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Abstract: This study tackles a risk-limiting scheduling problem of non-renewable power generation
for large power systems, and addresses potential violations of the security constraints owing to the
volatility of renewable power generation and the uncertainty of load demand. To cope with the
computational challenge that arises from the probabilistic constraints in the considered problem,
a computationally efficient solution algorithm that involves a bisection method, an off-line constructed
artificial neural network (ANN) and an on-line point estimation method is proposed and tested on
the IEEE 118-bus system. The results of tests and comparisons reveal that the proposed solution
algorithm is applicable to large power systems in real time, and the solution obtained herein is
much better than the conventional optimal power flow (OPF) solution in obtaining a much higher
probability of satisfying the security constraints.

Keywords: renewable power generation; demand response; risk-limiting scheduling; optimal power
flow (OPF); security constraints; artificial neural network (ANN); point estimation method

1. Introduction

There is a growing interest in utilizing renewable energy such as wind and solar as the
power generation sources to overcome the global climate change induced by carbon emission [1–4].
Additionally, the economic incentives based demand response has prevailed recently to improve
the efficiency of electricity utilization and reduce carbon emission [5]. However, to integrate the
distributed renewable energy sources and increase the participation of demand response, it is necessary
to transform the traditional electricity grid into a smart grid [6]. The smart grid itself is simply the
application of modern communication infrastructure to various segments of the electricity grid.
However, the intermittency of the electricity supplied by renewable energy sources and the uncertain
load demand caused by demand response in a modern power system require some traditional power
system operations to consider these uncertainties [7,8]. For example, Dvorkin et al. [9] used a hybrid
stochastic/interval approach to tackle the transmission-constrained unit commitment problem with
uncertainties of wind power generation and load demand. Wu et al. [10] proposed a day-ahead
stochastic scheduling model to cope with the hourly forecast errors of system loads and variable
renewable sources. Ahmadi-Khatir et al. [11] proposed a decentralized method to optimally schedule
generating units for systems under wind power uncertainties. Kusiak et al. discuss wind turbine
capacity [12]. In this paper, the schedule of non-renewable power generation in a large power system
with uncertain power generation and load demand is under consideration.

The challenge posed by uncertain power generation and load demand in scheduling the
non-renewable power generation is to maintain the power balance at all times and satisfy the security
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constraints on the security terms of interest, which are the bus voltage magnitude and the transmission
line real power flow. In general, the scheduled value of optimal non-renewable power generation
is the solution of optimal power flow (OPF), in which the renewable power generation and load
demand are set to their predicted values, which differ from the actual values and cause a power
mismatch in practice. Accordingly, the system operator should re-dispatch the scheduled optimal
non-renewable power generation to maintain the power balance. This re-dispatch may cause the
security constraints violated. Therefore, the purpose of this paper is to find a risk-limiting schedule of
optimal non-renewable power generation to reduce the probability of violating security constraints
after the re-dispatch in the presence of uncertain power generation and load demand. In past
decades, numerous mathematical programming methods for solving deterministic OPF problems of the
traditional electricity grid were proposed. For example, the successive linear programming method [13],
the successive quadratic programming method [14], the Lagrange Newton method [15], the primal-dual
interior point method [16], the dual-type method [17], the multi-objective programming method [18],
the hybrid algorithm [19], the modified shuffle frog leaping (SFL) algorithm [20], the population
based algorithm [21], etc. However, the aforementioned methods cannot be used to solve the problem
considered in this paper.

Setting restrictive bounds for the security constraints in the OPF problem formulation can reduce
the risk of violating the security constraints in practice; however, more restrictive bounds result
in a larger scheduled optimal non-renewable power generation cost. Therefore, to minimize the
scheduled optimal non-renewable power generation cost, the problem formulation of the proposed
risk-limiting schedule of optimal non-renewable power-generation (RSONP) is to determine the least
restrictive bounds that yield the required probability of satisfying the security constraints after the
re-dispatch. Few articles have discussed this issue. Although Varaiya et al. [22] proposed a dispatch
method with limiting risk, they ignored security constraints and considered only the need for power
generation to satisfy load demand. Attaching a probability to the satisfaction of security constraints,
Zhang and Li [23] developed a chance constrained programming (CCP) method for solving OPF with
load uncertainty. Lin and Lin [24] proposed a risk-limiting OPF (RLOPF) method to solve the RLOPF
problem for systems with a high penetration of wind power; however, they did not take into account
the uncertainty of load demand. Therefore, the RSONP problem with uncertain power generation and
load demand remains unsolved. Furthermore, both the CCP method and the RLOPF method were
experimentally tested using small systems [23,24]. Hence, the contribution of this paper is to propose
a computationally efficient RSONP algorithm to solve the RSONP problem of a large power system.

This paper is organized as follows. Section 2 presents the method for solving the RSONP
problem. Section 3 presents the test results and discussions. Section 4 presents the conclusions and
further research.

2. Method

2.1. Statement and Computational Challenges of Risk-Limiting Schedule of Optimal Non-Renewable
Power-Generation Problem

For simplicity of presentation, the only renewable energy source considered herein is wind.
However, solar power can be easily included in the formulated RSONP problem and the proposed
RSONP algorithm.

2.1.1. Conventional Optimal Power Flow Problem

The OPF problem has various formulations. In this paper, the following conventional optimal
power flow (COPF) problem is considered [8].
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subject to :

min
uGi

,i∈G\WG
∑

i∈G\WG
aiP2

Gi
+ biPGi + ci

g(x, uG, ûW , ûD) = 0
po

ij
≤ pij(xi, xj) ≤ po

ij, ∀(i, j) ∈ L

Vo
i ≤ Vi ≤ Vo

i , i = 1, · · · , N
uGi
≤ uGi ≤ uGi , ∀i ∈ G\WG

(1)

where Vo
i ≤ Vi ≤ Vo

i , i = 1, · · · , N, and po
ij
≤ pij(xi, xj) ≤ po

ij, ∀(i, j) ∈ L represent the set of security

constraints with normal bounds; and uGi
≤ uGi ≤ uGi represents the power generation constraint at

bus i. Normally, Vo
i = 0.95, Vo

i = 1.05 and po
ij
= −po

ij. For notational simplicity, the aforementioned

security constraints are rewritten as ho
j ≤ hj(x) ≤ h

o
j , j = 1, · · · , m, where m = N + |L|, and |L| is

the total number of transmission lines, so m is the total number of security constraints. Notably,
ho

j = −h
o
j for the transmission line real power flow, and the renewable power generation is assumed to

have no cost.

