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Abstract: In this paper, the uncertainty of wind, solar and load; smart charging and discharging of
plug-in hybrid electric vehicles (PHEVs) to and from various energy sources; and the coordination
of wind, solar power, PHEVs and cost-emission are considered in the smart grid unit commitment
(UC). First, a multi-scenario simulation is used in which a set of valid scenarios is considered for
the uncertainties of wind and solar energy sources and load. Then the UC problem for the set
of scenarios is decomposed into the optimization of interactive agents by multi-agent technology.
Agents’ action is represented by a genetic algorithm with adaptive crossover and mutation operators.
The adaptive co-evolution of agents is reached by adaptive cooperative multipliers. Finally, simulation
is implemented on an example of a power system containing thermal units, a wind farm, solar power
plants and PHEVs. The results show the effectiveness of the proposed method. Thermal units, wind,
solar power and PHEVs are mutually complementarily by the adaptive cooperative mechanism.
The adaptive multipliers’ updating strategy can save more computational time and further improve
the efficiency.

Keywords: multi-agent technology; co-evolution agents; cost-emission unit commitment; plug-in
hybrid electric vehicles; renewable energy

1. Introduction

In term of economic development and environmental protection, the power and energy industry
is one of the most important sectors in the world, since every aspect of industrial productivity and daily
life are dependent on electric power. It occupies a major portion of global emissions. With increasing
concern over global climate change, policy makers are promoting renewable energy, mainly wind and
solar, to meet cost-emission reduction targets. So environment friendly modern power dispatching
is essential.

On a similar note, plug-in hybrid electric vehicles (PHEVs) have received increasing attention
because of their low pollution emissions and high fuel economy [1]. Intelligent unit commitment
(UC) with V2G for cost and emission optimization is analyzed. But the charging load characteristics
of electric vehicles (EV) are not considered [2]. Several other research efforts of PHEVs in recent
years examine the impact of PHEVs on the power system but do not take renewable energy into
account [3,4]. However, PHEVs can’t completely solve the cost-emission problem alone, and proper
management of PHEVs with renewable energy and thermal units (TUs) is of extreme importance in
the future smart grid. In [5], the possible effects of large scale EV integration on the power supply
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system are investigated. The effects of different charging strategies on power plant scheduling are
analyzed. The power system infrastructure is kept at status quo in a baseline scenario and extended
to future scenarios with intermittent solar power. Cost effects for integrating PHEVs charging into
unit commitment (UC) are investigated [6], and economic savings of up to 7% are found for the
overall system through smart charging strategies. However, these studies only consider PHEVs
charging states.

Moreover, the integration of wind and solar with TUs and PHEVs imposes complications
because of the intermittent and fluctuating nature of wind speed and solar radiation [7–11],
respectively. Several models that address optimal commitment and dispatch with uncertain wind
and solar generation have been developed. In [12], a mixed integer programming-based approach
to commitment is presented with wind generation that ensures reliability, considering several
Monte Carlo-generated scenarios. A stochastic recombining tree approach to UC is taken in [13],
with probabilistic wind transitions between time periods. However, their time step was too large
to capture unit ramping constraints. In [14], a stochastic dynamic programming (SDP) approach to
UC is proposed. Load demand, wind speed, solar radiation, and number of involved PHEVs are
taken under fuzzy formulations. An intelligent quantum-inspired evolutionary algorithm is proposed
and applied in this model to perform the intelligent economic scheduling concerning dispatching
TUs, wind, solar power, and PHEVs [15]. PHEVs are used as a source of energy by discharging
the energy stored in their batteries. Again in an off-peak demand hour, they can charge up the
batteries. In [16], the WILMAR scheduling tool [17] is used to capture the stochastic behavior of the
wind variable with rolling planning horizons. Scenarios are created using Monte Carlo simulation.
Stochastic commitment decisions are then made given updated wind forecast information and the
probability of different scenarios occurring. This approach comes closer to capturing the uncertainty
faced by system operators. For optimization with uncertainty [18], a set of valid scenarios is considered
in the UC with plug-in vehicles for the uncertainties of wind and solar energy, load and vehicles,
and particle swarm optimization (PSO) is used to minimize cost and emissions. Hence, the scenarios
simulation is used in this paper to deal with the system’s uncertainty.

