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Abstract: The use of appropriate hourly reserve margins can maintain power system security by
balancing supply and demand in the presence of errors in the forecast demand, generation outages,
or errors in the forecast of wind power generation. Because the cost of unit commitment increases
with larger reserve margins, cost analysis to determine the most economical reserve margin is an
important issue in power system operation. Here, we define the “short-term reliability of balance”
and describe a method to determine the reserve margin based on the short-term reliability of balance.
We describe a case study, in which we calculate the reserve margin using this method with various
standards of short-term reliability of balance. A cost analysis is then performed to determine the most
economic standard, and a comparison between our method and a conventional method is carried out.
The results show that our method with an economic short-term reliability of balance enables more
reliable and efficient operation of the power system. Moreover, with an hourly reserve margin, we
show that an increase in wind power generation can result in a significant decrease in the operating
cost, which makes wind power generation economically viable.

Keywords: dynamic reserve; unit commitment; reliability; wind power generation; cost analysis;
power system operation; uncertainty; generation outage

1. Introduction

One of the most important characteristics of power systems is that demand and supply be
balanced at all times. An unexpected change in demand or supply results in fluctuations in the system
frequency, and if balance between generation and load is lost, it can lead to frequency deviations, a loss
of synchronization between generators, or even a blackout of the entire power system. For this reason,
the system operator (SO) should provide operating reserve to account for unexpected fluctuations in
demand or supply, or problems that may occur in the electrical grid.

The appropriate operating reserve margin is related to both the reliability and the cost associated
with maintaining it. A larger operating reserve margin provides greater ability to accommodate
unexpected losses of generators or increases in demand. However, a larger reserve margin also leads
to higher generation costs of the reserve generators. Because operating reserve should be available at
all times, an excessive operating reserve margin will lead to significant additional costs.

A great deal of discussion has focused on appropriate operating reserve margins, including
methods to estimate the frequency regulation reserve [1,2] and consideration of contingencies [3],
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as well as operating standards for optimal reserve [4,5]. These reports focused on operating reserve
margins that apply during time periods greater than one day.

In [1–5], the main uncertainty considered is generation outage, which could result in an insufficient
supply of power compared with demand. However, unexpected variations in demand may occur over
much shorter timescales, and the required reserve margin will differ for each time period. Therefore,
for the SO to manage the power system more economically, the reserve margin should be allowed
to vary with time, rather than being fixed for a constant rate of demand all day. Both [6,7] consider
the uncertainties in probabilistic outage with expected energy not served (EENS) and estimate an
appropriate operating reserve margin that satisfies risk criteria such as the loss of load probability
(LOLP). Furthermore, [8,9] also consider the load forecasting error to optimize the spinning reserve
requirements while maintaining certain LOLP criteria. In [10], the tradeoff between unit capacity and
average production cost is analyzed and the spinning reserve margin is optimized while considering
the schedule cost and expected interruption cost. In [11], some indices of credibility assessment
are proposed to predict the forecasting error and probabilistic load forecast, which could support
decision-making in power system operation. Nonetheless, these papers did not consider instability in
supply caused by wind power generation, which could form a significant proportion of the power
supply and have a more variable power output than conventional generators.

In addition to the uncertainties caused by generation outage, many investigations have considered
uncertainties in wind power forecasting for power systems with a large portion of wind power
generation [12–16]. If there is high penetration of wind generation in a power system, the forecasting
error cannot be ignored regarding the uncertainties in the supply of power. In [17], wind power
uncertainty is modeled explicitly using scenarios, and reserve requirements are enforced on the
scenarios to account for the limited number of scenarios represented. A new type of unit commitment,
which considers the interruptible load as a reserve to handle the increased uncertainty with wind power,
is also suggested in [18]. Both [19,20] also consider wind power generation as an operating risk and
propose an algorithm based on non-parametric kernel density estimation and a model for a short-term
future forecasting using a conditional probability approach to reduce the risk. In [21,22], wind
power uncertainty is modeled as Gaussian distribution and finite-state Markove chain, respectively.
Then reserve capacity which could minimize the expected cost is calculated based on each model.
However, although these studies considered the uncertainties in wind power generation, they did not
fully incorporate other major uncertainties arising from load forecasting and generation outage.

Finally, methods to calculate hourly reserve margins considering the uncertainties of load forecast,
generation outage, and wind power generation are researched [23–27]. In [23], the required operating
balance reserve is estimated with consideration given to the load forecast error and unavailable
capacity due to unit outage in a time horizon of 1–48 h. Both [24,25] generate probability functions of
conventional generation outage, load forecasting uncertainty, and wind power forecast uncertainty,
and the reserve margin is estimated considering the trade-off between risk and reserve cost. In [26],
a new random variable which consists of uncertainties of load shedding and wind curtailment is
defined, and conditional value-at-risk (CVaR) is adopted to determine risk reserve requirement. In [27],
the spinning reserve margin is determined from a defined term called the short-term reliability of
balance, which is calculated from the probabilistic models of uncertainties.