2.1.2. Statement of Risk-Limiting Schedule of Optimal Non-Renewable Power-Generation Problem

As indicated in Section 1, the RSONP problem is to determine the least restrictive bounds for
security constraints in the OPF problem formulation that yield the required probability η that the
security constraints will be satisfied in practice as follows:

min
hs ,hs

m

∑
j=1

[(hs
j − ho

j )
2 + (h

o
j − h

s
j )

2
]

subject to:
Prob{ho

j ≤ hj(x̃s) ≤ h
o
j |hs, h

s} ≥ η, j = 1, · · · , m (2)

where x̃s represents the random state-vector after re-dispatching (RSAR), which is resulted from the
scheduling and re-dispatching stages that will be presented later. Prob{ho

j ≤ hj(x̃s) ≤ h
o
j |hs, h

s}
represents the conditional probability of satisfying the jth security constraint after the re-dispatch for
the given restrictive bounds (hs, h

s
), and the objective function is the distance between the restrictive

bounds (hs, h
s
) and the normal bounds (ho, h

o
). Therefore, the RSONP problem is to find the (hs, h

s
)

that is closest to (ho, h
o
) while satisfying the conditional probability constraints in Equation (2).

2.1.3. Monte Carlo Simulation Procedures for Evaluating Exact Conditional Probability of Satisfying
Security Constraints

For the given (hs, h
s
), the procedures to evaluate the exact value of Prob{ho

j ≤ hj(x̃s) ≤ h
o
j |hs, h

s}
are described below.

• Scheduling Stage

In the scheduling stage, both wind power generation and load demand are set to their
predicted values in the OPF problem with restrictive bounds (hs, h

s
) (OPFPRB), which is expressed

as Equation (3).

subject to :

min
uGi

,i∈G\WG
∑

i∈G\WG
aiP2

Gi
+ biPGi + ci

g(x, uG, ûW , ûD) = 0
hs

j ≤ hj(x) ≤ h
s
j , j = 1, · · · , m

uGi
≤ uGi ≤ uGi , ∀i ∈ G\WG

(3)

The solution of OPFPRB is denoted by us∗
Gi

, ∀i ∈ G\WG, and is called the scheduled optimal

non-renewable power-generation (SONP) for the given restrictive bounds (hs, h
s
).
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• Random Generation of Wind Speed and Load Demand

The wind speed vl is a random variable, so is the wind power generation ũWl (vl). Although the
actual load demand for all buses, ũDi , i = 1, · · · , N, are also random variables, the variations of small
load demand can be neglected relative to those of large load demand. Therefore, large load demand
can be regarded as random variables and the corresponding buses and load demand can be re-indexed
as ũDL

1
, ũDL

2
, · · · , ũDL

NL
. The vector of small load demand is set to the predicted vector ûDS . Based on

p(vl) and p(P̃DL
i
), vl and P̃DL

i
can be randomly generated. Subsequently, the wind power generation

ũWl (vl) = [P̃Wl (vl), Q̃Wl (vl)]
T

can be calculated based on the randomly generated vl by:

P̃Wl (vl) = 0.5Cpav3
l A (4)

Q̃Wl (vl) = P̃Wl (vl)tanφl (5)

where a, A and Cp represent the air density, cross-section swept by wind turbine blade and the power
coefficient, respectively; φl represents the phase angle in the power factor cosφl of the wind power
generation. The reactive load demand Q̃DL

i
can be obtained based on the randomly generated P̃DL

i
by:

Q̃DL
i
= P̃DL

i
tanφDL

i
(6)

where φDL
i

is the phase angle of the load power factor cosφDL
i
. Then, we can have the large load

demand ũDL
i
= [P̃DL

i
, Q̃DL

i
]
T

.

• Re-dispatching Stage

ũWl (vl) and ũDL
i

differ from their predicted values ûWl and ûDL
i
, respectively. The total power

generation deviation ∑
l∈WG

ũWl (vl)− ûWl , the total large load-demand deviation
NL

∑
i=1

ũDL
i
− ûDL

i
and

the deviation of the system’s total real and reactive line losses, which are denoted by ∆Ploss and
∆Qloss, respectively, can be compensated by re-dispatching the SONP us∗

Gi
, ∀i ∈ G\WG, using available

economic dispatch (ED) method [25], such that:

− ( ∑
l∈WG

P̃Wl (vl)− P̂Wl ) + (
NL

∑
i=1

P̃DL
i
− P̂DL

i
) + ∆Ploss = ∑

i∈G\WG
Ps∗

Gi
rPi % (7)

− ( ∑
l∈WG

Q̃Wl (vl)− Q̂Wl ) + (
NL

∑
i=1

Q̃DL
i
− Q̂DL

i
) + ∆Qloss = ∑

i∈G\WG
Qs∗

Gi
rQi % (8)

Then, in the re-dispatching stage, the SONP us∗
Gi

, ∀i ∈ G\WG, is re-dispatched as the
Non-renewable Power-generation After Re-dispatching (NPAR) ũs

Gi
, ∀i ∈ G\WG, for the given

restrictive bounds (hs, h
s
) by:

P̃s
Gi

= Ps∗
Gi
(1 + rPi %) (9)

Q̃s
Gi

= Qs∗
Gi
(1 + rQi %) (10)

The RSAR x̃s in Equation (2) can be obtained by solving the following power flow balance
equation in terms of the re-dispatched NPAR ũs

G, the randomly generated ũW , the randomly generated
ũDL and the predicted small load demand ûDS :

g(x̃s, ũs
G, ũW , ũDL , ûDS) = 0 (11)

Subsequently, the security term after re-dispatching (STAR), hj(x̃s), for the given restrictive
bounds (hs, h

s
) can be evaluated for j = 1, · · · , m; this re-dispatching stage associated with the
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randomly generated vl and ũDL is repeated 10,000 times to carry out the Monte Carlo simulation
(MCS), and 10,000 samples of hj(x̃s) can be obtained for each j = 1, · · · , m.

