysinθ)3 (4Z2 − 1). (5)

The nonlinear oil-film force in the x-direction and y-direction can be obtained with Equation (5)
through integration along the lubricated arc of bearing:{
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, µ is oil viscosity, ω is the
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expressed as follows:
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2.3. The Governing Equations of Motion

According to the D’Alembert principle, the governing motion equations of the rod fastening rotor
under rub-impact and initial permanent deflection can be written as:

mb1
..
xb1 + c1

.
xb1 + k(xb1 − x1) = Fx(xb1, yb1,

.
xb1,

.
yb1)

mb1
..
yb1 + c1

.
yb1 + k(yb1 − y1) = Fy(xb1, yb1,

.
xb1,

.
yb1)−mb1g

m1
..
x1 + c2

.
x1 + c3(

.
x1 −

.
x2) + k(x1 − xb1) + Fcx1 = m1e1ω

2cosωt + kδ0cos(ωt + β) + Px

m1
..
y1 + c2

.
y1 + c3(

.
y1 −

.
y2) + k(y1 − yb1) + Fcy1 = m1e1ω

2sinωt + kδ0sin(ωt + β)−m1g + Py

m2
..
x2 + c2

.
x2 + c3(

.
x2 −

.
x1) + k(x2 − xb2) + Fcx2 = m2e2ω

2cos(ωt + φ) + kδ0cos(ωt + β)
m2

..
y2 + c2

.
y2 + c3(

.
y2 −

.
y1) + k(y2 − yb2) + Fcy2 = m2e2ω

2sin(ωt + φ) + kδ0sin(ωt + β)−m2g
mb2

..
xb2 + c1

.
xb2 + k(xb2 − x2) = Fx(xb2, yb2,

.
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mb2
..
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.
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.
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.
yb2)−mb2g

, (11)

where Fx and Fy are the nonlinear oil-film force in the x-direction and y-direction, Px and Py are the
rub-impact force in the x-direction and y-direction, φ is the angle between mass eccentricity of the two
disks, and β is the phase angle between the mass eccentricity and the initial permanent deflection. Fcx1,
Fcy1, Fcx2, Fcy2 are the nonlinear restoring forces of contact layer, the expressions are as the following:{

Fcx1 = −Fcx2 = k1(x1 − x2) + k1
′(x1 − x2)

3

Fcy1 = −Fcy2 = k1(y1 − y2) + k1
′(y1 − y2)

3 , (12)

where k1 is the linear contact stiffness, and k1
′ is the nonlinear contact stiffness.

Substituting the dimensionless oil-film force and rub-impact force into Equation (11),
the dimensionless motion equation of the system can be obtained:
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(13)

where τ is dimensionless time, τ = ωt, Xb1 = xb1/c, Xb2 = xb2/c, Yb1 = yb1/c, Yb2 = yb2/c, X1 = x1/c,
X2 = x2/c, Y1 = y1/c, and Y2 = y2/c.

3. Numerical Results and Discussion

The parameters of the rod fastening rotor system are: mb1 = 4 kg, mb2 = 4 kg, m1 = 32.1 kg,
m2 = 32.1 kg, c1 = 1050 N·s/m, c2 = 2100 N·s/m, c3 = 2100 N·s/m, k = 2.5 × 107 N/m,
k1 = 2.5 × 107 N/m, k1

′ = 2.5 × 107 N/m, kc = 1 × 107 N/m, r0 = 0.18 mm, e1 = 0.05 mm, e2 = 0.05 mm,
δ0 = 0.01 mm, β = π/4, η = 0.1, φ = 0, R = 25 mm, L = 12 mm, c = 0.11 mm, µ = 0.018 Pa·s, and
g = 9.81 m/s2. Assuming that the rod fastening rotor has rigid support, the natural frequency
ωc = (k/m1)1/2 = 882 rad/s. In fact, the rotor cannot have complete rigid support, and the critical speed
should be less than 882 rad/s. The coupled nonlinear dynamic analysis of a rod fastening rotor under
rub-impact and initial permanent deflection is carried out by the fourth-order Runge–Kutta method.
The period of the dimensionless system is 2π; the integral step length of each period is 1/100; the
calculation is 200 periods; we choose the last 100 periods as the effective analysis data; and the number
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of the effective data points is 10,000. Bifurcation diagram, vibration waveform, frequency spectrum,
shaft orbit and Poincaré map are presented to illustrate the nonlinear dynamic phenomena of system
as follows.