Nevertheless, most papers did not consider the relation between unit commitment and
probabilistic generation outage modeling. The most important thing in modeling the uncertainties
while considering uncertainties like demand forecasting, generation outage, and wind power
forecasting is that they are related and cause differences in the overall demand and supply of power.
Specifically, the generation outage should be considered carefully, because the volume of generating
output planned to supply the system that cannot be used because of the outage is strongly linked to the
result of unit commitment and economic dispatch. The unit commitment and economic dispatch should
also be calculated while considering the uncertainties in generation outage when they are dealing with
the risk of uncertainties combined with demand forecasting and wind power generation error.
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Consequently, algorithms and calculation methods should be developed to consider these
uncertainties in the unit commitment and estimating operating reserve margin. Moreover, any
estimation of the operating reserve margin should consider not only the risk that an unbalance of
supply and demand occurs but also the overall operating cost. Cost analysis should take into account
both the generation cost, calculated from the unit commitment and dispatch, and the load-shedding
cost, which is related to the risk that the uncertainties would cause, because a greater reserve margin
would decrease the risk but increase the generation cost. Therefore, the unit commitment and reserve
margin should be estimated to minimize operating costs while maintaining a certain level of risk.

This paper describes a unit commitment method that considers the uncertainties caused by
load forecasting, generation outage, and wind power forecasting. An algorithm that considers the
generation outage more precisely is included. This algorithm calculates the economic dispatch and
estimated reserve margin based on the overall expected cost and amount of risk, which is defined as
the short-term reliability of balance. The major contributions of this paper are as follows: (1) precise
generation outage modelling is formulated from unit commitment result based on the premise that
volume of generation outage occurred equals the volume planned in unit commitment; (2) a new
algorithm is proposed that can perform unit commitment with minimum reserve margin constraints
in order to maintain the reliability standard in all time period, where the minimum reserve margin
constraints are calculated with consideration of demand forecasting and wind power forecasting
errors as well as generation outage; and (3) a case study is carried out to identify the usefulness
of the proposed method in terms of improved reliability and cost-effectiveness, compared to the
conventional method.

The remainder of this paper is organized as follows: Section 2 introduces the probability
distribution formulations of uncertainty factors. Demand forecast errors, generation outage, and wind
power generation forecast errors are considered in this section along with the short-term reliability
of balance to consider these three errors at the same time. In Section 3, the definition of short-term
reliability of balance and the algorithm that is used to estimate the dynamic reserve is given. Section 4
describes the formulation of the operating cost, which includes the generation and load-shedding
costs. Section 5 describes a case study using the reserve and cost calculation methods, and Section 6
concludes the paper.

2. Probability Distribution Model of Uncertainties in Demand and Supply

2.1. Probability Distribution Model of Demand Forecast Error

The hourly reserve requirement is closely related to the uncertainty in demand, which can be
represented by the error associated with the forecast load, and hence by a probability distribution
model for demand.

The demand at time t for case s can be calculated as follows [28]:

ADs
t = EDs

t + Lt (1)

where EDs
t is the forecast demand at time t for case s and Lt is the error in that forecast demand. Here,

we assume that the forecast error in the demand follows a normal distribution with a zero mean [29].
Clearly, a larger error corresponds to a larger standard deviation in the demand. The error varied

because the demand pattern of customers differed on both an hourly basis and a seasonal basis. These
errors can be described using a statistical approach with data from the forecast peak demand and the
actual peak demand, i.e.,

TEt =
1

Cs
t
∑

s

|ADs
t − EDs

t |
ADs

t
× 100 (%) (2)

Assuming that the probability distribution of the demand is normally distributed [30],
the difference between the actual demand and the expected demand ADs

t − EDs
t , will also follow a
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normal distribution. Therefore, the absolute value of the difference, |ADs
t − EDs

t |, can be described
by the positive-valued half of a zero-mean normal distribution. Assuming a sufficiently long time
period and the values of ADs

t being similar to each other, the mean of this half-normal distribution can
be calculated as follows [31]:

E(ADs
t − EDs

t ) =

√
2
π

σt =
1

Ns
t
∑

s
|ADs

t − EDs
t | = ADs

t ×
TEt

100
(3)

Assuming ADs
t − EDs

t , we find √
2
π

σt = EDs
t ×

TEt

100
(4)

The standard deviation in the demand forecast error during hour t is therefore

σt =

√
π

2
× EDs

t ×
TEt

100
(5)

and we can conclude that the probability distribution of the hourly forecast error in the demand is
normally distributed with a standard deviation given by (5).

2.2. Probability Distribution Model of Generator Outages

The power output of each generator differs from hour to hour due to unit commitment and
variations in the load. The uncertainty during peak times, when a large number of generators are
online, is larger than that for off-peak times. Accordingly, a different probability distribution is required
during peak times and off-peak times. The probability distribution model of generator outages should
be calculated using the forced outage rate (FOR) for each generator, which is defined as the probability
that the unit will be unavailable under similar conditions [32].

Because the probability distribution model is calculated hourly, the FOR for each generator is
defined as the probability that the generator is not available in that hour. The probability that the
generator i is available in that hour is therefore given by 1 − FORi.

From the results of unit commitment, if a given generator is unavailable, then neither is the power
that the generator was planned to provide. It follows that the dispatch schedule and planned power
output of generators will change in response to an outage. Because the demand varies as a function of
time, the available power will also vary, even though the FOR of generators is constant with the time.
Consequently, the probability distribution of outages varied with time.

The time-dependent probability of generator outage Gt can be calculated as follows:

P(Gt) = ∑
j

P(Gt,j) (6)

subject to
P(Gt,j) = ∏

N∈Ft

PN
FOR (7)

and
Ft = {N | ∑

N∈Ft

GN
t = Gt} (8)

These expressions show that an outage Gt occurs when the sum of the outage generators is Gt

and can be calculated as the product of the FOR of each generator.
Unlike the probability distribution for demand, the probability distribution for generator outage

is discrete and positive-valued because the lack of capacity is determined from the combination of
online generators and the planned generation output.
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2.3. Probability Distribution Model of Forecast Error for Wind Power Generation

The expected wind power generation may differ on an hourly basis because of fluctuations in the
wind velocity and direction. The resulting probability distribution errors in wind power generation
vary depending on the expected wind power generation, which can be approximated by a gamma
distribution. In order to build a detailed model of the probability distribution of the error in the wind
power generation, the expected wind power can be divided into five classes for separate analysis [23].