• Evaluating Exact Prob{ho
j ≤ hj(x̃s) ≤ h

o
j |hs, h

s}

Based on the obtained 10,000 samples of hj(x̃s), the exact value of Prob{ho
j ≤ hj(x̃s) ≤ h

o
j |hs, h

s}
can be calculated by Prob{ho

j ≤ hj(x̃s) ≤ h
o
j |hs, h

s} = (number of samples of hj(x̃s) satisfying the
security constraints)/10,000.

2.1.4. Computational Challenges of Risk-Limiting Schedule of Optimal Non-Renewable
Power-Generation Problem

Because MCS is too computational time consuming, the first computational challenge of the
RSONP problem (Equation (2)) is to determine the feasibility of (hs, h

s
)that is defined as the satisfaction

of the inequality constraints in Equation (2). Accordingly, the second computational challenge is to
develop a computationally efficient algorithm to solve the RSONP problem (Equation (2)) for the
optimal restrictive bounds (hs∗, h

s∗
) and the associated optimal SONP (OSONP) uŝ∗

Gi
, ∀i ∈ G\WG,

which is the optimal solution to the OPFPRB (Equation (3)) when (hs, h
s
) = (hs∗, h

s∗
), in real time for

a large system.

2.2. Risk-Limiting Schedule of Optimal Non-Renewable Power-Generation Algorithm

2.2.1. Method for Solving Risk-Limiting Schedule of Optimal Non-Renewable
Power-Generation Problem

• Sufficient Conditions for Feasibility of (hs, h
s
)

The RSONP problem (Equation (2)) is separable, and it can be decomposed into the following m
independent sub-problems.

For j = 1, · · · , m,

min
hs

j ,h
s
j

(hs
j − ho

j )
2 + (h

o
j − h

s
j )

2

subject to:
Prob{ho

j ≤ hj(x̃s) ≤ h
o
j |hs, h

s} ≥ η (12)

Accordingly, the optimal solution (hs∗, h
s∗
) to the RSONP problem (Equations (2) or (12)) is

defined such that:
Prob{ho

j ≤ hj(x̃s) ≤ h
o
j |hs∗, h

s∗} = η (13)

for j = 1, · · · , m. Notably, both variables hs
j and h

s
j have the same feasible region [h

s∗
j , h

s∗
j ] and satisfy

hs
j < h

s
j , hs∗

j > ho
j and h

s∗
j < h

o
j . Therefore, h

o
j and feasible h

s
j are located on the right-hand side and the

left-hand side of h
s∗
j , respectively. Similarly, ho

j and feasible hs
j are located on the left-hand side and the

right-hand side of hs∗
j , respectively.

The η-upper and η-lower bounds of hj(x̃s) are denoted by yjη and y
jη

, respectively. For the bus

voltage magnitude, yjη and y
jη

are defined by:

(yjη, y
jη
) = arg[ min

yjη−y
jη

Prob{y
jη
≤ hj(x̃s) ≤ yjη|h

s, h
s} = η] (14)

However, for the transmission-line real-power flow, an additional constraint y
jη

= −yjη must be

imposed on the minimization problem that is specified on the right-hand side of Equation (14). Hence,
(yjη, y

jη
) is a function of (hs, h

s
) and can also be written as (yjη(h

s, h
s
), y

jη
(hs, h

s
)).
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It can be easily proved that if yjη(h
s, h

s
) ≤ h

o
j and y

jη
(hs, h

s
) ≥ ho

j , then Prob{ho
j ≤ hj(x̃s) ≤

h
o
j |hs, h

s} ≥ η, meaning that the inequality constraints in Equation (2) hold. Therefore, yjη(h
s, h

s
) ≤ h

o
j

and y
jη
(hs, h

s
) ≥ ho

j for j = 1, · · · , m represent sufficient conditions for the feasibility of (hs, h
s
).

• Bisection Method

Based on the above analysis, h
s∗
j and hs∗

j are the closest points to h
o
j and ho

j , respectively, among all
points in the corresponding feasible region. Accordingly, a bisection method can be used to identify
h

s∗
j and hs∗

j based on yjη(h
s, h

s
) and y

jη
(hs, h

s
) as follows. Let UB(h

s∗
j ) and LB(h

s∗
j ) be a strict

upper-bound and a strict lower-bound on h
s∗
j , respectively, such that UB(h

s∗
j ) is an infeasible h

s
j

but LB(h
s∗
j ) is a feasible h

s
j . Similarly, let UB(hs∗

j ) and LB(hs∗
j ) be a strict upper-bound and a strict

lower-bound on hs∗
j , respectively, such that UB(hs∗

j ) is a feasible hs
j but LB(hs∗

j ) is an infeasible hs
j .

For the given UB(h
s∗
j ), LB(h

s∗
j ), UB(hs∗

j ) and LB(hs∗
j ), setting:

h
s
j =

UB(h
s∗
j ) + LB(h

s∗
j )

2
(15)

hs
j =

UB(hs∗
j ) + LB(hs∗

j )

2
(16)

for j = 1, · · · , m and evaluating yjη(h
s, h

s
) and y

jη
(hs, h

s
) for j = 1, · · · , m, enable UB(h

s∗
j ), LB(h

s∗
j ),

UB(hs∗
j ) and LB(hs∗

j ) to be updated as:

UB(h
s∗
j ) = h

s
j if yjη(h

s, h
s
) > h

o
j (17)

LB(h
s∗
j ) = h

s
j if yjη(h

s, h
s
) ≤ h

o
j (18)

UB(hs∗
j ) = hs

j if y
jη
(hs, h

s
) ≥ ho

j (19)

LB(hs∗
j ) = hs

j if y
jη
(hs, h

s
) < ho

j (20)

based on the sufficient conditions for the feasibility of (hs, h
s
). Notably, the evaluation of both

yjη(h
s, h

s
) and y

jη
(hs, h

s
) for the given (hs, h

s
) for j = 1, · · · , m are presented in the following

section. The above iterative bisection method terminates when both UB(h
s∗
j )− LB(h

s∗
j ) < εh

o
j and

UB(hs∗
j )− LB(hs∗

j ) < εh
o
j hold, where ε is a small positive real number, and the final LB(h

s∗
j ) and

UB(hs∗
j ) are the solutions for h

s∗
j and hs∗

j , respectively, for j = 1, · · · , m.

