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Abstract: Solar energy generated from PhotoVoltaic (PV) systems is one of the most promising types
of renewable energy. However, it is highly variable as it depends on the solar irradiance and other
meteorological factors. This variability creates difficulties for the large-scale integration of PV power
in the electricity grid and requires accurate forecasting of the electricity generated by PV systems.
In this paper we consider 2D-interval forecasts, where the goal is to predict summary statistics for the
distribution of the PV power values in a future time interval. 2D-interval forecasts have been recently
introduced, and they are more suitable than point forecasts for applications where the predicted
variable has a high variability. We propose a method called NNE2D that combines variable selection
based on mutual information and an ensemble of neural networks, to compute 2D-interval forecasts,
where the two interval boundaries are expressed in terms of percentiles. NNE2D was evaluated for
univariate prediction of Australian solar PV power data for two years. The results show that it is a
promising method, outperforming persistence baselines and other methods used for comparison in
terms of accuracy and coverage probability.

Keywords: solar power prediction; interval forecasts; 2D-interval forecasts; ensembles of neural
networks; mutual information; support vector regression

1. Introduction

Generating electricity from renewable sources is a key factor in the transition to a clean and
sustainable energy future, to address environmental concerns and limit the global warming. Solar
energy generated from PV systems is one of the most promising and fastest growing types of renewable
energy [1]. This growth is driven by government incentives that encourage the use of solar energy and
by the decreasing cost of PV panels, making them more affordable. Since 2000, the installation of PV
systems worldwide has increased 100 times, reaching 178 GW in 2014, and this capacity is expected
to triple by 2019 [2]. It is also expected that by 2050 PV systems will provide 29% of the electricity in
Australia [3] and 25% of the electricity in Europe [4].

In comparison to the traditional fossil and nuclear energy sources, solar energy is freely available,
can be easily harnessed and is environmentally free. However, unlike the traditional energy sources,
it is highly variable as it depends on the solar irradiance, cloud cover and other meteorological factors.
This creates challenges for its mass integration in the electricity grid. The European Photovoltaic
Industry Association has identified forecasting as one of the key factors enabling large-scale integration
of solar power in the electricity grid [4]. Accurate forecasting ensures reliable supply, reduces the costs
by allowing more efficient and secure management of electricity grids and also supports solar energy
trading at electricity markets [4].
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Solar power forecasting has been an active area of research. A comprehensive review of the
state-of-the-art methods for PV power forecasting is presented in [5]. There are two groups of
forecasting approaches: indirect and direct. The indirect approaches firstly forecast the solar irradiance
or use forecasts of solar irradiance produced by meteorological centers, and then convert them to PV
power forecasts by considering the characteristics of the PV plant. The second group directly forecasts
the PV power output. Notable examples of the first group are [6–10]. For example, Lorenz et al. [6]
predicted the hourly PV power output for up to 2 days ahead based on the weather forecasts of solar
irradiance. They also derived regional power forecasts by up-scaling the forecasts of representative PV
systems. Urraca et al. [10] predicted the solar irradiance 1 h ahead based on recorded meteorological
data and computed solar variables. They developed two types of models: fixed and moving, and
applied a number of prediction algorithms—Support Vector Regression (SVR), random forests, linear
regression and nearest neighbor.

Recent examples of the second group, direct forecasting approaches, include [11–17]. For example,
Chen et al. [12] predicted the PV power output for the 24 h of the next day using the PV power from
the previous day and the weather forecast for the next day. They classified the days into sunny, cloudy
and rainy, and built a separate prediction model, a Radial-Basis Function Neural Network (RBFNN),
for each category. A Self-Organising Map (SOM) was used to learn the characteristics of the three types
of days based on the weather predictions of solar irradiance and cloudiness. To forecast the PV output
for a new day, SOM was firstly used to output the type of the day, and then the RBFNN model for this
type of day was used to generate the prediction. Pedro and Coimbra [11] predicting the PV power
1 and 2 h ahead from previous PV power data by using Autoregressive Integrated Moving Average
(ARIMA), nearest neighbors and Neural Networks (NNs) methods.