The results for Classes 1 and 2 have relatively small wind power generation and tend to have a
positive error, whereas Classes 4 and 5 have large expected wind power generation and tend to have
negative errors in the probability distribution. It follows that if relatively low wind power generation is
expected, it is more likely that the expected value will be an underestimate; i.e., the wind forecast error
was typically positive. With higher wind power generation, the expected value tended to overestimate
the forecast wind power; i.e., the forecast error in the wind power was typically negative.

To approximate the data using a gamma distribution, some modifications are required because a
gamma distribution is defined only in the range greater than zero, and the probability density function
has an average value of kθ. Assuming that the average error of these probability distributions in each
class is equal to zero, a modified gamma-like distribution was constructed using the basic probability
density function with a translation of −kθ on the x-axis. The probability density functions for Classes
1, 2, and 3 were as follows:

f (x; k, θ) =
(x + kθ)k−1e−(x+kθ)/θ

θkΓ(k)
f or x > 0, k > 0, θ > 0 (9)

Classes 4 and 5 exhibit probability distributions that are right-sided. These probability
distributions are described by probability density functions that are reflected on the y-axis, so that the
probability density functions for Classes 4 and 5 are as follows:

f (x; k, θ) =
(−x− kθ)k−1e(x+kθ)/θ

θkΓ(k)
f or x > 0, k > 0, θ > 0 (10)

3. Algorithm for Dynamic Reserve Estimation

To calculate the hourly reserve using the probability distribution models of the demand forecast
error, generation outage and wind power generation errors should be defined; i.e., the “standard” that
determines the reserve margin should be defined. Here this “standard” is termed the “short-term
reliability of balance” and is calculated from the probability that imbalance between supply and
demand occurs in a given hour, considering the uncertainties in supply and demand.

If PR,t is the reserve for hour t, the probability that imbalance in supply and demand occurs is
as follows:

P(PIm,t > PR,t) = P(Gt + Lt + Wt > PR,t) =
Ptotal

∑
x=0

[P(Gt = x) × P(PIm,t | Lt + Wt > PIm,t − x)] (11)

and the probability that balance of supply and demand is maintained during an hour, i.e., the short-term
reliability of balance is as follows:

SRt = [1− P(PIm,t > PR,t)]× 100 (%) (12)

This expression describes the probability that the power system maintains balance between supply
and demand if the hourly reserve PR,t is allocated: the larger the hourly reserve, the larger the SRt.
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To maintain power balance, the short-term reliability of balance should be maintained above a
given threshold every hour. If the short-term reliability of balance is determined, the minimum reserve
requirement for each hour can be calculated as follows:

PMR,t = min(PR,t : P(PIm,t > PR,t) < 1− SRt

100
) (13)

To calculate the reserve requirements for each hour using (13), probability distributions of the
error in the forecast demand, generation outages, and the error in the forecast wind power generation
should be determined.

The probability distributions for generator outages are calculated using unit commitment, which
provides hourly information on the online/offline status and planned generation for all generators.
However, to perform unit commitment, the reserve allocation for each hour should be determined
because of the constraints for reserve during each hour, which is part of the unit commitment process.
Therefore, to calculate the reserve requirements, a recursive algorithm is used, as shown in Figure 1.
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Figure 1. Solution method to determine the hourly spinning reserve margin.

The algorithm in Figure 1 consists of the following four steps:

Step 1. A probability distribution of the demand forecast error and wind generation forecast error
is constructed using data for the hourly demand forecast error and the probability distribution
for each class of wind farm.
Step 2. In the first iteration, the required hourly reserve is assumed to be zero, and unit
commitment is carried out with no reserve. A probability distribution for generator outage
is then constructed.
Step 3. The hourly reserve margin is calculated that satisfies (13), and we check for convergence.
Step 4. If convergence is not achieved, re-enter Step 2 using the calculated reserve requirements
from Step 3.
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During Step 1, unit commitment is carried out without considering outages of generators,
or errors in the forecast demand and wind power. The probability distribution for outrages of
generators can be calculated using data from unit commitment; however, these errors cannot be
considered in the first iteration. During Step 3, the appropriate reserve margin is calculated using
the probability distribution for generator outage, and the errors in the forecast demand and the wind
power, which were calculated in Step 2. However, because the required reserve margin changes,
the algorithm should be repeated until the hourly reserve margin converges and satisfies both unit
commitment and the appropriate reserve margin calculated using (13). When the reserve margin
converges, short-term reliability of balance should be satisfied.

4. Cost of Reserve

4.1. Operating Cost

Here, the operating cost is the overall daily cost to maintain power system security, which includes
the cost of all conventional generators (i.e., the generation cost), the expected cost for imbalance
between demand and supply, and the expected cost of outages (i.e., the load-shedding cost).

As the short-term reliability of balance varies, so will the reserve margin, which results in different
generation and load-shedding costs. Therefore, to determine the short-term reliability of balance that
is most economical, we should calculate the operating cost as a function of the reserve margin and the
short-term reliability of balance for each hour.