2.2.2. Evaluating η-Upper and η-Lower Bounds of hj(x̃s)

To carry out the bisection method presented above, the yjη(h
s, h

s
) and y

jη
(hs, h

s
) for the

given (hs, h
s
) need to be evaluated first for j = 1, · · · , m. For this purpose, a two-stage approach is

presented in this section.
The two-stage approach consists of an off-line stage and an on-line stage. In the off-line stage, the

functional relationship between (yjη(h
s, h

s
), y

jη
(hs, h

s
)) and (µhj

,σhj
) for a large range of (hs, h

s
) is

constructed using an artificial neural network (ANN) for each j = 1, · · · , m, where µhj
and σhj

represent

the mean and standard deviation of hj(x̃s) for the given (hs, h
s
). In the on-line stage, (µhj

,σhj
) will be

evaluated for the given (hs, h
s
). In general, to obtain the exact (µhj

,σhj
) of hj(x̃s) for the given (hs, h

s
),

MCS is required. However, MCS is too time consuming to be used on-line. Therefore, a 2K + 1 point
estimation method is used to evaluate (µhj

,σhj
) of hj(x̃s) for the given (hs, h

s
) on-line. Thus, for the

given (hs, h
s
), once the corresponding (µhj

,σhj
) of hj(x̃s) is obtained on-line, it will be input to the
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off-line constructed ANN, and whose output is the (yjη(h
s, h

s
), y

jη
(hs, h

s
)) needed in the bisection

method. In the following, the ANN and the 2K + 1 point estimation method are presented.

• ANN Model for Input–Output Relationship between (µhj
,σhj

) and (yjη(h
s, h

s
), y

jη
(hs, h

s
))

In the off-line stage, for each j = 1, · · · , m, an easily implementable feed-forward back propagation
ANN [26,27], which comprises an input layer, a hidden layer and an output layer, is used to establish the
input–output relationship between (µhj

,σhj
) and (yjη(h

s, h
s
), y

jη
(hs, h

s
)) for a large range of (hs, h

s
).

Figure 1 shows this three-layer ANN that consists of two input neurons, q hidden-layer neurons and
two output neurons, whereωil , i = 1, 2, l = 1, · · · , q and γlk, k = 1, 2 are the arc weights. The inputs
to the two neurons in the input layer are µhj

and σhj
, and the outputs of the two output neurons

are yjη(h
s, h

s
) and y

jη
(hs, h

s
).

The neurons in the input layer directly distribute µhj
and σhj

to the neurons in the hidden layer.
The hyperbolic tangent sigmoid function given in Equation (21) is utilized as the activation function of
the neurons in the hidden layer [26]:

tan h(x) =
ex − e−x

ex + e−x (21)

The activation function in the output layer is a linear function, which sums all the weighted
outputs of the hidden layer.

Each of the m ANNs is trained off-line in two steps, which are the collection of training data set
and training the ANN.
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• Collecting Training Data Set

In addition to a large range of (hs, h
s
), a wide range of parameters of p(vl) and p(PDL

i
) should be

considered to cover a wide range of applications. For example, if p(vl) is of a Weibull distribution,
it can be described by Equation (22):

p(vl) =
β

α
(

vl
α
)
β−1

e−(
vl
α )

β

(22)

where the parameters α and β are the scale and shape coefficients, respectively, then wide ranges
of α and β will be considered. Similarly, if p(PDL

i
) is of a normal distribution, it can be described

by Equation (23):

p(PDL
i
) =

1
σDL

i

√
2π

e
− 1

2 (
P

DL
i
−µ

DL
i

σ
DL

i

)

2

(23)
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where the parameters µDL
i

and σDL
i

are the mean and the standard deviation of PDL
i
, then wide ranges

of µDL
i

and σDL
i

will be considered. Based on these premises, the procedure for collecting training data
set can be described as follows.

Step Co1: Randomly select a sample of (hs, h
s
), α, β, µDL

i
and σDL

i
.

Step Co2: For j = 1, · · · , m, use the MCS that is described in Section 2.1.3 to obtain 10,000 samples of
hj(x̃s) to compute µhj

and σhj
, and determine the yjη(h

s, h
s
) and y

jη
(hs, h

s
) based on Equation (14);

the obtained (µhj
,σhj

) and (yjη(h
s, h

s
), y

jη
(hs, h

s
)) form a pair of input and output data of hj(x̃s).

Step Co3: Repeat Steps Co1-Co2 M times, where M = 16,512. Then, for j = 1, · · · , m, M pairs
of input output data that are (µi

hj
,σi

hj
) and (yi

jη(h
s, h

s
), yi

jη
(hs, h

s
)), i = 1, · · · , M, can be obtained

as the training data set, where (µi
hj

,σi
hj
) and (yi

jη(h
s, h

s
), yi

jη
(hs, h

s
)) represent the (µhj

,σhj
) and

(yjη(h
s, h

s
), y

jη
(hs, h

s
)) of hj(x̃s), respectively, obtained based on the ith randomly selected sample

of (hs, h
s
), (α, β) and (µDL

i
,σDL

i
).

• Training m ANNs

For a given input (µi
hj

,σi
hj
) to the jth ANN that is shown in Figure 1, let the corresponding output

be ξi
jη((µ

i
hj

,σi
hj
)|ω,γ) and ξi

jη((µ
i
hj

,σi
hj
)|ω,γ), given by the following Equations:

ξ
i
jη =

q

∑
l=1
γl,1tan h(ω1,lµ

i
hj
+ω2,lσ

i
hj
) (24)

ξi
jη =

q

∑
l=1
γl,2tan h(ω1,lµ

i
hj
+ω2,lσ

i
hj
) (25)

where γ = [γ1,1, · · · ,γq,1,γ1,2, · · · ,γq,2]
T andω = [ω1,1, · · · ,ω1,q,ω2,1, · · · ,ω2,q]

T are vectors of the
arc weights of the jth ANN. The training problem for the jth ANN is to findω and γ that minimize
the mean square error (MSE):

min
ω,γ

1
M

M

∑
i=1

(yi
jη(h

s, h
s
)− ξi

jη)
2 + (yi

jη
(hs, h

s
)− ξi

jη)
2

(26)

based on the jth training data set ((µi
hj

,σi
hj
), (yi

jη(h
s, h

s
), yi

jη
(hs, h

s
))), i = 1, · · · , M.