UC algorithms can be applied to large-scale electric power systems and have reasonable storage
and computation time requirements. Many research on UC methods are based on the concentrated
systems, such as priority list methods [19], dynamic programming (DP) [20,21], mixed-integer linear
program (MILP) [22], branch and bound methods [23], genetic algorithm (GA) [24,25] and artificial
neural network (ANN) [26], etc. To deal with uncertainties in normal UC problems, one of the
popular methods is fuzzy logic [15]. With power systems becoming large and complex day by day,
UC researches change from concentrated systems to distribution systems. Cooperative co-evolution
control of multi-agent systems (MAS) has received extensive attention in recent years due to its
applications in UC. The MAS is a loosely coupled network of agents that work together to find answers
to problems that are beyond the individual capabilities or knowledge of each agent. Multi-agent
technology with independent learning and decision-making functions provides an ideal way for
dispatching various and massive resources [27,28]. It proposes a new co-evolutionary paradigm that
incorporates both competitive and cooperative mechanisms observed in nature to facilitate adaptive
problem decomposition [29]. Therefore, the applicability of MAS and cooperative co-evolution
computing in the field of optimization has already been proven effective.

In this paper, the forecasting load, solar and wind power are used, but the actual wind, solar power
and load usually differs from the forecasted ones. Therefore the uncertainties of load, solar and wind
power are taken into account. First, the multi-scenario simulation is used in the random variable
discretization. Numbers of representative scenarios are chosen, so that the original objective of the
smart grid is within an acceptable level. Then a cooperative co-evolution algorithm based on MAS
is proposed for the smart grid environment powered by TUs, solar and wind power, and PHEVs.
The PHEVs’ charging and discharging control, the coordination of PHEVs, and wind power are
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considered. The adjustment of weight factors can reach the effective coordination between CO2

emissions and costs.
The rest of the paper is organized as follows. The formulations of the proposed stochastic model

including constraints and objective function are detailed in Section 2, and multi-scenarios simulation
technology is used. Section 3 presents the basis and underlying mechanism of the cooperative
co-evolution algorithm based on MAS. The key points of cooperative co-evolution algorithm with
adaptive cooperative multipliers are provided. Section 4 represents conducted numerical simulations
and result analyses. Finally, conclusions are drawn in Section 5.

2. Stochastic Cost-Emission Reduction Model

2.1. Multi-Scenario Selection

In a multi-scenario, a large number of discrete probability distributions are formed to simulate
the uncertainty of random variables. It generally has two steps to generate scenarios.

The probability distribution of a random variable is obtained by Monte Carlo simulation.
In order to minimize the information loss, the probability distribution of the random variable is

dispersed by the approximate method.
Due to the stochastic properties of wind, solar power and load, they are very difficult to

predict precisely. Under multi-scenario selection, some representative discrete scenarios are extracted
for the optimization in a smart grid powered by TUs, solar and wind power, and PHEVs under
uncertainty, as it is hard to consider all continuous states. However, the total number of scenarios
grows exponentially with state variables.

For uncertainty, the discrete probability distribution sets for load demand (δD) and wind,
solar resource (δw,δpv) are given as follows [18]:

δD = {(pd
1, ρ1

d); (pd
2, ρ2

d); (pd
s, ρs

d); (pnd
d , ρnd

d )} (1)

ρ1
d + ρ2

d + · · ·+ ρnd
d = 1 (2)

where (ps
d, ρs

d) is load and the corresponding probability of uncertain load at scenario s, and nd is the
set of possible scenarios derived from load;

δw = {(p1
w, ρ1

w); (p2
w, ρ2

w); (ps
w, ρs

w); (pnw
w , ρnw

w )} (3)

ρ1
w + ρ2

w + · · ·+ ρnw
w = 1 (4)

where (ps
w, ρs

w) is power from wind farm and the corresponding probability at scenario s, and nw is
the set of possible scenarios derived from wind power;

δpv = {(p1
pv, ρ1

pv); (p2
pv, ρ2

pv); (ps
pv, ρs

pv); (pnp
pv , ρ

np
pv)} (5)

ρ1
pv + ρ2

pv + · · ·+ ρ
np
pv = 1 (6)

where (ps
pv, ρs

pv) is power from solar plants and the corresponding probability at scenario s, and np is
the set of possible scenarios derived from solar power;

SC = δD × δw × δpv (7)

ρs = ρdρwρpvs ∈ SC (8)

∑
s∈SC

ρs = 1 (9)

where a set of possible scenarios (SC) is derived from direct product of load, wind, and solar
power. δD, δw, δpv are sets of discrete distribution of load, wind and solar power. ρd, ρw, ρpv

are the corresponding probability of uncertain load, wind and solar. ρs is the corresponding
probability of the smart grid system at scenario s. Difference between the scenario model and the
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original model is adopted as a discrete probability distribution. Because of wind power and load
uncertainty, and EV charging/discharging control in smart grid, the traditional optimization problem
is transformed into uncertainty smart grid dispatching.