4.2. Generation Costs

The generation cost is the cost of conventional generators over 24 h, determined using unit
commitment. Unit commitment is the process that determines whether generators are online or offline,
and is carried out hourly. The objective is to identify the unit combination that has the lowest cost
based on cost functions of each generator, while satisfying the predetermined reserve margin.

The cost function of each generator is a quadratic function of the output of the generators,
and is determined by the sum of production cost, which has unit cost coefficients ai, bi, and ci, in each
generator and start-up/shutdown cost in terms of generation start-up or shutdown, i.e.,

(Generation Cost) =
24

∑
t=1

[
NG

∑
i=1
{(ai + biPi,t + ciP2

i,t)×MBtu + STCi(ui,t−1, ui,t)}] (14)

Because demand is met by both conventional generators and wind power, the generation cost
decreases as the wind power penetration increases. Using the method described here to calculate the
reserve, the generation cost increases as the short-term reliability of balance increases because the
constraints of short-term reliability of balance in unit commitment increase the operating cost.

4.3. Load-Shedding Cost

When imbalance occurs between demand and supply, the SO should carry out load shedding
to maintain the system frequency. Those customers affected by load shedding cannot use electricity,
and monetary penalties result. The load-shedding cost is the expected sum of these monetary penalties
and increases as more load shedding occurs.

Load shedding is determined by the reserve margin and the error in the forecast demand,
generation outage, and wind power. The load shedding in hour t, is given by

PLS,t = Gt + Lt + Wt − PR,t (15)
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and occurs when demand exceeds the sum of the supply and the reserve margin. The probability that
load shedding PLS,t occurs during time t can be calculated as follows:

P(PLS,t) = P(Gt + Lt + Wt − PR,t = PLS,t) =
PTotal
∑

x=0
[P(Gt = x)× P(PIm,t | Lt + Wt = PLS,t − PR,t)] (16)

Using (15) and (16), the load-shedding cost can be calculated as the product of PLS,t, the probability
of load shedding, and the outage cost, COC, i.e.,

(Load Shedding Cost) =
24
∑

t=1

∞
∑

PLS,t=0
{[

PTotal
∑

x=0
{P(Gt = x)× P(PIm,t | Lt + Wt = PLS,t − PR,t)}]× PLS,t} × COC (17)

Because load shedding decreases as the reserve margin increases, the load-shedding cost also
decreases. It follows that the load-shedding cost has an inverse relation with the short-term reliability
of balance.

5. Case Study

5.1. Test System Description

A case study was carried out based on an IEEE 118 bus system with 54 generators. The demand
and the forecast error in the demand for each hour are shown in Figure 2a. These data were from the
summer of 2012 in Korea, and modified proportionally considering the generation capacity of the
IEEE 118 bus system. The maximum generation capacity of wind farms was set to 500 MW; the hourly
forecast wind power generation is shown in Figure 2b. The probability distributions describing the
error in the forecast wind power generation of five classes were determined from the models shown
in [23].
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Figure 2. Forecast demand and wind power generation used in the case study: (a) Forecast demand
(labeled with left y-axis) and the error in the forecast demand (labeled with right y-axis) based on
data for summer 2012 in Korea; (b) Hourly forecast wind power generation in a typical day and for
Classes 1–5.

The FOR for the 54 generators in the IEEE 118 bus system was divided into 10 (i.e., Type 1
to Type 10), depending on the cost function, and the FOR of each type was set arbitrarily, as listed
in Table 1.

The outage cost was assumed to be $2000/MWh. The unit cost coefficients for each generator
were taken from the generator data for the IEEE 118 bus system.
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Table 1. Forced Outage Rate (FOR) for the 54 generators in the IEEE 118 bus system.

Type Unit Number of Generators Forced Outage Rate (%)

1 4, 5, 10, 29, 36, 40, 43, 44, 45 0.00015
2 7, 14, 16, 19, 22, 23, 26, 34, 35, 37, 47, 48, 51, 52, 53 0.0003
3 33, 41, 46, 49 0.00025
4 20, 21 0.0001
5 1, 2, 3, 6, 8, 9, 12, 13, 15, 17, 18, 31, 32, 38 0.0002
6 11, 39 0.00025
7 59, 61 0.00025
8 42, 50, 54 0.0001
9 27, 28 0.0002

10 30 0.0001

5.2. Costs and Optimal Short-Term Reliability of Balance

To determine the most economical short-term reliability of balance, we should minimize the
operating cost. In this case study, the hourly reserve margin was calculated to provide a short-term
reliability of balance in the range of 99.1%–99.8%. The operating cost is the sum of the generation
cost and the load-shedding cost, which was calculated to determine the optimal short-term reliability
of balance.

Figure 3 shows the calculated reserve over 24 h to provide a short-term reliability of balance
of 99.2%, 99.4%, 99.6%, and 99.8% using (13). The reserve required during each hour increased as
the short-term reliability of balance increased, resulting in an increase in the generation costs and a
decrease in the load-shedding cost.
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Figure 3. Hourly reserve margin with the short-term reliability of balance varied from 99.2% to 99.8%.

Using the methods described in Section 4, the generation and load-shedding costs can be
calculated as a function of the short-term reliability of balance, as listed in Table 2. A minimum
in the operating cost corresponded to a short-term reliability of balance of 99.6%, which can therefore
be identified as the optimal case.