The Levenberg-Marquardt algorithm [28] is used herein as the iterative training algorithm for solving
Equation (26). This training algorithm is terminated when either of the following two conditions is
met: (i) MSE is less than 0.01; or (ii) the number of epochs exceeds 5000.

• 2K + 1 point estimation method for estimating mean and standard deviation of hj(x̃s)

As indicated previously, it is too computational time consuming to evaluate µhj
and σhj

of hj(x̃s)

using MCS. Therefore, the goal of 2K + 1 point estimation method is to evaluate µhj
and σhj

of hj(x̃s)

for the given (hs, h
s
) in real time. Suppose that |WG|+ NL = K, where |WG| is the total number

of wind power generation buses. hj(x̃s) is a random function of K input random variables, then the
employed 2K + 1 point estimation method [7,24,29] can be described below.

First, the considered random variables are re-named and re-indexed, such that the random
wind speeds vl , ∀l ∈ WG, are re-named and re-indexed as zk, k = 1, · · · , |WG|, and the NL

random large real load demands PDL
i
, i = 1, · · · , NL as zk, k = |WG| + 1, · · · , K. The 2K + 1

point estimation method calculates 2K pairs of (zk,n, wk,n), k = 1, · · · , K, n = 1, 2 first, where the
location zk,n and the weighting factor wk,n are the nth concentration of the random variable zk,
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and can be calculated as follows. Let µzk
= E[zk] and σ2

zk
= E[(zk − µzk )

2]; µzk
and σ2

zk
can be

calculated based on the pdf p(zk), which is either p(vl) or p(PDL
i
). For k = 1, · · · , K, n = 1, 2,

zk,n = µzk
+ τk,nσzk , where the standard point τk,n =

λk,3
2 + (−1)3−n

√
λk,4 − 3

4λ
2
k,3, and the skewness

λk,3 and kurtosis λk,4 are obtained based on λk,j =
Mj(zk)

(σzk )
j and Mj(zk) =

∫ ∞
−∞ (zk − µzk )

j p(zk)dzk for

j = 3, 4. For k = 1, · · · , K, n = 1, 2, the weighting factor wk,n = (−1)3−n

τk,n(τk,1−τk,2)
. Once the 2K pairs of

(zk,n, wk,n), k = 1, · · · , K, n = 1, 2 are obtained, then for a given (hs, h
s
), the hj(x̃s) is evaluated twice

for each random variable zk at the two points made up of the nth location zk,n of zk and the mean ẑk′ for
the rest K− 1 zk′ , which are (ẑ1, · · · , ẑk−1, zk,n, ẑk+1 · · · , ẑK), n = 1, 2, rather than the 10,000 times in
the MCS. The weighting factor wk,n specifies the relative importance of the evaluation of hj(x̃s) at the
point (ẑ1, · · · , ẑk−1, zk,n, ẑk+1 · · · , ẑK). These 2K evaluations of hj(x̃s) and an evaluation at the point
(ẑ1, · · · , ẑk, · · · , ẑK) that is associated with a weighting factor w0,3 constitute the 2K + 1 evaluations

of hj(x̃s), where w0,3 =
K
∑

k=1
( 1

K −
1

λk,4−λ2
k,3
). Then, µhj

and σ2
hj

can be estimated from the above 2K + 1

evaluations of hj(x̃s) and the corresponding wk,n by:

µhj
=

K

∑
k=1

2

∑
n=1

wk,nhj(x̃s(zk,n)) + w0,3hj(x̃s(z0,3)) (27)

σ2
hj
= [

K

∑
k=1

2

∑
n=1

wk,n(hj(x̃s(zk,n)))

2

+ w0,3(hj(x̃s(z0,3)))
2]− µ2

hj
(28)

The advantage of 2K + 1 point estimation method is that it uses just 2K + 1 evaluations to
evaluate the µhj

and σ2
hj

of hj(x̃s) for the given (hs, h
s
) rather than using the 10,000 evaluations that

are required in the MCS; therefore, it can be utilized in real-time applications. Clearly, estimating σ2
hj

yields an estimate of σhj
. Once µhj

and σhj
of hj(x̃s) for the given (hs, h

s
) are estimated, they can be

input to the jth ANN that is constructed off-line, and whose outputs are the estimated yjη(h
s, h

s
) and

y
jη
(hs, h

s
) of hj(x̃s).

2.2.3. Risk-Limiting Schedule of Optimal Non-Renewable Power-Generation Algorithm

• Initial Setting of Bounds

In the bisection method, the initial values of the four bounds UB(h
s∗
j ), LB(h

s∗
j ), UB(hs∗

j ) and

LB(hs∗
j ) must first be specified. With respect to the transmission line real power flow, since h

o
j > h

s∗
j ,

ho
j = −h

o
j and |pij| ≥ 0, the initial values of these four bounds can be set to UB(h

s∗
j ) = h

o
j , LB(h

s∗
j ) = 0,

UB(hs∗
j ) = 0 and LB(hs∗

j ) = ho
j . With respect to the bus voltage magnitude, since h

o
j > h

s∗
j > hs∗

j > ho
j ,

the initial values of these four bounds can be set to UB(h
s∗
j ) = h

o
j , LB(h

s∗
j ) = ho

j + d, UB(hs∗
j ) = h

o
j − d

and LB(hs∗
j ) = ho

j , where d is a positive real number.

• Algorithm

Based on the analysis presented in Sections 2.2.1 and 2.2.2, the algorithmic steps of the proposed
RSONP algorithm for solving the RSONP problem (Equation (2)) can be presented in the following.

Given data: The pdf p(vl), parameters Cp, a, A and |cosφl | of bus l ∈WG. The pdf p(PDL
i
) and

|cosφDi
|, ∀i = 1, · · · , NL. The m ANNs constructed off-line. The values of η, d and ε.

Step 0: Calculate ûWl = [P̂Wl , Q̂Wl ]
T using Equations (4) and (5) and calculate ûDL

i
= [P̂DL

i
, Q̂DL

i
]
T

using Equation (6) based on p(vl) and p(PDL
i
). For j = 1, · · · , m, set initial values of UB(h

s∗
j ), LB(h

s∗
j ),

UB(hs∗
j ) and LB(hs∗

j ) as described above, and calculate h
s
j and hs

j by Equations (15) and (16).
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Step 1: Solve OPFPRB (Equation (3)) using an available OPF solution method [30] and obtain the
SONP us∗

Gi
, ∀i ∈ G\WG.