While the focus in previous work has been on point forecasting, in this paper we consider interval
forecasting, and in particular 2D-interval forecasting, which was recently introduced by Torgo and
Ohashi [18]. The differences between the three types of forecasting tasks–point, interval and 2D-interval
can be summarized as follows: (1) Point forecasts predict a single value—at time t the task is to predict
the value of the time series for time t + h, where h is the forecasting horizon (h = 1 for 1-step ahead
prediction); (2) Interval forecasts predict an interval of plausible values. A standard interval forecast
consists of an upper and lower bound, between which a single future value is expected to lie with high
probability [19], i.e., at time t the task is to predict an interval of plausible values of the time series for
time t + h; (3) A 2D-interval forecast [18] is an interval forecast for a range (or an interval) of future
values not a single value, i.e., at time t the task is to predict the upper and lower bound for the range
of future values [t + h, t + k].

Although point forecasts are the most common types of forecasts, interval forecasts are more
useful than point forecasts for applications requiring risk management and balancing of demand
and supply, such as electricity production, electricity and financial markets, water distribution and
manufacturing [18,19]. Predicting an interval of plausible values instead of only predicting a single
value gives more information about the variability of the target variable, which in turn can help to
assess the uncertainty of the future values and be used to make more accurate decisions. 2D-interval
forecasts are particularly relevant for applications where the predicted variable has a high inherent
variability, such as solar and wind power prediction.

Torgo and Ohashi [18] showed an application of 2D-interval forecasting for two water prediction
tasks: predicting the values of water quality parameters (e.g., pH, iron, etc.) in a distribution network
for a metropolitan area in Portugal and predicting the water consumption in a residential area network
in Spain. In our previous work [20] we presented an application of 2D-interval forecasting for solar
power prediction from previous PV power and weather data. We predicted the maximum and
minimum values of the interval, using a SVR based method. In this paper we extend our previous
work by predicting summary statistics (10–90th and 25–75th percentiles) instead of the maximum and
minimum values, applying feature selection using Mutual Information (MI) and using an ensemble of
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NNs as a classification algorithm. In this work we also use only previous PV power data instead of
both PV power and weather data, and show that it is sufficient for good prediction.

The contribution of our work is the following:

(1) We consider the task of interval forecasting for solar power generated by PV systems. Specifically,
we consider 2D-interval forecasting where we predict two summary statistics for a future
interval of PV power values—10–90th and 25–75th percentiles. Our proposed approach called
Neural Network Ensemble for 2D-interval forecasting (NNE2D) uses MI to select a small set of
informative variables and an ensemble of NNs for prediction. It doesn’t require any previous
weather data or future weather predictions; it only uses previous PV power data.

(2) We evaluate the performance of NNE2D using Australian data for two years, sampled at 5-min
intervals, for three different interval lengths (from 1 h to 3 h). We compare the results with two
persistence methods used as baselines, a model based on SVR and also with our two multivariate
approaches from [20]. The results show that NNE2D is a promising approach, outperforming the
other methods in terms of accuracy and coverage probability, and hence is a viable method for
practical applications.

This paper is organized as follows. Section 2 describes the data used in this study and Section 3
provides a problem statement. Section 4 describes our proposed approach NNE2D for computing
2D-interval forecasts and Section 5 presents the methods used for comparison. Section 6 describes the
experimental setup. Section 7 presents and discusses the results, and Section 8 concludes the paper.

2. Data

We use solar power data from the largest flat-panel, grid-connected, PV system in Australia. It is
located at the St Lucia campus of the University of Queensland in Brisbane and has about 5000 solar
panels distributed at the roof-top of four buildings, generating up to 1.22 MW of electricity.

The data is measured at 1-min intervals for 24 h. We collected data for 10 h during the day, from
7:00 am to 5:00 pm, for two complete years—from 1 January 2013 to 31 December 2014. Outside these
10 h the solar power is either zero or very low due to the absence of solar irradiation. The data is
publicly available at [21].