3.1. Effect of Speed

The dynamic responses and system status vary with the increase of rotating speed. Bifurcation
diagram can clearly reflect the relationship of the system status varying with parameters.

Taking rotating speed as control parameter, Figure 4 shows the bifurcation diagram of an integral
rotor bearing system in a horizontal direction of disk center without considering the initial permanent
deflection and contact characteristics between disks. The system keeps synchronous period-1 motion
atω < 507 rad/s. With the increasing of rotating speed, the system response exhibits a rich nonlinear
dynamic diversity.
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Figure 4. Bifurcation diagram of integral rotor disk center in the x-direction at kc = 1× 107 N/m, δ0 = 0.

Figure 5 shows the bifurcation diagram of a rub-impact rod fastening rotor bearing system at
δ0 = 0, kc = 1 × 107 N/m. The system response has a big difference in high rotating speed compared
with Figure 4. When ω < 507 rad/s, the system state is synchronous periodic-1 motion. It can be
seen from Figure 6 that there is one isolated point in the Poincaré map and one-peak amplitude in
the frequency spectrum, and the rub-impact does not occur under this condition. The system turns
into periodic-2 motion at ω = 507 rad/s. With the increase of rotating speed, the period doubling
bifurcation occurs. The periodic-2 motion, periodic-4 motion, periodic-8 motion and chaotic motion
are observed one by one. Figure 7 shows the periodic-4 motion at ω = 670 rad/s, the Poincaré map
contains four isolated points, the amplitude of half fundamental frequency exceeds the amplitude of
fundamental frequency, and the oil whirl occurs at this rotating speed. Whenω > 810 rad/s, inverse
period doubling bifurcation occurs. The quasi-periodic motion can be observed at the interval of
1038 rad/s <ω < 1615 rad/s, as shown in Figure 8, the Poincaré map of the system presents a closed
loop, and the frequency spectrum contains incommensurate frequency components. Meanwhile, the
oil whip frequency is less than half of the fundamental frequency, and the amplitude of oil whip
frequency is bigger than the amplitude of fundamental frequency. The oil whirl develops into oil
whip at this speed, and the shaft orbit exceeds rubbing boundary. Whenω > 1615 rad/s, the system
experiences periodic-3 motion, and with the increase of rotating speed, the system finally enters into
quasi-periodic motion. Figure 9 shows the periodic-3 motion atω = 1750 rad/s, and the Poincaré map
performs three isolated points.
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Figure 9. Numerical analysis results at ω = 1750 rad/s, δ0 = 0 mm. (a) Time domain waveform;
(b) Shaft orbit; (c) Frequency spectrum; (d) Poincaré map.

The initial permanent deflection is common among rotor systems. In order to analyze the effect
of initial permanent deflection on responses of the rub-impact rod fastening rotor bearing system,
the study is carried out by setting δ0 = 0.01 mm, β = π/4. Figure 10 shows the bifurcation diagram
of a disk 1 center in a horizontal direction considering the initial permanent deflection in the system
motion equations.
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Figure 10. Bifurcation diagram of disk 1 center in a horizontal direction at kc = 1 ×107 N/m,
δ0 = 0.01 mm.

Similar to the system response without considering the initial permanent deflection, the system
presents a synchronous periodic-1 motion atω < 608 rad/s (see Figure 11). Compared with Figure 6,
shaft orbit exceeds rubbing boundary, and the rub-impact has occurred already at this rotating speed.
Under the effect of initial permanent deflection, unbalance force, oil-film force and rub-impact force,
the system directly enters into chaotic motion atω = 608 rad/s. As indicated in Figure 12, the frequency
spectrum contains continuous frequency bands, the orbit is irregular, and the Poincaré map presents a
strange attractor. When the rotating speed reaches 898 rad/s, the system leaves chaotic motion and
undergoes an inverse period doubling bifurcation. Periodic-16 motion, periodic-8 motion, periodic-4
motion and periodic-2 motion occur alternately at the interval of 608 rad/s < ω < 1035 rad/s. With
the increase of the rotating speed, the system experiences a transient multi-periodic motion and then
enters into quasi-periodic motion. The quasi-periodic motion is illustrated in Figure 13, the Poincaré
map of the system presents a closed loop, the frequency spectrum is continuous, and the shaft orbit is
irregular. Atω = 1639 rad/s, the system bifurcates into periodic-3 motion (see in Figure 14).
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The bifurcation diagram can reveal the motion state of the system varying with rotating speed.
It can be concluded from the above analysis that initial permanent deflection has a great influence on
the dynamic response of the rub-impact rod fastening rotor bearing system. Comparing Figure 5 with
Figure 10, it is obvious that the initial permanent deflection mainly affects the system response at low
speed. The oil-film force and unbalance force are small when the system is at a low speed, and initial
permanent deflection becomes the main factor affecting the system states. With the increase of rotating
speed, the oil-film force and unbalance force gradually increase and begin to play a leading role in the
system states. Meanwhile, the rub-impact occurs at a lower speed when initial permanent deflection
is considered.