Step 2: Use 2K + 1 point estimation method to estimate µhj
and σhj

of hj(x̃s) for j = 1, · · · , m.
Step 3: For j = 1, · · · , m, input µhj

and σhj
, obtained in Step 2, into the jth ANN, and whose

outputs are the estimated η-upper bound yjη(h
s, h

s
) and η-lower bound y

jη
(hs, h

s
) of hj(x̃s).

Step 4: For j = 1, · · · , m, update UB(h
s∗
j ), LB(h

s∗
j ), UB(hs∗

j ) and LB(hs∗
j ) using

Equations (17)–(20), and update h
s
j and hs

j using Equations (15) and (16).

Step 5: If both UB(h
s∗
j )− LB(h

s∗
j ) < εh

o
j and UB(hs∗

j )− LB(hs∗
j ) < εh

o
j hold for all j = 1, · · · , m,

stop and the final LB(h
s∗
j ) and UB(hs∗

j ) are the solutions for h
s∗
j and hs∗

j , respectively, for j = 1, · · · , m;

otherwise, return to Step 1. If the algorithm stops, output the optimal restrictive bounds (hs∗, h
s∗
) and

the OSONP uŝ∗
Gi

, ∀i ∈ G\WG, which is obtained from Step 1 in the final iteration.

2.2.4. Flow Chart of the Risk-Limiting Schedule of Optimal Non-Renewable
Power-Generation Algorithm

The structure of the proposed RSONP algorithm for solving the RSONP problem can be
summarized by the flow chart presented in Figure 2, and the corresponding algorithmic steps are also
indicated in the figure.
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3. Results and Discussion

3.1. Setup of Tests

The IEEE 118-bus system that is presented in [31] is used as the test system. In this system,
there are 44 non-renewable power generation buses, 10 wind power generation buses and 25 buses of
large load demand. Consequently, |WG| = 10, NL = 25 and K = 35. Bus 69 is designated as the swing
bus; the number of transmission lines is 186, so m = 304. (Vo

j , Vo
j ) and (po

ij
, po

ij) are set to (0.95, 1.05)

and (−| p̂ij|(1 + 7%), | p̂ij|(1 + 7%)), respectively, where | p̂ij| is the absolute value of the pij in the base
case. In the OPFPRB (Equation (3)) and COPF problem (Equation (1)), the values of the cost coefficients
ai, bi and ci ∀i ∈ G\WG are randomly selected from the intervals (6.78, 74.33), (8.3391, 37.6968) and
(0.002401, 0.069663), respectively. Notably, the units of ai, bi and ci are $/(MW)2 (h)3, $/MW (h)2

and $, respectively. The Weibull distribution given by Equation (22) and the normal distribution given
by Equation (23) are adopted for p(vl) and p(PDL

i
), respectively. The parameters used in the RSONP

algorithm are set as follows. η = 0.95, ε = 10−3, d = 0.02, α = 9, β = 1.6, Cp = 0.3, a = 1.225, A = 706.8
and |cosφl | = 0.9; µDL

i
is set to the load demand in the base case, and σDL

i
= 0.03 µDL

i
. The parameters

used in the ANN are set as q = 5 and epochs = 5000.
To study the effect of re-dispatching the SONP us∗

Gi
, ∀i ∈ G\WG, on the performance of the

OSONP uŝ∗
Gi

, ∀i ∈ G\WG, and the corresponding generation cost, two test cases, A and B, are designed
with extremely different re-dispatching results. In Case A, rPi % = rQi % = 0, ∀i ∈ G\WG and i 6= 69
are assumed, consistent with a situation in which no non-renewable power generation bus other than
the swing bus has a power generation reserve to compensate for the power mismatch. In Case B,
rPi % = rPj % and rQi % = rQj %, ∀i, j ∈ G\WG, are assumed, approximately consistent with a situation
in which all non-renewable power generation buses including the swing bus can generate enough
power to compensate for the power deviations of interest.

Notably, all simulations in this test are performed using a personal computer with 3.3 GHz Intel
Core I5 and 4 GB RAMS, and all algorithms are implemented in MATLAB (2015b, MathWorks, Natick,
MA, USA).

3.2. Test Results, Comparison and Discussions of Case A

Based on the above test setup and the m off-line constructed ANNs, the RSONP algorithm
is used to solve the RSONP problems on the IEEE 118-bus system in test Case A to obtain the
OSONP uŝ∗

Gi
, ∀i ∈ G\WG, and the optimal restrictive bounds (hs∗, h

s∗
). The five Terms (a)–(e) listed in

Table 1 are reported or evaluated in this test.

Table 1. The five terms evaluated in the test. RSONP: risk-limiting schedule of optimal
non-renewable power-generation.

Term Content

(a) Number of iterations executed in the RSONP algorithm
(b) Corresponding CPU time of (a)

(c)
m
∑

j=1
[(hs∗

j − ho
j )

2 + (h
o
j − h

s∗
j )

2
]

(d) ∑
i∈G\WG

ai(Pŝ∗
Gi
)2 + biPŝ∗

Gi
+ ci

(e) Prob{ho
j ≤ hj(x̃s) ≤ h

o
j , ∀j = 1, · · · , m|hs∗, h

s∗}

The Terms (a) and (b) correspond to the run time of the RSONP algorithm. Term (c) is the
optimal objective value of the RSONP problem (Equation (2)). Term (d) represents the scheduled
optimal total non-renewable power generation cost in unit $/h, which is the optimal objective value of
the OPFPRB (Equation (3)) when (hs, h

s
) = (hs∗, h

s∗
). Term (e) reflects the performance of the
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OSONP uŝ∗
Gi

, ∀i ∈ G\WG, and is evaluated based on the MCS presented in Section 2.1.3 but

replacing (hs, h
s
) and us∗

Gi
, ∀i ∈ G\WG by (hs∗, h

s∗
) and uŝ∗

Gi
, ∀i ∈ G\WG, respectively.