The original data set consists of 2 × 365 × 600 = 438,000 measurements in 1-min resolution. There
were only 1518 missing values which is about 0.35%. Each missing value was replaced by the average
of the values from the previous 5 min, i.e., with the 5 most recent observations of the PV power output.
The 1-min data was aggregated into 5-min intervals by averaging every 5 consecutive measurements,
resulting in 2 × 365 × 120 = 87,600 measurements in total. The data was normalized to the range (0,1).

The generated PV power depends on the weather conditions, especially the solar irradiance.
Figure 1 plots the solar power profiles at half-hourly intervals, for three different types of days:
sunny (13 April 2013), cloudy (15 April 2013) and rainy (20 April 2013). The three graphs differ
considerably—for sunny days, the power output from a PV system is the highest and typically follows
a bell shaped curve; for cloudy and rainy days, the generated PV power is lower and it varies during
the day due to the changes in the weather conditions.
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Figure 1. Typical patterns of solar power output under different weather conditions: for a sunny day
(13 April 2013), cloudy day (15 April 2013) and rainy day (20 April 2013).

3. Problem Definition

Let X = X1, X2, . . . , Xt be a discrete time series of PV power outputs up to time t. Our goal
is to compute the 2D-interval forecast for the next interval with length k, i.e., for the values
Xt+1, Xt+2, . . . , Xt+k. Specifically, at time t we predict the upper and lower bounds for the values of
X in the interval [t + 1, t + k] (see Figure 2).

There are different ways to construct the upper and lower bounds of the k-length interval using
descriptive statistics—e.g., using the 75th and 25th percentiles as in [18] or using the maximum and
minimum values as in [20]. In this study, we follow the first method as percentiles are more robust to
noise and outliers than minimum and maximum values. Let Pα

k and Pβ
k are the α and β percentiles

(α > β) for the PV power time series X for the k-length future time interval [t + 1, t + k]. The interval
formed by them corresponds to the interval where |α− β| × 100% of the values of X are expected
to lie [6]. In this work, we construct two types of 2D-interval forecasts: by using the 90th and 10th
percentiles, as well as 75th and 25th percentiles. However, our method is general and can be used for
intervals with different bounds and lengths, depending on the specific application and scenario.
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4. Proposed Approach NNE2D

Figure 3 presents a block diagram of NNE2D. It uses an ensemble of NNs for computing the
2D-interval forecasts and includes three main steps: (1) variable selection; (2) training and selection of
the NN ensemble; and (3) forecasting of new data, as described below.
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4.1. Variable Selection

Variable (or feature) selection is a key factor affecting the performance of prediction systems [22,23].
The goal is to select a set of input variables that are relevant, important and sufficient for predicting
the target variable.

To select lag variables, we used a method based on MI. MI is an information theoretic measure
of the relationship between two variables X and Y—it measures the amount of information obtained
from X in the presence of Y and vice-versa. If the two variables are independent, MI is zero; if they
are dependent, MI has a positive value corresponding to the strength of the relationship. In contrast
to traditional feature selection methods for time series such as autocorrelation which capture only
linear dependencies, MI is able to detect both linear and non-linear dependencies. To compute MI we
applied the method of Kraskov et al. [24] which is based on nearest neighbor distances.

We extract all lag variables from a time window with length one day (120 lag variables in total)
and calculate the MI score between each of them and the targets Pα

k and Pβ
k , for intervals with different

lengths: k = 12, 24 and 36. One day of previous data is sufficient as the PV power is affected by changes
in the solar irradiance and they are best captured in the most recent data. Figure 3 shows the MI score
of the candidate lag variables for k = 12 and 24; the graph for k = 36 is similar and not shown. As we can
see from Figure 4, the MI score drops sharply and then flattens. To select a set of predictive variables,
we chose a cut-off threshold of MI = 0.6, which was satisfied by 5–6 variables for all three interval
lengths. The cut-off threshold was chosen empirically; our goal was to select a small set of highly
predictive variables. Further analysis revealed that the selected variables were variables extracted
from the previous 30 min, which shows the importance of the most recent data. We chose the previous
6 PV lag variables for inclusion in the final feature set and validated this selection by increasing the
number of variables up to 12, one at a time, but found that the inclusion of variables beyond lag 6 does
not improve the prediction accuracy.
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Figure 4. MI score of lag variables for intervals with different length k: (a) k = 12 and (b) k = 24.