2.2. Cost-Emission Reduction Model under Uncertainties

A quadratic function is considered for the fuel function of TUs under the deterministic case:

FCi(Pt
i ) = ai + bi pt

i + ci(pt
i)

2 (10)

Considering the uncertainty of load and wind power, the fuel cost function is converted into the
scenario model:

[FCi(Pt
i ), ρs] = [ai + bi pst

i + ci(pst
i )

2, ρs] (11)

where pst
i is the power of unit i at time t considering scenario s, and ρs is the corresponding probability.

ai, bi, ci are cost coefficients of unit i.
It is assumed that conventional TUs are coal-fired. A quadratic function is considered for the

emission curve as follows:

[Eci(Pst
i ), ρs] = [(αci + βci pst

i + γci(pst
i )

2
)ut

i , ρs] (12)

where αci, βci, γci are CO2 emission coefficients of unit i, and ut
i is decision variable of unit i at time t,

1 for up, 0 for down.
Therefore, the objective function for cost-emission optimization considering a set of scenarios s in

a smart grid is:

min TCs = ∑
s∈S

ρs
T
∑

t=1

N
∑

i=1
[Wc(ai + bi pst

i + ci(pst
i )

2
)ut

i + Siut
i(1− ut−1

i ) + We(αci + βci pst
i + γci(pst

i )
2
)ut

i ] (13)

Si =

{
HSCi, i f boiler temperature ≥ threshold

CSCi, i f boiler temperature < threshold
(14)

where Si is start-up cost of unit i, N is total numbers of TUs, T is numbers of periods under study and
Wc and We are the weight factors of operation cost (fuel cost plus startup cost), and CO2 emissions.

Wc + We = 1 (15)

Constraints:

• PHEVs are considered as loads or sources. Power supplied from distributed generations must
satisfy the load demand:

PHEVs discharging

N

∑
i=1

pst
i ut

i + pvNt
v2G + pst

w + pst
pv = pst

d (16)

PHEVs charging

N

∑
i=1

pst
i ut

i + pst
w + pst

pv = pst
d + pvNt

v2G (17)

• All registered PHEVs take part in smart grid operations during a scheduling period:

T
∑

t=1
Nt

v2G = Nmax
v2G t = 1, 2, · · · , T (18)

where Nmax
v2G is the total registered PHEVs, and Nt

v2G is number of vehicles connected to the grid
at hour t.
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To maintain system reliability, adequate spinning reserves are required:
PHEVs discharging

N

∑
i=1

ut
i pi max + pmax

v Nt
v2G + pst

w + pst
pv ≥ pst

d + Rt (19)

PHEVs charging

N

∑
i=1

ut
i pi max + pst

w + pst
pv ≥ pst

d + pmax
v Nt

v2G + Rt (20)

where pi max is the maximum output limit of unit i, pmax
v is the capacity of PHEVs, pst

d is system
demand at time t and scenario s, Rt is system spinning reserve requirement at time t, and pi max/pi min
is maximum/minimum generation level of unit i.

• Number of charging/discharging PHEVs limit

Nt
v2G ≤ Nmax t

v2G t = 1, 2, · · · , T (21)

All the PHEVs cannot charge/discharge at the same time. For reliable operation and control,
limited number of vehicles will charge/discharge at a time. Nmax t

v2G is the maximum number of
charging/discharging at hour t.

• Generation limit constraints

pi min ≤ pst
i ≤ pi max (22)

• Ramp rate limits for unit generation changes

∆pi min ≤ pst
i − ps(t−1)

i ≤ ∆pi max (23)

• Minimum up and down time constraints{
ut

i = 1, 1 ≤ Xt
i < MGTi Xt

i > 0

ut
i = 0, −MDTi < Xt

i ≤ −1 Xt
i < 0

(24)

where Xt
i is number of hours that the unit has been on(positive) or off (negative), MDTi and

MGTi are minimum down and up time of unit i, in hours, ∆pi max and ∆pi min are ramp-up and
ramp-down rate limit of unit i, and pi min is the minim output limit of unit i.