Table 2 presents the test results concerning the aforementioned five terms that were obtained
using the proposed RSONP algorithm in Case A. Although RSONP algorithm takes ten iterations to
reach the termination criterion, the results that were obtained in 6–9 th iterations are also reported.
Columns 1 and 3 of Table 2 reveal the iteration-wise improvement of the objective value of the
RSONP problem (Equation (2)), indicating that the distance between the obtained restrictive bounds
and the normal bounds becomes smaller each iteration. As the restrictive bounds become less
restrictive, the scheduled optimal total non-renewable power generation cost shown in Column 4 of
Table 2 becomes smaller as predicted. Moreover, as the restrictive bounds becomes more restrictive,
the performance of the OSONP uŝ∗

Gi
, ∀i ∈ G\WG, improves but at the cost of an increase in the

scheduled optimal total non-renewable power generation cost as is observed from Columns 3–5 in
Table 2. This is reasonable, because a higher cost is required for a better performance. The performance
of the OSONP uŝ∗

Gi
, ∀i ∈ G\WG, in iterations six to ten of the RSONP algorithm exceeds 0.95 and

the consumed CPU time are all less than 83.4 s, as revealed by Columns 5 and 2 in Table 2. In fact,
the RSONP algorithm can be terminated after iteration 7, because the corresponding CPU time is
less than one minute, but the performance is 0.55% better than that achieved in ten iterations, at the
cost of only a 0.03% increase in the scheduled optimal total non-renewable power generation cost.
The above results imply the following. The solution obtained at the end of iteration ten being the
best is simply because the objective function of the RSONP problem (Equation (2)) considers only
Term (c) that is proportional to Term (d), the non-renewable power generation cost, but do not
consider Term (e), the performance regarding the probability of satisfying the security constraints
in the presence of uncertain power generation and load demand. Since some system operators may
care more about the security than the cost, a multi-objective OPF that considers both non-renewable
power generation cost and the probability of satisfying the security constraints would be an issue that
is worthy of investigation.

Table 2. Results of using the RSONP algorithm to solve the RSONP problem on the IEEE 118-bus
system in Case A.

(a) * (b) * (c) * (d) * (e) *

6 48.6 18.292 129,711.75 95.89
7 56.8 10.871 129,699.91 95.74
8 64.5 4.355 129,688.83 95.43
9 72.1 2.871 129,673.23 95.29
10 83.4 0.709 129,661.69 95.21

* Terms regarding (a)–(e) are specified in Table 1.

To demonstrate the advantage of the RSONP algorithm, the performance of the obtained
OSONP uŝ∗

Gi
, ∀i ∈ G\WG, is compared with the conventional schedule of optimal non-renewable

power-generation (CSONP) uo∗
Gi

, ∀i ∈ G\WG, which is obtained by solving the COPF problem
(Equation (1)) using the OPF solution method [30] that was used in Step 1 of the RSONP algorithm.
The performance of uo∗

Gi
, ∀i ∈ G\WG, is defined as Prob{ho

j ≤ hj(x̃o) ≤ h
o
j , ∀j = 1, · · · , m|ho, h

o},
where x̃o is the normal-bound-based random state-vector after re-dispatching (NRSAR) for all buses
i = 1, · · · , N. The NRSAR x̃o is obtained using the procedure that was elucidated in the re-dispatching
stage (Section 2.1.3) but with uŝ∗

Gi
, ũs

Gi
, ∀i ∈ G\WG, and x̃s replaced by uo∗

Gi
, ũo

Gi
, ∀i ∈ G\WG, and x̃o,

respectively, where ũo
Gi

, ∀i ∈ G\WG, is the Normal-bound-based Non-renewable Power-generation
After Re-dispatching (NNPAR) that was obtained by re-dispatching the CSONP uo∗

Gi
, ∀i ∈ G\WG,

using Equations (9) and (10) based on the re-dispatching percentage share in Case A. The procedure
for evaluating Prob{ho

j ≤ hj(x̃o) ≤ h
o
j , ∀j = 1, · · · , m|ho, h

o} in Case A is also based on the MCS

presented in Section 2.1.3 but replacing (hs, h
s
) and us∗

Gi
, ∀i ∈ G\WG by (ho, h

o
) and uo∗

Gi
, ∀i ∈ G\WG,
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respectively. The test results show that the performance of the CSONP uo∗
Gi

, ∀i ∈ G\WG, in Case A
is 0.7723 which is far from performance of greater than 0.95 that results from all the OSONP
uŝ∗

Gi
, ∀i ∈ G\WG, obtained in iterations six to ten of the proposed RSONP algorithm as shown in

Table 2. However, the total non-renewable power generation cost of uo∗
Gi

, ∀i ∈ G\WG, that is calculated
as ∑

i∈G\WG
ai(Po∗

Gi
)2 + biPo∗

Gi
+ ci is $129,630.47/h. Hence, in Case A, the performance of the OSONP

uŝ∗
Gi

, ∀i ∈ G\WG, obtained by executing the RSONP algorithm for ten iterations is 23.28% better than
that of CSONP uo∗

Gi
, ∀i ∈ G\WG, at the cost of a 0.024% increase in the total non-renewable power

generation cost. The above results reveal that the proposed RSONP algorithm can be applied in real
time to a large power system and effectively reduce the risk of violating security constraints in the
presence of uncertain power generation and load demand at the very small cost of an increase in the
total non-renewable power generation cost.

3.3. Test Results, Comparisons and Discussions of Case B

The procedure of using the RSONP algorithm to solve the RSONP problem on the IEEE 118-bus
system in Case B is the same as that in Case A, but with a different re-dispatching percentage share.
Table 3 presents the test results of Case B regarding the five Terms, (a)–(e), defined in Table 1, and they
are qualitatively the same as those in Case A.

Table 3. Results of using the RSONP algorithm to solve the RSONP problem on the IEEE 118-bus
system in Case B.

(a) * (b) * (c) * (d) * (e) *

6 47.5 18.278 129,709.06 95.86
7 56.4 10.843 129,696.38 95.65
8 65.3 4.326 129,681.13 95.38
9 71.5 2.858 129,670.84 95.26
10 82.6 0.722 129,659.72 95.17

* Terms regarding (a)–(e) are specified in Table 1.