Figure 4 shows the costs as a function of the short-term reliability of balance. As the short-term
reliability of balance increased, so did the generation cost, due to the larger required reserve margin.
However, the load-shedding cost decreased as the short-term reliability of balance increased because
the increase in the required reserve margin resulted in a smaller probability that demand exceeds
supply. The operating cost was minimized for a short-term reliability of balance of 99.6%.
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Table 2. The calculated costs for various short-term reliabilities of balance in the range 99.1%–99.8%.

Case Generation Cost ($) Load-Shedding Cost ($) Operating Cost ($)

99.1% 1,738,000 11,907 1,749,907
99.2% 1,738,100 10,894 1,748,994
99.3% 1,739,700 9,954 1,749,654
99.4% 1,740,200 8,797 1,748,997
99.5% 1,740,900 7,836 1,748,736
99.6% 1,741,700 6,445 1,748,145
99.7% 1,744,000 4,550 1,748,550
99.8% 1,746,600 3,189 1,749,789
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5.3. Comparison of Our Method with a Constant Reserve Margin

To compare the method to calculate the reserve described here with the conventional method,
a case study was carried out. The conventional method corresponds to a fixed reserve margin,
and the proposed method to a reserve margin that varies from hour to hour with a short-term
reliability of balance of 99.6% (i.e., our method). The constant reserve margin for the conventional
method was determined using the average reserve margin for the proposed method, which gives the
same overall reserve for both cases over 24 h.

Figure 5 shows the reserve allocation result for both cases. The reserve margin of the proposed
method was varied to maintain a constant short-term reliability of balance. The case of the conventional
method had a fixed reserve margin of 292 MW, which is the rounded value of the 24-h average reserve
margin in the case of the proposed method.

Table 3 lists the average, maximum, and minimum reserve margin for 24 h using the data shown
in Figure 6. Because of uncertainties in the forecast demand, the outages of generators and wind power
error vary from hour to hour; the times for the maximum and minimum reserve margin depend on the
combination of these three uncertain factors.

The short-term reliability of balance was calculated using (12), as shown in Figure 6. Unlike
the proposed method, whereby the short-term reliability of balance was maintained >99.6%,
the short-term reliability of balance with the conventional method decreased to 97.69%. Furthermore,
the time at which the short-term reliability of balance was a minimum was not the same as that for
peak demand, which implies that uncertainties in demand forecast error, generation outage, and wind
power generation forecast error should be all considered to properly address imbalance.
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the proposed method (based on a short-term reliability of balance of 99.6%).

Table 3. Maximum, minimum, and mean reserve margins.

Case Maximum (MW) Time Minimum (MW) Time Mean (MW)

Conventional method 292 - 292 - 292
Proposed method 400 16 150 5, 6 291.7

Energies 2016, 9, 845  11 of 15 

 

Table 3. Maximum, minimum, and mean reserve margins. 

Case Maximum (MW) Time Minimum (MW) Time Mean (MW) 

Conventional method 292 - 292 - 292 

Proposed method 400 16 150 5, 6 291.7 

 

Figure 6. Hourly reliability based on the balance of supply and demand. 

The short-term reliability of balance was calculated using (12), as shown in Figure 6. Unlike the 

proposed method, whereby the short-term reliability of balance was maintained >99.6%, the 

short-term reliability of balance with the conventional method decreased to 97.69%. Furthermore, 

the time at which the short-term reliability of balance was a minimum was not the same as that for 

peak demand, which implies that uncertainties in demand forecast error, generation outage, and 

wind power generation forecast error should be all considered to properly address imbalance. 

Table 4 lists the calculated costs for the conventional and proposed methods. The operating cost 

for the proposed method was less than that for the conventional method. The conventional method 

had a lower generation cost because it was better optimized for unit commitment. As shown in 

Figure 6, the proposed method required more reserve margin during peak hours, resulting in less 

optimized unit commitment and a larger generation cost; however, because the reserve allocation for 

the proposed method was based on the constant short-term reliability of balance, the proposed 

method has a much lower load-shedding cost than the conventional method. It follows that with the 

conventional method, a larger probability of imbalance existed between supply and demand. 

Because the operating cost is the sum of the generation and load-shedding costs, the proposed method 

(which was based on the calculation method described here) proved to be more cost-effective than the 

conventional method (a constant reserve margin, as with conventional methods).  

Table 4. The calculated costs for the conventional method and the proposed method. 

Case Generation Cost ($) Load-Shedding Cost ($) Operating Cost ($) 

Conventional method 1,737,300 11,681 1,748,981 

Proposed method 1,741,700 6,445 1,748,145 

5.4. Costs for Different Wind Farms with the Same Short-Term Reliability of Balance 

As seen from (11), when the penetration of wind power increases, the corresponding decrease 

in the use of conventional generators leads to fewer generation outages and Gt would decrease, 

which decreases the required reserve margin. However, an increase in the penetration of wind 

power would increase the significance of the error in the forecast wind power generation and 

increase Wt, leading to an increase in reserve requirements. For this reason, it is possible that, as 

wind power penetration increases, the operating cost would increase because more reserve margin 

Figure 6. Hourly reliability based on the balance of supply and demand.

Table 4 lists the calculated costs for the conventional and proposed methods. The operating cost
for the proposed method was less than that for the conventional method. The conventional method had
a lower generation cost because it was better optimized for unit commitment. As shown in Figure 6,
the proposed method required more reserve margin during peak hours, resulting in less optimized unit
commitment and a larger generation cost; however, because the reserve allocation for the proposed
method was based on the constant short-term reliability of balance, the proposed method has a much
lower load-shedding cost than the conventional method. It follows that with the conventional method,
a larger probability of imbalance existed between supply and demand. Because the operating cost is
the sum of the generation and load-shedding costs, the proposed method (which was based on the
calculation method described here) proved to be more cost-effective than the conventional method
(a constant reserve margin, as with conventional methods).
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Table 4. The calculated costs for the conventional method and the proposed method.