3. The Cooperative Co-Evolution Algorithm

3.1. Multi-Agent System

The MAS is a distributed computational intelligent technology, which comprises intelligent agents
that work together to achieve a global goal. The key benefits of MAS are flexibility, extendibility and
cooperation. Flexibility is the ability to respond to dynamic situations, extensibility is the ability to
easily add new functionality and augmenting or upgrading existing functionality, and cooperation is
the ability of the system to solve the problem through competition and consultation. The fundamental
element of MAS is an intelligent agent [30], which is defined by some typical characteristics: reactivity,
pro-activeness and social ability. Reactivity of agents is the ability to perceive their environment
and respond in a timely fashion in order to satisfy their design objectives. Pro-activeness of agents
exhibits goal-directed behaviors by taking the initiative in order to satisfy their design objectives.
Social ability of agents is the interaction of agents with other agents in order to satisfy their design
objectives. These characteristics signify the importance of MAS in developing a complex system like
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power distribution system. These benefits motivate the use of MAS for dispatching the smart grid
with PHEVs and renewables.

In this paper, the proposed MAS for UC in smart grid consists of a thermal agent, wind agent,
solar agent, PHEV agent, management agent, object cooperative agent, and a cooperative co-evolution
agent. In MAS, the thermal agent, wind agent, solar agent and PHEV agent combine into work agents.
Each work agent is responsible for coordinating the static scheduling of wind, solar power, TUs and
PHEVs, the constraints are static for the corresponding time interval, without considering the dynamic
time coupling constraints. The work agents are solved by GA with adaptive crossover and mutation
operators. These agents not only have the self-target solving ability but also can achieve the common
goal by their mutual cooperation. They are independent from each other. In order to achieve the
system goals, the agents have to coordinate with each other through communication. Even though the
goals of agents are independent, they are cooperative in the system goal optimization. The MAS of the
smart grid is shown in Figure 1.
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The goals of the agents are briefly provided as follows:
PHEV agent: Charge or discharge the battery in time.
Wind agent: provide power to the PHEV agent or provide power to the load based on the

system condition.
Solar agent: provide power to the PHEV agent or provide power to the load based on the

system condition.
Thermal agent: provide power to the PHEV agent or provide power to the load based on the

system condition.
Cooperative co-evolution agent: obtain the minimum of cost and emissions for the whole

scheduling cycle. The constraints are the dynamic coupling constraints on the entire scheduling period.
Object cooperative agent: control the cost and emission weight adjustment, so the trade-off can be

found between cost and emissions.
Management agent: control the work agents based on the current scheduling results.

After the objective cooperative agent execution, the optimization scheduling requirements are put
forward to management agent. The control scheme is chosen by management agent.

Based on the MAS, the adaptive GA solves the work agents’ optimization and the cooperative
multipliers are used to coordinate work agents. In this way, the cooperative co-evolution algorithm
is formed.
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3.2. The Adaptive Updating of Multipliers

The quality of the final optimal solution mainly depend on the cooperative multipliers. In general,
adjusting cooperative multipliers by the subgradient method is hard to converge or even can’t converge
in the presence of the spinning reserve constraint. In [31], the adaptive cooperative multipliers update
rule is presented, showing that it is effective in improving the calculation accuracy. reduces the iteration
times and saves the CPU time. In this paper, this update rule is adopted. This rule is designed so that
the step size is large at the beginning of iterations and smaller as the iteration grows.

The cooperative multipliers λt and µt updating rule can be written as:

gt
λ =


pst

d −
N
∑

i=1
pst

i ut
i − pvNt

v2G − pst
pv − pst

w PHEVs discharging

pd
st + pvNt

v2G −
N
∑

i=1
pst

i ut
i − pst

pv − pst
w PHEVs charging

(25)

gt
µ =


pst

d + Rt −
N
∑

i=1
ut

i pi max − pmax
v Nt

v2G − pst
w − pst

pv PHEVs discharging

pst
d + pmax

v Nt
v2G + Rt −

N
∑

i=1
ut

i pi max − pst
w − pst

pv PHEVs charging

(26)

where gt
λ and gt

µ are the subgradient of λt and µt respectively.
The corresponding norms of subgradients are as follows:

norm(gt
λ) =

√
(gλ

1)
2
+ (gλ

2)2 + · · ·+ (gλ
T)

2 (27)

norm(gt
µ) =

√
(gµ

1)
2
+ (gµ

2)2 + · · ·+ (gµ
T)

2 (28)

Each nonnegative λt and µt are adaptively updated by:

λk+1
t = max

{
λk

t + αk ×
gt

λ

norm(gλ)
, 0

}
(29)

µk+1
t = max

{
µk

t + αk ×
gt

µ

norm(gµ)
, 0

}
(30)

where k is the iteration time and αk is a scale step size.