To demonstrate the advantage of the RSONP algorithm in Case B, the performance of the
previously obtained CSONP uo∗

Gi
, ∀i ∈ G\WG, is also investigated in Case B. The test procedures

are the same as that for Case A described in Section 3.2 except for the re-dispatching percentage share.
The test result shows that the performance of the CSONP uo∗

Gi
, ∀i ∈ G\WG,, i.e., Prob{ho

j ≤ hj(x̃o) ≤
h

o
j , ∀j = 1, · · · , m|ho, h

o} in Case B is 0.7715 (<0.95) in contrast to the larger than 0.95 performances
resulted from all the OSONP uŝ∗

Gi
, ∀i ∈ G\WG, obtained by the proposed RSONP algorithm using

6 to 10 iterations as presented in Table 3. Notably, the total non-renewable power generation cost
of CSONP uo∗

Gi
, ∀i ∈ G\WG, in Case B is exactly the same as that presented in Case A. Therefore,

comparing with the CSONP uo∗
Gi

, ∀i ∈ G\WG, the performance of the OSONP uŝ∗
Gi

, ∀i ∈ G\WG,
obtained from executing the RSONP algorithm for 10 iterations in Case B is 23.35% better at the small
cost of a 0.022% increase in the total non-renewable power generation cost. Since the re-dispatching
percentage share for all the non-renewable power generation busses in these two cases are extremely
different, the test results presented in Tables 2 and 3 demonstrate the robustness of the proposed
RSONP algorithm.

4. Conclusions and Further Research

Intermittent renewable power generation and uncertain load demand may cause security
constraints to be violated. To limit this risk, an RSONP problem is formulated and a computationally
efficient RSONP algorithm is presented and tested on the IEEE 118-bus power system. The computing
speed of the RSONP algorithm and its comparison with the CSONP show that it can be applied in
real time to reduce the risk of violating security constraints at the very small cost of an increase in
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the total non-renewable power generation cost. As for further research, due to the conflicting nature
between the non-renewable power generation cost and the probability of satisfying security constraints
indicated in Section 3.2, it would be worthwhile to formulate a multi-objective OPF problem by
taking into account the aforementioned two conflicting terms and propose a computationally efficient
algorithm to solve it.
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Nomenclature

OPF Optimal power flow
RSONP Risk-limiting schedule of optimal non-renewable power-generation
MCS Monte Carlo simulation
OPFPRB OPF problem with restrictive bounds, Equation (3)
SONP Scheduled Optimal Non-renewable Power-generation
COPF Conventional OPF
OSONP Optimal SONP
NPAR Non-renewable Power-generation After Re-dispatching
RSAR Random State-vector After Re-dispatching
STAR Security Term after Re-dispatching
CSONP Conventional Schedule of Optimal Non-renewable Power-generation
NRSAR Normal-bound-based Random State-vector After Re-dispatching
NSTAR Normal-bound-based Security Term after re-dispatching
NNPAR Normal-bound-based Non-renewable Power-generation after Re-dispatching
Vi/θi Voltage magnitude/phase angle of bus i
Vo

i /Vo
i Normal upper/lower bound of Vi

xi = [Vi, θi]
T state variable of bus i

N/L Total number of busses/the set of all transmission lines of the system

x = [xT
1 , · · · , xT

N ]
T state vector of all busses

G/WG/(G\WG) Set of all/wind power/non-renewable power generation busses
PGi /QGi Real/reactive power generation at bus i
uGi = [PGi , QGi ]

T the power generation at bus i
uGi /uGi

Upper/lower bound of uGi

vl , l ∈WG Random wind speed of wind power generation bus l ∈WG
p(vl) Probability density function (pdf) of random wind speed vl
ûWl Predicted wind power generation at bus l
ũWl (vl) Random wind power generation at bus l
ûDL Vector of predicted large load-demand
ûDS Vector of predicted small load-demand
ûD = [ûT

DL , ûT
DS ]

T

ũDL
i
= [P̃DL

i
, Q̃DL

i
]
T

random large load demand at bus DL
i

ũDL
i
= [P̃DL

i
, Q̃DL

i
]
T

random large load demand at bus DL
i

ũDL = [ũDL
1
, ũDL

2
, · · · , ũDL

NL
]T random vector of large load demand

p(P̃DL
i
)

Probability density function (pdf) of random large real load demand at
bus DL

i
pij Real power flow over transmission line (i, j)
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po
ij/po

ij Normal upper/lower bound of pij

g(x, uG, uW , uD) = 0 Real and reactive power flow balance equation

∑
i∈G\WG

aiP2
Gi
+ biPGi + ci Total non-renewable power generation cost, where ai, bi and ci are

cost coefficients

hj
Function of the jth security term such as voltage magnitude Vi at bus i or real
power flow pij over transmission line (i, j)

h
o
j /ho

j Normal upper/lower bound of the jth security constraint

h
s
j /hs

j
Restrictive upper/lower bound of the jth security constraint;
h

s
j ≤ h

o
j and hs

j ≥ ho
j

h
s∗
j /hs∗

j Optimal restrictive upper/lower bound

h($)/h
($)

=[h($)1 , · · · , h($)m ]
T

/

[h
($)
1 , · · · , h

($)
m ]

T
for any superscript ($), where m denotes the total number of
security constraints

η
Required probability level of satisfying the security constraints in
Equation (2), and 0 < η < 1

rPi %/rQi %
Non-renewable power generation bus i’s re-dispatching percentage share of
real/reactive power generation

ri% = [rPi %, rQi %]T

uo∗
Gi

, ∀i ∈ G\WG CSONP, which is the solution of COPF Problem (1)

us∗
Gi

, ∀i ∈ G\WG
SONP for the given restrictive bounds (hs, h

s
), which is the solution of

OPFPRB (3)
uŝ∗

Gi
, ∀i ∈ G\WG OSONP, which is the solution of OPFPRB (3) when (hs, h

s
) = (hs∗, h

s∗
)

ũo
Gi

, ∀i ∈ G\WG NNPAR
ũs

Gi
, ∀i ∈ G\WG NPAR for the given restrictive bounds (hs, h

s
)

(&)
u

($)

(∆) = [
(&)
P

($)

(∆),
(&)

Q
($)

(∆)]

T for any heading (&), subscript (∆) or superscript ($), where
(&)
P

($)

(∆) and
(&)

Q
($)

(∆)

are real and reactive parts of
(&)
u

($)

(∆), respectively
x̃o NRSAR
hj(x̃o) The jth NSTAR
x̃s The RSAR resulted from the scheduling and re-dispatching stages
hj(x̃s) The jth STAR for the given restrictive bounds (hs, h

s
)

yjη/y
jη η-upper bound/η-lower bound of hj(x̃s)

µhj
/σ2

hj
mean/variance of hj(x̃s)
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