In addition to the 6 selected lag variables, following [20] we also selected the upper and lower
bounds, Pα

k−1 and Pβ
k−1, of the previous k-length interval Xt−k+1, . . . , Xt−1, Xt. These features provide

useful information about the recent dynamics of the two percentiles that we are trying to predict. Thus,
we use 8 features in total as listed in Table 1.

Table 1. Selected variables to predict Pα
k and Pβ

k of the k-length interval [t + 1, t + k].

Variable Types Selected Variables Number of Variables

Lag variables Xt−5, Xt−4, Xt−3, Xt−2, Xt−1, Xt 6
Descriptive statistics of previous k-length interval Pα

k−1, Pβ
k−1 2

Total number of variables - 8

4.2. Prediction Model—NN Ensemble

As a prediction model for Pα
k and Pβ

k , we use an ensemble of NNs. NNs are one of the most
popular prediction algorithms for solar power forecasting [11,14,25], and also for other energy time
series such as electricity load forecasting [26–28]. However, their performance is very sensitive to the
NN architecture and the random initialization of weights. By combining the predictions of several
NNs in an ensemble, this sensitivity can be reduced. Ensembles of prediction algorithms are also
typically more accurate than a single ensemble member [29].

We adapt our NN ensemble method from [30] which was previously applied for point forecasting;
we call the adapted prediction model NNE2D.

Single NN. A single NN, part of NN2D, is a multilayer perceptron NN as shown in Figure 5.
It has p input neurons corresponding to the selected features, two output neurons for Pα

k and Pβ
k and

one hidden layer where the number of hidden neurons is determined experimentally as described
below. The NN weights are initialised to random values using the Nguen-Widrow method [31].

Each single NN is trained separately on the training data using the Levenberg Marquardt (LM)
algorithm [32] to minimize the mean squared error on the training data. LM has been chosen over the
standard steepest gradient descent backpropagation algorithm because of its faster convergence.

The training is terminated when one of the following conditions is met: (1) the maximum number
of training epochs (1000) is reached; (2) no improvement in the performance on the validation set is
observed for a certain number of epochs (10); or (3) the performance gradient becomes very small
(less than 1 × 10−7).

Ensemble of NNs. We build V ensembles of NNs and then select the best one, as shown in
Figure 6. Each ensemble combines the predictions of m NNs with the same number of hidden neurons
but different initialization of the weights. For example, the ensemble EV combines the predictions of



Energies 2016, 9, 829 7 of 17

m NNs with V hidden neurons. The combination is done by taking the median of all m predictions.
In our experiments we used m = 10 and V = 30.

After each NN is trained separately on the training data, the performance of the V ensembles
is evaluated on the validation set and the best performing ensemble Ebest, the one with the lowest
prediction error (MRE) on the validation set, is selected and used to predict the testing data.
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4.3. Predicting New Data

To predict Pα
k and Pβ

k for a new example i, the ensemble Ebest combines the predictions of its
ensemble members (i.e., single NNs) by taking the median of their predicted lower and upper
bounds as shown in Figure 6. This means that: P̂α

k = median
(

P̂α
k, NNbest,1

, . . . , P̂α
k, NNbest,m

)
and
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P̂β
k = median

(
P̂β

k, NNbest,1
, . . . , P̂β

k, NNbest,m

)
, where P̂α

k, NNbest,j
and P̂β

k, NNbest,j
are the predictions for the α

and β percentiles generated by an NNj of ensemble Ebest, j = 1, . . . , m.

5. Methods Used for Comparison

To provide a comprehensive evaluation of NNE2D, we compare its performance with two
persistence models and a method similar to NNE2D but using SVR instead of an NN ensemble.