4. Numerical Example

An independent system operator of a 10-unit system is considered for simulation with wind, solar
power and PHEVs. The equipment cost of wind and solar powers is not taken into account. Load
demand, unit characteristic and emission coefficients of the 10-unit system are collected from [2,31].
The spinning reserve is assumed to be 10% of the load demand. All PHEVs are involved in charging and
discharging scheduling. The parameter values used in this paper are the same as in [2]. For practical
applications, the number of PHEVs in an electric power network can be estimated analytically based on
the number of electricity clients (customers) in that network. In the 10-unit system, a reasonable number
of PHEVs is Nmax

v2G = 50,000. Maximum battery capacity = 25 kWh, minimum battery capacity = 10 kWh,
average battery capacity = 15 kWh, and the maximum number of charging-discharging PHEVs at each
hour, Nmax t

v2G = 10%Nmax
v2G . Charging and discharging frequency = one per day, scheduling period = 24 h,

departure state of charging-discharging Ψ = 50%, and efficiency ξ = 85%. A PHEV needs 8.22 kWh/day,
an excess of 8.22 × 50,000 = 411 MWh power is needed to run PHEVs [18]. The wind farm and solar
can provide 500 MWh/day and 250 MWh/day energy, respectively. Typical day forecasts of wind and
solar are given in [18].
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To capture volatility, we assume the wind, solar power and load are subject to the distribution
N(µ, σ2) with their expected value (µ) and their volatility (σ). In actuality, the uncertainty distribution
depends on location, the nature of state variables and the forecasting/estimation tools that are used.
The authors establish the discrete probabilities and expected values from their prior experience and
scenario reduction technology [12].

δw = {(pw × 100%, 0.5); (pw × 99%, 0.1); (pw × 101%, 0.1); (pw × 97.5%, 0.1); (pw × 102.5%, 0.1);

(pw × 95%, 0.05); (pw × 105%, 0.05)}
(31)

δD = {(pd × 100%, 0.6); (pd × 98.5%, 0.15); (pd × 102%, 0.15); (pd × 98%, 0.05); (pd × 103%, 0.05)} (32)

δpv = {(ppv × 100%, 0.7); (ppv × 98.5%, 0.1); (ppv × 95%, 0.05); (ppv × 101.5%, 0.1); (ppv × 105%, 0.05)} (33)

where pw, ppv, pd are the predict value of wind, solar power and load.
The following four cases are presented in this study:

Case 1 the 10-unit system with standard input data of power plants, emission coefficients and load
demand, considering only PHEVs.

Case 2 the 10-unit system with standard input data of power plants, emission coefficients and load
demand, with wind power and PHEVs.

Case 3 the 10-unit system with standard input data of power plants, emission coefficients and load
demand, with wind and solar power.

Case 4 the 10-unit system with standard input data of power plants, emission coefficients and load
demand, considering PHEVs, wind and solar power.

These cases are studied as follows:
When cost and emission weights are (0.8, 0.2), the effect of PHEVs on the spinning reserve of

smart grid with wind and solar is as shown in Figure 2. Table 1 shows the effect of PHEVs on the unit
output value in smart grid with wind and solar.
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Figure 2. The effect of plug-in hybrid electric vehicles (PHEVs) on the spinning reserve of a smart grid. 

Table 1. Power from generating units during 24 h considering PHEVs. 

Unit Output (MW) U-1 U-2 U-3 U-4 U-5 U-6 U-7 U-8 U-9 U-10 

Case 4 (MW) 10,920 8034.3 2600 2860 2222.7 410.5 100 20 10 0 

Case 3 (MW) 10,920 8130.3 2340 2730 2275.5 544.6 125 62.1 30 20 

PHEVs Effect (MW) 0 −96 260 130 −52.8 −134.1 −25 −42.1 −20 −20 

Among the 24 scheduling periods, the amount of system spinning reserve is increased in Case 

4 than in Case 3. In the 24 scheduling periods, the average spinning reserve is 149.2 MW in Case 3, 

while it is 189.5 MW in Case 4. The average spinning reserves have a surplus of 40.3 MW in Case 4 

compared to Case 3. 