3.2. Effect of Initial Permanent Deflection

The manufacture deviation, unfitting assembly, misalignment and thermal bending can result in
the residual shaft bow. In Section 3.1, the results indicate that the initial permanent deflection has a big
influence on the system responses. In this part, the effect of different initial permanent deflection length
on the dynamic responses of the rub-impact rod fastening rotor bearing system has been discussed.

Taking kc = 1 × 107 N/m, r0 = 0.18 mm, e1 = 0.05 mm, e2 = 0.05 mm, and β = π/4, Figure 15 shows
the bifurcation diagrams of the disk 1 center in a horizontal direction under different initial permanent
deflection lengths δ0 = 0.01 mm, δ0 = 0.02 mm, δ0 = 0.03 mm, and δ0 = 0.04 mm. As shown in Figure 15a,
the system bifurcates into chaotic motion at ω = 608 rad/s and leaves chaotic motion at ω = 898 rad/s,
with the increase of rotating speed, the system undergoes an inverse period doubling bifurcation.
At the interval of 1639 rad/s <ω < 1991 rad/s, the system keeps periodic-3 motion. When δ0 = 0.02 mm,
the system enters into chaotic motion at ω = 716 rad/s and leaves chaotic motion at ω = 936 rad/s,
similar to the bifurcation diagram at δ0 = 0.01 mm, with the increase of rotating speed, the system
experiences periodic-16 motion,periodic-8 motion,periodic-4 motion,periodic-2 motion, quasi-periodic
motion and keeps periodic-3 motion at 1655 rad/s <ω < 1992 rad/s. Figure 15c shows the bifurcation
diagram at δ0 = 0.03 mm, and the system bifurcates into chaotic atω = 782 rad/s. When the rotating
speed reaches 962 rad/s, the system undergoes an inverse period doubling bifurcation and leaves
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chaotic motion. Atω = 1192 rad/s, the system becomes quasi-periodic motion from periodic-2 motion
and keeps periodic-3 motion at 1663 rad/s < ω < 1991 rad/s with the increase of rotating speed.
As indicated from Figure 15d, the system bifurcates into periodic-2 motion atω = 826 rad/s and leaves
chaotic motion at ω = 948 rad/s. The system presents similar characteristics with the increase of
rotating speed compared with δ0 = 0.03 mm.Energies 2016, 9, 883 13 of 18 
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It can be seen from Figure 15 that the system bifurcation diagrams under different initial
permanent deflection length δ0 do not present an obvious differences in high-speed regions. In a
low-speed region, the system keeps periodic-1 motion under different initial permanent deflection
lengths. The instability speed of the system gradually rises with the increase of initial permanent
deflection length. Meanwhile, the chaotic motion region becomes smaller and smaller. Although
the instability speed of the system increased with the value of initial permanent deflection length δ0,
the initial permanent deflection is not expected.