Case Generation Cost ($) Load-Shedding Cost ($) Operating Cost ($)

Conventional method 1,737,300 11,681 1,748,981
Proposed method 1,741,700 6,445 1,748,145

5.4. Costs for Different Wind Farms with the Same Short-Term Reliability of Balance

As seen from (11), when the penetration of wind power increases, the corresponding decrease in
the use of conventional generators leads to fewer generation outages and Gt would decrease, which
decreases the required reserve margin. However, an increase in the penetration of wind power would
increase the significance of the error in the forecast wind power generation and increase Wt, leading
to an increase in reserve requirements. For this reason, it is possible that, as wind power penetration
increases, the operating cost would increase because more reserve margin would be required to
maintain a constant level of reliability. This assertion opposes claims that wind power generation
is more cost-effective with increasing penetration. Therefore, the overall cost should be analyzed to
identify if an increase in wind power penetration would be less cost-effective due to an increase in
the operating cost. In this subsection, we describe case studies and analyses of the reserve for various
different wind power generation scenarios with the same short-term reliability of balance (i.e., 99.6%).
In the simulations, the reserve requirements and costs were calculated as a function of the wind power
generation. The wind power generation during each hour was as shown in Figure 2b.

Table 5 lists the four different wind power generation scenarios considered in the simulations.
The first, Case-WT1, contained one wind farm with a maximum generation capacity of 500 MW.
The other scenarios (i.e., Case-WT2, Case-WT3, and Case-WT4) correspond to two, three, and four
wind farms, respectively.

Table 5. Wind power scenarios Case-WT1, Case-WT2, Case-WT3, and Case-WT4.

Case Number of Wind Farm Maximum Power (MW) Wind Power Penetration (%)

Case-WT1 1 500 6.48
Case-WT2 2 1000 12.17
Case-WT3 3 1500 17.20
Case-WT4 4 2000 21.69

Figure 7 shows the simulated reserve as a function of time using our proposed method. The reserve
margin for each hour increased as the wind power generation capacity increased due to the greater
significance of the forecast error in the wind power.

Table 6 lists the simulated costs for the four wind power generation scenarios. Because more wind
power was included with Case-WT4 than Case-WT1, the generation costs were lower. In addition,
because the error in the forecast wind generation had a greater impact than the outages of conventional
generation, the required reserve margin with Case-WT4 was larger than with Case-WT1 (see Figure 7).

Figure 8 plots the data listed in Table 6. Case-WT4 exhibited the lowest operating cost of the
four scenarios. The load-shedding cost increased with increasing wind power penetration due to the
greater significance of the wind power forecast error. However, the generation cost (which includes the
unit commitment cost while satisfying the required reserve margin calculated for a 99.6% short-term
reliability of balance) decreased because of the reduced use of conventional generators, leading to a
significant drop in the operating cost as the wind power penetration increased. Although the increased
wind power penetration resulted in a larger probability of interruptions to the power system, requiring
a larger reserve margin to maintain the same short-term reliability of balance, overall, the increase in
wind power penetration reduced the operating cost.
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Table 6. Simulated costs for scenarios Case-WT1, Case-WT2, Case-WT3, and Case-WT4.

Case Generation Cost ($) Load-Shedding Cost ($) Operating Cost ($)

Case-WT1 1,741,700 6,445 1,748,145
Case-WT2 1,643,700 6,687 1,650,387
Case-WT3 1,549,100 10,758 1,559,858
Case-WT4 1,459,400 16,413 1,475,813
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6. Conclusions

We have described a method to calculate the hourly reserve margin considering uncertainties
in supply and demand—i.e., generation outages and errors in the forecast demand and wind power.
These uncertainties were described using probability distribution models, which were generated
for every hour. The reserve margin was calculated hourly based on the short-term reliability of
balance, which represents the probability of imbalance between supply and demand. To determine
an appropriate short-term reliability of balance that minimizes the operating cost, we consider the
generation cost and load-shedding cost.

A case study was carried out using the IEEE 118 bus system to calculate the reserve requirements
and costs. The short-term reliability of balance was varied, and the hourly reserve margin was
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calculated; a cost analysis was then performed to identify the most economical short-term reliability of
balance. The reliability and costs were calculated using our method and a conventional method with
a fixed reserve margin. The results show that the variable hourly reserve margin (i.e., our method)
was both more reliable and more economical. In addition, we carried out a cost analysis with various
wind power generation scenarios and showed that the operating cost decreased as the wind power
penetration increased.
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Nomenclature

The following abbreviations are used in this manuscript:

ADt
s Actual demand during hour t for case i (MW)

EDt
s Expected demand during hour t for case i (MW)

TEt Demand forecast error for hour t (%)
Ci

t Number of cases during hour t of the analysis period
s Index for case of hour t during the analysis period
σt Standard deviation of the probability distribution of the load forecast error during hour t
Gt Random variable for generation outage during hour t (MW)
P(Gt) Probability that generation outage Gt occurs
j Index of the number order in a set
P(Gt,j) Probability that generation outage Gt occurs by the outages of generators included in Ft

FORi Forced outage rate (FOR) of generator i

Ft
The set that consists of sets which has generator numbers that satisfy the sum of
generation equal to Gt

Gt,i Output of generator i during hour t (MW)
θ Scale parameter in gamma distribution
k Shape parameter in gamma distribution