Taking cost and emission weight (0.8, 0.2) as an example, Table 1 shows the effect of PHEVs on 

each unit, considering both cost and emissions. Case 4 shows the results with PHEVs, while Case 3 

shows the results without PHEVs. Usually a negative effect of PHEVs indicates an expensive or 

more polluting unit. PHEVs reduce dependencies on small expensive units. In this instance U-1 

produce same constant powers, as U-1 is the cheapest unit and it always generates maximum 

Figure 2. The effect of plug-in hybrid electric vehicles (PHEVs) on the spinning reserve of a smart grid.

Table 1. Power from generating units during 24 h considering PHEVs.

Unit Output (MW) U-1 U-2 U-3 U-4 U-5 U-6 U-7 U-8 U-9 U-10

Case 4 (MW) 10,920 8034.3 2600 2860 2222.7 410.5 100 20 10 0
Case 3 (MW) 10,920 8130.3 2340 2730 2275.5 544.6 125 62.1 30 20

PHEVs Effect (MW) 0 −96 260 130 −52.8 −134.1 −25 −42.1 −20 −20

Among the 24 scheduling periods, the amount of system spinning reserve is increased in Case 4
than in Case 3. In the 24 scheduling periods, the average spinning reserve is 149.2 MW in Case 3,
while it is 189.5 MW in Case 4. The average spinning reserves have a surplus of 40.3 MW in Case 4
compared to Case 3.

Taking cost and emission weight (0.8, 0.2) as an example, Table 1 shows the effect of PHEVs on
each unit, considering both cost and emissions. Case 4 shows the results with PHEVs, while Case
3 shows the results without PHEVs. Usually a negative effect of PHEVs indicates an expensive or
more polluting unit. PHEVs reduce dependencies on small expensive units. In this instance U-1
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produce same constant powers, as U-1 is the cheapest unit and it always generates maximum power;
however, U-2, U-5, U-6, U-7, U-8, U-9 and U-10 generate less power when PHEVs are considered;
among the ten TUs, U-7, U-8, U-9 and U-10 are expensive so they generate less power in Case 4 than in
Case 3; U-2, U-5 and U-6 generate less power (negative value of V2G effect) in Case 4, because they are
either (relatively) costly or more polluting units. In this instance U-3 and U-4 generate more power
(positive value of PHEVs effect) in Case 6, because the proposed method makes a balance between the
cost and emissions, and it satisfies all the constraints of the system.

Figure 3 shows the influence of PHEVs on load curve. Figures 4 and 5 are the system costs and
emissions with PHEVs in different cases; Figures 6 and 7 are the influence of PHEVs on cost and
emissions in cases 3 and 4.
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The load curve of the 10-unit system with wind and solar power has both peaks and valleys.
According to the load curve, demand is relatively low during the hours from 1st to 7th, from 16th to
18th and from 22nd to 24th; demand is relatively high during the hours from 8th to 15th and from 19th
to 21st. PHEVs can be charged from the grid during the off-peak load to level the demand, it can be
discharged from the grid during the peak load. They maximize renewable energy use for charging,
and when it is not enough, using low cost and pollutant units’ power for charging. In the proposed
method, an extra 411 MWh load for 50,000 PHEVs is intelligently distributed among off-peak hours,
while these PHEVs smartly discharge among peak hours so that cost and emissions are minimized.
From Figure 3, the difference between peak and valley changes from 800 MW (in case 3) to 666.5 MW
(in case 4), a reduction of 133.5 MW. By intelligent charging and discharging control of PHEVs in the
smart grid, load leveling is better than typical static load leveling. It reduces the system dependence
on high cost, high emissions units, enhancing the ability of energy-saving emission reduction.