3.3. Effect of Radial Stiffness of the Stator

Radial stiffness of the stator is an important factor of a rub-impact rotor bearing system. In this
part, the influence of radial stiffness of the stator is discussed under certain conditions. Taking radial
stiffness of the stator as the control parameter, Figure 16 shows the bifurcation diagram of disk 1 center
in a horizontal direction atω = 826 rad/s, r0 = 0.11 mm, δ0 = 0.01 mm.
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It can be seen from Figure 16 that the system states vary with the increase of the radial stiffness
of the stator. When the stiffness is small, the rub-impact force is far less than oil-film force, and the
system response is mainly decided by the oil-film force and initial permanent deflection. The system
presents chaotic motion at kc = [0–1.71 × 107] N/m. As shown in Figure 17, the orbit is irregular,
the Poincaré map presents a strange attractor, and the frequency spectrum contains continuous
frequency bands. Meanwhile, there is a half fundamental frequency component in the frequency
spectrum, and oil whirl occurs at this condition. With the increase of radial stiffness of stator kc, the
system experiences periodic-8 motion, periodic-4 motion, and periodic-2 motion. Figure 18 shows
the periodic-4 motion at kc = 1.9 × 107 N/m, and there are four isolated points in Poincaré map.
At kc = [2.19 × 107–2.73 × 107] N/m, the system undergoes multi-periodic motions and returns back
to periodic-2 motion at kc = 2.73 × 107 N/m (see in Figure 19). When kc > 2.97 × 107 N/m, the
system displays a synchronous periodic-1 motion, and the oil whirl disappears under this condition
(see in Figure 20).
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The radial stiffness of the stator has a great influence on the responses of a rub-impact rod
fastening rotor bearing system under initial permanent deflection. With the increase of radial stiffness
for the stator, the system response becomes simpler under certain conditions. Meanwhile, the oil whirl
is weaker or even disappears at a certain rotating speed.
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4. Conclusions

The dynamic motion equations of a rod fastening rotor bearing system under rub-impact and
initial permanent deflection is derived based on the D’Alembert principle. The coupled nonlinear
dynamic characteristics of the rod fastening rotor bearing system under rub-impact and initial
permanent deflection have been investigated. The effect of radial stiffness for the stator, initial
permanent deflection length and rotating speed on the dynamic characteristics of the rod fastening
rotor bearing system are investigated in detail. The following conclusions can be obtained from the
above analysis:

1 The dynamic responses of the rod fastening rotor bearing system under rub-impact and initial
permanent deflection exhibit a rich nonlinear dynamic diversity, synchronous periodic-1 motion,
multi-periodic motion, chaotic motion and quasi-periodic motion can be observed through
the analysis.

2 Initial permanent deflection length has a great effect on the dynamic response of the system in the
low-speed regions. With the increase of initial permanent deflection length, the instability speed
of the system gradually rises, and the chaotic motion region becomes smaller and smaller.

3 With the increase of radial stiffness of the stator, the system response becomes simpler under
certain conditions. Meanwhile, the oil whirl is weaker or even disappears at a certain
rotating speed.

4 It is unsuitable to take the rod fastening rotor as an integral rotor in analyzing the coupled
nonlinear dynamic responses of the system under rub-impact and initial permanent deflection.

The corresponding results can provide the guidance for the fault diagnosis of a rub-impact rod
fastening rotor and contribute to the further understanding of the nonlinear dynamic characteristics of
a rub-impact rod fastening rotor.
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Symbols

c Radial clearance of bearing
µ Oil viscosity
L Bearing length
R Bearing radius
δ Sommerfeld correction coefficient
h Thickness of oil-film
p Dimensionless pressure of oil-film
Fx, Fy Nonlinear oil-film force in x-direction and y-direction
fx, fy Dimensionless nonlinear film force in x-direction and y-direction
PT, PN Rub-impact force in radial and tangential direction
Px, Py Rub-impact in x-direction and y-direction
η Friction coefficient
r0 Initial clearance
δ0 Initial permanent deflection
kc Radial stiffness of the stator
Fcx, Fcy Restoring force of contact layer in x-direction and y-direction
mb1, mb2 Lumped mass of bearings
m1, m2 Lumped mass of disks
e1, e2 Eccentric distance of disks
φ Angle between mass eccentricity of the two disks
β Angle between mass eccentricity and initial permanent deflection
k Shaft stiffness
k1 Linear contact stiffness
k1
′ Nonlinear contact stiffness

c1 Damping of bearing
c2 Damping of disk
c3 Damping of contact layer
xi, yi (i = 1, 2) Displacements of disks in x-direction and y-direction
xbi, ybi (i = 1, 2) Displacements of bearings in x-direction and y-direction
Xi, Yi (i = 1, 2) Dimensionless displacements of disks in x-direction and y-direction
Xbi, Ybi (i = 1, 2) Dimensionless displacements of bearings in x-direction and y-direction
ω Rotating speed
g Gravitational acceleration
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