5.1. Persistence Models

We use two persistence models as baselines for comparison. Persistence models consider
the recently observed values of time series data as predicted values and are used as baselines.
We implemented two persistence models: B1 and B2.

The first baseline (B1) uses the previous k-length interval. The 2D-interval forecast at time t for
the interval [t + 1, t + k] is given by the percentiles of the previous interval [t − k − 1, t], i.e.,: Pα

k−1 = α

percentile of (Pt−k+1, . . . , Pt−1) and Pβ
k−1 = β percentile of (Pt−k+1, . . . , Pt−1).

The second baseline (B2) uses the k-interval from the previous day, at the same time.
The 2D-interval forecast at time t for the interval [t + 1, t + k] is given by using the percentiles
of the time series for the interval [t − k − d + 1, t − d], where d is the total number of observations in a
day, i.e., Pα

k−d = α percentile of (Pt−d−k+1, . . . , Pt−d) and Pβ
k−d = β percentile of (Pt−d−k+1, . . . , Pt−d).

Zhang et al. [33] showed that for point forecasting a persistence model similar to B2 was more accurate
compared to ARIMA, NNs and SVR when the consecutives days have similar PV power characteristics.

5.2. SVR Based Method

We also evaluate the performance of SVR as a prediction algorithm instead of an NN ensemble,
under the same experimental conditions. We call this method SVR2D.

SVR is an advanced prediction algorithm [34] that has shown excellent performance in several
domains [35–37], including solar power forecasting, e.g., [9,13,38].

The key idea of SVR is to map the input data into a higher dimensional feature space using a
non-linear transformation and then apply linear regression in the new space. The linear regression in
the new space corresponds to nonlinear regression in the original space. The task is formulated as an
optimisation problem. The main goal is to minimize the error on the training data, but the flatness of
the line and the trade-off between training error and model complexity are also considered to prevent
overfitting. The solution is defined by a small subset of training examples, called support vectors.

Solving the optimization problem requires computing dot products of input vector in the new
space which is computationally expensive in high dimensional spaces. To help with this, kernel
functions satisfying the Mercer’s theorem are used—they allow the dot products to be computed in
the original lower dimensional space and then mapped to the new space.

Since SVR can have only one output, SVR2D divides the 2D-interval prediction task into two
subtasks: predicting the upper bound Pα

k and predicting the lower bound Pβ
k , and builds a separate

SVR prediction model for each of them:

Pα
k = SVR

(
Xt−5, Xt−4, Xt−3, Xt−2, Xt−1, Xt, Pα

k−1, Pβ
k−1

)
(1)

Pβ
k = SVR

(
Xt−5, Xt−4, Xt−3, Xt−2, Xt−1, Xt, Pα

k−1, Pβ
k−1

)
(2)

We used Radial Basis Function (RBF) kernel, which was selected after empirical evaluation and
comparison of different kernel functions.
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6. Experimental Setup

6.1. Training, Validation and Testing Sets

We divided the available solar power data for the two years (2013 and 2014) into three
non-overlapping subsets: training (50%) validation (25%), and testing (25%). The data for 2013
was assigned to the training set, 50% of the data for 2014 was assigned to the validation set and the
remaining 50% for 2014 was assigned to the testing set. Table 2 shows the number of samples in
each subset.

Table 2. Summary of training, validation and testing data sets.

Data Set Percentage Split Number of Samples

Training set 50% 43,800
Validation set 25% 21,900

Testing set 25% 21,900
Total 100% 87,600

The training set was used for feature selection and training of the prediction models, the validation
set was used to tune the parameters of the prediction models, e.g., for selecting the best NN ensemble
and kernel function for SVR2D. The testing set was used to evaluate the performance of the prediction
models for 2D-interval forecasting.

6.2. Interval Length

We consider intervals with three different lengths: 1 h, 2 h and 3 h, and two different bounds:
90%–10% and 75%–25% percentiles. This allows us to better evaluate our approach under different
conditions and also shows that it can be used in different scenarios by the power system operators
depending on the task, e.g., real-time dispatching, storage management, etc. Table 3 summarizes the
interval lengths in terms of steps k and time l, and also the bounds we used.