From Figures 4 and 5, emissions are always high when cost is mainly considered in the model
to generate a low cost schedule. On the other hand, emissions are always low and cost is very high
when emissions are mainly considered in the model to generate an environmental friendly schedule.
With the same cost and emissions weights, among the three cases, the operation cost in Case 4 is the
lowest, in Case 1 is the highest, and in Case 2 is the middle. When the system operation cost is the
highest, the corresponding emissions are the greatest. Taking the cost and emissions weight (0.8, 0.2) as
an example, the operation cost is $582,329.6 and the emissions are 248,920.4 t in Case 1; the operation
cost is $573,136.8 and the emissions are 242,164.4 t in Case 2; the operation cost is $561,436.6 and the
emissions are 236,585.4 t in Case 4. The cost is reduced by $20,893 ($582,329.6 − $561,436.6) and the
total emission is reduced by 12,335 t (248,920.4 − 236,585.4 t). According to Figures 4 and 5, with the
reduction of Wc, We increases, the operation cost increases, while the emission reduces. For practical
use, values of Wc and We should be chosen carefully considering price, environment effects, consumers’
and system operators’ demand. So the trade-off can be found between cost and emissions in this paper.

Similarly Figures 6 and 7 show the cost and emissions with and without PHEVs in different
weights. From Figures 6 and 7, taking the cost and emissions weight (0.8, 0.2) as an example,
the operation cost is $568,568.5 and the emissions are 241,552.8 t in Case 3; the operation cost is
$561,436.6 and the emissions are 236,585.4 t in Case 4. Total emissions are reduced by 4967.4 t
(241,552.8 − 236,585.4 t) per day and cost is reduced by $7,131.9 ($568,568.5 − $561,436.6) per day.
By PHEVs’ intelligent charging and discharging control, the system’s dependency on small expensive
and pollutant units in peak hours is reduced. In this way, PHEVs help to reduce both cost and
emissions in power systems (Figures 6 and 7). Therefore intelligent UC with PHEVs, for both cost and
emission optimization, is essential in power systems.

The proposed cooperative co-evolution algorithm is compared with GA [32] and conventional
Lagrangian relaxation (LR) [33] as illustrated in Figure 8.
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As shown in Figure 8, the costs and emissions of the proposed cooperative co-evolution algorithm
are shown to be less than those of GA [32], LR [33] in Case 4 with the same weights. Taking the cost
and emissions weight (0.8, 0.2) as an example, the findings are as follows: (1) the operation cost and the
emissions of GA are $563,186.5 and 239,064.2 t, respectively; (2) the operation cost and the emissions of
LR are $563,815.4 and 240,854.4 t, respectively; (3) the operation cost and the emissions of the proposed
cooperative co-evolution algorithm are $561,436.6 and 236,585.4 t, respectively. Among the three
methods, the operation cost and emissions under the proposed cooperative co-evolution algorithm are
the lowest. Total emissions are reduced by 4269 t (240,854.4 − 236,585.4 t) per day and while total costs
are reduced by $2,378.8 ($563,815.4 − $561,436.6) per day.

Similarly Table 2 shows the effects of cooperative multipliers updating methods on the smart grid.

Table 2. The effects of coordinating multipliers updating method on smart grid.

Cooperative Multiplier Updating Methods Subgradient Adaptive

Cost ($) 567,255.4 561,436.6
Emissions (t) 239,786.5 236,585.4

Operation time (s) 250 132

Taking the cost and emission weight (0.8, 0.2) as an example, the cooperative multipliers
updating method in Case 4 is analyzed. In order to obtain the optimal solution, the operation
time is 132 s by adaptive cooperative multipliers updating method, while the subgradient method
is 250 s. The operation cost and emissions by adaptive cooperative multipliers updating method are
$561,436.6 and 236,585.4 t, and by the subgradient method are $567,255.4 and 239,786.5 t. The adaptive
cooperative multipliers updating method not only can improve quality of the solutions but can save
computing time.
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5. Conclusions

The co-evolutionary agents in MAS are employed for a smart grid UC with the randomness
of wind and solar power, and the intelligent charging and discharging control of PHEVs,
with consideration of the system energy saving and emissions reduction. In the sustainable smart grid,
cooperative utilization of wind and solar power is effective to reduce cost and emissions. The amount
of cost and emissions reductions mainly depends on maximum utilization of renewable energy
through PHEVs. Compared with GA and conventional LR, the operation cost and emissions under
the proposed cooperative co-evolution algorithm are the lowest. The proposed adaptive multipliers
updating strategy can save computation time and improve operation efficiency. By the reasonable
selection of cost and emission weights, it can realize an effective compromise between energy saving
and emissions reduction.
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