PIm,t
Imbalance in demand and supply caused by generation outage, demand forecast error,
and wind power forecast error (MW)

Lt Random variable of demand forecast error during hour t (MW)
Wt Random variable of wind power forecast error during hour t (MW)

PTotal
Overall generated power/energy during hour t, which is the sum of the maximum
output of generators dispatched during hour t as a result of unit commitment (MW)

PR,t Expected reserve during hour t (MW)
SRt Short-term reliability of balance during hour t (%)
PMR,t Minimum reserve estimation during hour t (MW)
ai, bi, ci Unit cost coefficient of generator i
Ni Number of generators in the power system
STCi Startup cost of unit i ($)
ui,t Binary variable that is 1 if unit N is online at hour t and 0 otherwise
PLS,t Load shedding during hour t (MW)
P(PLS,t) Probability that load shedding occurs during hour t
COC Outage cost ($/MWh)



Energies 2016, 9, 845 15 of 16

References

1. Chang-Soo, O.; Kang Wan, L. A study on the requirement of frequency regulation reserve in electricity market.
In Proceedings of the Korean Institute of Electrical Engineers Summer Conference, Pyeongchang-gun, Korea,
18 July 2005; pp. 298–300.

2. Chang-Soo, O.; Kang Wan, L. A study on an estimate of frequency regulating reserve. In Proceedings of the
Korean Institute of Electrical Engineers Fall Conference, Seoul, Korea, 18 November 2005; pp. 264–266.

3. Hyoung-Yong, S.; Jae-Hyung, R.; Jong-Bae, P.; Joong-Rin, S.; Myung-Suk, C. Optimal dispatch for energy
and frequency control reserve considering contingency. In Proceedings of the Korean Institute of Electrical
Engineers Summer Conference, Busan, Korea, 14 July 2010; pp. 505–506.

4. Ahn, D.-H.; Kwon, S.-K.; Joo, H.-R.; Choi, E.-J. A research of optimum supply reserve levels for stability of
power system. J. Korean Inst. Illum. Electr. Install. Eng. 2008, 22, 55–61.

5. Seong-Ho, R.; Kang-Wan, L.; Gwang-Won, K.; Kab-Ju, H. A study on operation standards for optimal
operating reserve in electricity market. Trans. Korean Inst. Electr. Eng. A 2003, 52, 287–293.

6. Chattopadhyay, D.; Baldick, R. Unit commitment with probabilistic reserve. In Proceedings of the 2002
IEEE Power Engineering Society Winter Meeting, New York, NY, USA, 27–31 January 2002; Volume 281,
pp. 280–285.

7. Georgopoulou, C.A.; Giannakoglou, K.C. Metamodel-assisted evolutionary algorithms for the unit
commitment problem with probabilistic outages. Appl. Energy 2010, 87, 1782–1792. [CrossRef]

8. Ortega-Vazquez, M.A.; Kirschen, D.S.; Pudjianto, D. Optimising the scheduling of spinning reserve
considering the cost of interruptions. IEE Proc. Gener. Transm. Distrib. 2006, 153, 570–575. [CrossRef]

9. Ortega-Vazquez, M.A.; Kirschen, D.S. Optimizing the spinning reserve requirements using a cost/benefit
analysis. IEEE Trans. Power Syst. 2007, 22, 24–33. [CrossRef]

10. Wang, M.Q.; Gooi, H.B.; Han, X.S. A tradeoff between unit capacity and average production cost in spinning
reserve optimization. Int. J. Electr. Power Energy Syst. 2015, 71, 215–221. [CrossRef]

11. Dany, G. Power reserve in interconnected systems with high wind power production. In Proceedings of the
2001 IEEE Porto Power Tech Proceedings, Porto, Portugal, 10–13 September 2001; Volume 4, p. 6.

12. Zhang, Z.; Li, C.; Cao, Y.; Tang, L.; Li, J.; Wu, B. Credibility assessment of short-term load forecast in
power system. In Proceedings of the IEEE PES Innovative Smart Grid Technologies, Washington, DC, USA,
16–20 January 2012; pp. 1–5.

13. Doherty, R.; O’Malley, M. A new approach to quantify reserve demand in systems with significant installed
wind capacity. IEEE Trans. Power Syst. 2005, 20, 587–595. [CrossRef]

14. Saez-Gallego, J.; Morales, J.M.; Madsen, H.; Jónsson, T. Determining reserve requirements in dk1 area of
nord pool using a probabilistic approach. Energy 2014, 74, 682–693. [CrossRef]

15. Zhou, W.; Sun, H.; Peng, Y. Risk reserve constrained economic dispatch model with wind power penetration.
Energies 2010, 3, 1880–1894. [CrossRef]

16. Chen, J.; Wu, W.; Zhang, B.; Wang, B.; Guo, Q. A spinning reserve allocation method for power generation
dispatch accommodating large-scale wind power integration. Energies 2013, 6, 5357–5381. [CrossRef]

17. Ruiz, P.A.; Philbrick, C.R.; Sauer, P.W. Wind power day-ahead uncertainty management through stochastic
unit commitment policies. In Proceedings of the 2009 IEEE/PES Power Systems Conference and Exposition,
Seattle, WA, USA, 15–18 March 2009; pp. 1–9.