Table 3. Interval lengths and bounds for 2D-interval forecasts.

Interval Length Upper Bound
(α-Percentile)

Lower Bound
(β-Percentile)In Steps, k In Time, l

12 1 h
90 10
75 25

24 2 h
90 10
75 25

36 3 h
90 10
75 25

6.3. Evaluation Mesusres

We use three different evaluation measures: Mean Absolute Interval Deviation (MAID), Mean
Relative Error (MRE) and Interval Coverage Probability (ICP):

MAID =
1

2N

[
n

∑
i=1

∣∣∣Pα
k,i − P̂α

k,i

∣∣∣+ ∣∣∣Pβ
k,i − P̂β

k,i

∣∣∣] (3)

MRE =
1

2N

 n

∑
i=1

∣∣∣∣∣P
α
k,i − P̂α

k,i

R

∣∣∣∣∣+
∣∣∣∣∣∣P

β
k,i − P̂β

k,i

R

∣∣∣∣∣∣
 ·100% (4)
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ICP =
1

N × k

N

∑
i=1

i+k

∑
j=i+1

cj·100% (5)

where: Pα
k,i and Pβ

k,i are the actual values of the upper and lower bounds of the k-length interval for i-th

example in the dataset and P̂α
k,i and P̂β

k,i are the respective predicted values; k is the length of interval,
N is the total number of examples in the dataset, R is the range of the target values of the PV power

output data; and cj =

{
1, i f Xj ∈

[
Pα

k,i, Pβ
k,i

]
0, otherwise

.

MAID is standard measure for interval forecasts [18,20]. It measures the mean absolute deviation
of the upper and lower bounds of the predicted intervals from the upper and lower bounds of the
actual intervals. MRE measures the percentage deviation of the predicted intervals from the actual
intervals normalized by the range of the target values. It is an extension of MAID and facilitates
comparison of prediction errors for data sets with different range of values. Low values for both MAID
and MRE indicate high prediction accuracy.

ICP measures the likelihood of the k values of the time series for the next k-length interval to be
included in the predicted interval [P̂α

k ,P̂β
k ], averaged over all points in the data set. High coverage

probability indicates high accuracy. For 2D-interval forecasts with upper and lower bounds constructed
using α and β percentiles (α > β), the expected coverage probability is |α− β| × 100%.

7. Results and Discussion

7.1. Accuracy

Table 4 presents the accuracy results for NNE2D and Table 5 for the methods used for comparison.
Figures 7 and 8 show a visual comparison of the MRE and ICP results for all methods.

The results show that NNE2D outperformed the other methods for all interval lengths and
interval boundaries, for all three evaluation measures. On average NNE2D achieved the following
percentage improvements in terms of MAID and MRE: compared to SVR2D: 21.50%–24.40%, compared
to B1: 44.65%–58.45% and compared to B2: 58.63%–61.66%. These improvements in terms of ICP are:
6.48%–21.04%, 83.7%–50.42% and 91.68%–75.58% respectively.

SVR2D is the second best method and it also considerably outperforms the two baselines. From
the two baselines, B1 is more accurate than B2, which shows that the most recent solar data is more
important than the data from the previous day for 2D-interval prediction. This is also supported by
the performance of both NNE2D and SVR2D which utilise a small set of input variables from the most
recent solar power data.

Table 4. Accuracy results for NNE2D.

Interval Length Lower and Upper Bounds
(α-β Percentiles)

Evaluation Metrics

In Steps, k In Time, l MAID [kW] MRE [%] ICP [%]

12 1 h
10th–90th

74.41 6.47 67.04
24 2 h 86.92 7.56 67.46
36 3 h 93.86 8.16 67.66

12 1 h
25th–75th

74.72 6.50 42.96
24 2 h 90.53 7.87 43.65
36 3 h 101.53 8.83 45.00
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Table 5. Accuracy results for the methods used for comparison: SVR2D, B1 and B2.