18. Park, H.-G.; Lyu, J.-K.; Kang, Y.; Park, J.-K. Unit commitment considering interruptible load for power
system operation with wind power. Energies 2014, 7, 4281–4299. [CrossRef]

19. Liao, G.; Ming, J.; Wei, B.; Xiang, H.; Ai, N.J.P.; Dai, C.; Xie, X.; Li, M. Wind power prediction errors model and
algorithm based on non-parametric kernel density estimation. In Proceedings of the 2015 5th International
Conference on Electric Utility Deregulation and Restructuring and Power Technologies, Changsha, China,
26–29 November 2015; pp. 1864–1868.

20. Thapa, S.; Karki, R.; Billinton, R. Operating risk considerations in wind integrated power systems. In
Proceedings of the 2014 International Conference on Probabilistic Methods Applied to Power Systems
(PMAPS), Durham, UK, 7–10 July 2014; pp. 1–6.

21. Hedayati-Mehdiabadi, M.; Zhang, J.; Hedman, K.W. Wind Power Dispatch Margin for Flexible Energy
and Reserve Scheduling With Increased Wind Generation. IEEE Trans. Sustain. Energy 2015, 6, 1543–1552.
[CrossRef]

http://dx.doi.org/10.1016/j.apenergy.2009.10.013
http://dx.doi.org/10.1049/ip-gtd:20050396
http://dx.doi.org/10.1109/TPWRS.2006.888951
http://dx.doi.org/10.1016/j.ijepes.2015.02.019
http://dx.doi.org/10.1109/TPWRS.2005.846206
http://dx.doi.org/10.1016/j.energy.2014.07.034
http://dx.doi.org/10.3390/en3121880
http://dx.doi.org/10.3390/en6105357
http://dx.doi.org/10.3390/en7074281
http://dx.doi.org/10.1109/TSTE.2015.2455552


Energies 2016, 9, 845 16 of 16

22. Wu, J.; Zhang, B.; Deng, W.; Zhang, K. Application of Cost-CVaR model in determining optimal spinning
reserve for wind power penetrated system. Int. J. Electr. Power Energy Syst. 2015, 66, 110–115. [CrossRef]

23. Menemenlis, N.; Huneault, M.; Robitaille, A. Computation of dynamic operating balancing reserve for wind
power integration for the time-horizon 1–48 hours. IEEE Trans. Sustain. Energy 2012, 3, 692–702. [CrossRef]

24. Matos, M.A.; Bessa, R.J. Setting the operating reserve using probabilistic wind power forecasts. IEEE Trans.
Power Syst. 2011, 26, 594–603. [CrossRef]

25. Liu, G.; Tomsovic, K. Qunatifying Spinning Reserve in Systems With Significant Wind Power Penetration.
IEEE Trans. Power Syst. 2012, 27, 2385–2393. [CrossRef]

26. Wang, M.; Bai, H.; Zhou, M.; Wang, J. A generation-reserve co-optimization dispatching model for wind
power integrated power system based on risk reserve constraints. In Proceedings of the International
Conference on Renewable Power Generation, Beijing, China, 17–18 October 2015; pp. 1–6.

27. Kwon, K.-B.; Park, H.-G.; Lyu, J.-K.; Kim, Y.-C.; Park, J.-K. Dynamic reserve estimating method with
consideration of uncertainties in supply and demand. Trans Korean Inst. Electr. Eng. 2013, 62, 1495–1504.
[CrossRef]

28. Ortega-Vazquez, M.A.; Kirschen, D.S. Estimating the spinning reserve requirements in systems with
significant wind power generation penetration. IEEE Trans. Power Syst. 2009, 24, 114–124. [CrossRef]

29. Bo, R.; Li, F. Probabilistic lmp forecasting considering load uncertainty. IEEE Trans. Power Syst. 2009, 24,
1279–1289.

30. Jong-Uk, L.; Young-Min, W.; Sung-Kwan, J.; Kyung-Bin, S.; Jeong-Do, P.; Burm-Sup, C.; Ki-Jun, S. Analysis of
load forecasting error for improving the accuracy of the short-term load forecasting. In Proceedings of the
Korean Institute of Electrical Engineers Fall Conference, Cheonan-si, Korea, 11 December 2010; pp. 171–172.

31. The Half-Normal Distribution Method for Measurement Error: Two Case Studies. Available online:
https://www-users.york.ac.uk/~mb55/talks/halfnor.pdf (accessed on 1 August 2016).

32. Billiinton, R.; Allen, R.N. Generating capacity—Basic probability methods. In Reliability Evaluation of Power
Systems; Springer: New York, NY, USA, 1996; pp. 46–47.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijepes.2014.10.051
http://dx.doi.org/10.1109/TSTE.2011.2181878
http://dx.doi.org/10.1109/TPWRS.2010.2065818
http://dx.doi.org/10.1109/TPWRS.2012.2207465
http://dx.doi.org/10.5370/KIEE.2013.62.11.1495
http://dx.doi.org/10.1109/TPWRS.2008.2004745
https://www-users.york.ac.uk/~mb55/talks/halfnor.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Probability Distribution Model of Uncertainties in Demand and Supply 
	Probability Distribution Model of Demand Forecast Error 
	Probability Distribution Model of Generator Outages 
	Probability Distribution Model of Forecast Error for Wind Power Generation 

	Algorithm for Dynamic Reserve Estimation 
	Cost of Reserve 
	Operating Cost 
	Generation Costs 
	Load-Shedding Cost 

	Case Study 
	Test System Description 
	Costs and Optimal Short-Term Reliability of Balance 
	Comparison of Our Method with a Constant Reserve Margin 
	Costs for Different Wind Farms with the Same Short-Term Reliability of Balance 

	Conclusions 