Interval Length Lower and Upper Bounds
(α-β Percentiles)

Evaluation Metrics

In Steps, k In Time, l MAID [kW] MRE [%] ICP [%]

SVR2D

12 1 h
10th–90th

98.43 8.56 55.38
24 2 h 113.48 9.87 61.24
36 3 h 121.23 10.54 63.55

12 1 h
25th–75th

95.79 8.33 36.25
24 2 h 115.32 10.03 39.20
36 3 h 130.00 11.30 39.23

B1

12 1 h
10th–90th

134.44 11.69 30.10
24 2 h 195.51 17.00 33.01
36 3 h 225.88 19.64 36.83

12 1 h
25th–75th

137.54 11.96 17.16
24 2 h 205.34 17.85 19.09
36 3 h 243.31 21.15 21.72

B2

12 1 h
10th–90th

179.84 15.63 27.86
24 2 h 222.52 19.35 30.68
36 3 h 243.58 21.18 35.30

12 1 h
25th–75th

183.67 15.97 15.59
24 2 h 234.22 20.36 17.65
36 3 h 264.78 23.02 20.76
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Figure 7. Comparison of MRE for all methods: (a) α = 90th and β = 10th percentiles, (b) α = 75th and
β = 25th percentiles.

Figure 9 shows the regression results of the predicted and actual values for the upper and lower
bounds of the 2D-intervals with lengths 1 h, α = 90th and β = 10th percentile. The regression plots for
the remaining cases are very similar and not shown. We can see that most of the data falls along the
diagonal line, with high values for the coefficient of determination R (0.88–0.90), indicating that the
predicted and actual bounds of the 2D-intervals are very close to each other.
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Figure 8. Comparison of ICP for all methods: (a) α = 90th and β = 10th percentiles, (b) α = 75th and
β = 25th percentiles.
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Figure 9. Regression plots of actual and predicted values for the intervals with length 30 min, and
α = 90th and β = 10th percentiles.

7.2. Performance for Different Interval Lenghts

From Table 4 we can see that the accuracy of NNE2D varies depending on the lengths of the
intervals. The best accuracy results in terms of MAID and MRE are achieved for the intervals with the
smallest length (l = 1 h, k = 12 steps). The accuracy decreases as the length of the predicted interval
increases. These findings are as expected—it is generally easier to predict values that are closer in time
to the current value.

In terms of coverage probability ICP, the results for the 10–90 percentile interval are similar for
the different interval lengths while for the 25th–75th percentile interval ICP slightly increases with the
increase of the interval length. We can also see that ICP is higher for the 10th–90th percentile interval
than for the 25th–75th percentile interval. This is anticipated since the expected coverage probability
drops from 80% (=90%–10%) for the first case to 50% (=75%–25%) for the second case.

To provide additional insights, Table 6 shows the Mean Interval Width (MIW) for the constructed
intervals. Similarly to MAID and MRE, we can see that MIW increases as the interval length increases,
and this holds for both predicted and actual intervals. MIW also depends on the upper and lower



Energies 2016, 9, 829 13 of 17

bounds of the intervals and as Figure 10 shows it is higher for the 10th–90th percentile interval than for
the 25th–75th percentile interval. In summary, the analysis of ICP values from Table 4 and MIW values
from Table 5 indicates that the coverage probabilities for wider intervals are higher. This is consistent
with the results in [39] and as expected since the data points have a higher probability to fall in a wider
interval, which implies a higher ICP.

Table 6. Comparison of the mean interval width for intervals with different lengths and bounds.

Interval Length Lower and Upper Bounds
(α-β Percentiles)

Predicted MIW
(kW)

Actual MIW
(kW)In Steps, k In Time, l

12 1 h
10th–90th

222.09 212.88
24 2 h 308.53 298.22
36 3 h 380.00 369.74

12 1 h
25th–75th

130.33 124.59
24 2 h 182.48 176.22
36 3 h 226.08 219.32
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7.3. Comparison with Previous Work

We also compare the performance of NNE2D with our previous work [20]. The two methods
from [20] are based on SVR and a single NN (not an ensemble) and are denoted with SVR2Dref
and NN2Dref. In contrast to NNE2D where we use only previous solar power data, SVR2Dre f
and NN2Dre f use both meteorological and solar power data. In addition, SVR2Dref and NN2Dref
predict the maximum and minimum values of the future interval, not percentile boundaries. For fair
comparison, we evaluated the performance of NNE2D for predicting the same boundaries (maximum
and minimum values).

Table 7 shows the comparison results. We can see that NNE2D is more accurate than SVR2Dref
and NN2Dref. The average percentage improvement of NNE2D in terms of MAID or MRE is: 28.12%
and 34.32% (compared to SVR2Dref and NN2Dref) and this improvement in terms of ICP is 12.77% and
31.71%, respectively. This is a promising result, especially considering that it was achieved by using
only previous power data, without any weather data. It also shows that for very-short term forecasting
of up to 3 h ahead, there is no need to use weather data—the previous solar power data is sufficient.
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Table 7. Comparison of prediction accuracy for NNE2D, SVR2Dref and NN2Dref.

Interval Length Lower and
Upper Bounds

NNE2D SVR2Dref NN2Dref

In Steps k In Time l MAID
(kW)

MRE
(%)

ICP
(%)

MAID
(kW)

MRE
(%)

ICP
(%)

MAID
(kW)

MRE
(%)

ICP
(%)

12 1 h
min-max

76.65 6.66 74.47 100.84 8.77 62.01 112.03 9.74 57.10
24 2 h 88.03 7.65 80.17 127.08 11.05 71.01 139.25 12.11 59.53
36 3 h 91.23 7.93 83.08 128.09 11.14 77.78 138.35 12.03 63.86

Average: 85.30 7.42 79.24 118.67 10.32 70.27 129.88 11.29 60.16
St. deviation: 7.67 0.67 4.38 15.45 1.34 7.91 15.46 1.34 3.42

7.4. Training of the NN Ensemble

To analyse the convergence behaviour of the individual NNs used in an NNE2D ensemble, we
examine how the performance function (MSE) changes during the training phase. Figure 11 shows the
convergence graph of MSE for a typical NN (an ensemble member). We can see that the initial MSE
is high but as the training progresses it decreases rapidly. The training of the NN is terminated after
38 training epochs when the second stopping criterion is satisfied—the accuracy on the validation set
does not improve for 10 consecutive epochs. In summary, the results show good and fast convergence.
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The overall training time of NNE2D was 8–10 min (for a computer with Intel Core i7 3.4 GHz
processing unit and 16 GB memory). This includes the time required to train all ensemble members
and for combining their forecasts to generate the final prediction. The training time for a single NN
varied from 50 s to 1 min. Convergence was typically achieved for 30–40 epochs, although the MSE
was already very low after 5–10 epochs in most of the cases. The training time is a very important
factor when the prediction models are used online, and particularly when they need to be re-trained
often. Since the overall training time is only a few minutes, the proposed approach is suitable for both
off-line and on-line training.

8. Conclusions

We considered the task of 2D-interval forecasting and its application for predicting the electricity
power generated by solar PV systems. Specifically, at time t we predict summary statistics for the
distribution of the PV power time series in the future time interval [t + 1, t + k] such as the 90th and
10th percentiles, and also the 75th and 25th percentiles. This type of forecasting task was recently
introduced by Torgo and Ohashi in [18] and is useful to quantify uncertainty in applications which
require balancing of demand and supply, especially when the predicted variable has a high variability
such as in solar power forecasting.

Our proposed method NNE2D uses a variable selection based on MI and an ensemble of NNs to
compute the lower and upper bounds (expressed as percentiles) of the 2D-interval forecasts. It was
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evaluated for predicting the solar PV power output using Australian PV power data for two years,
sampled at 5-min intervals, for future intervals with length from 1 to 3 h. The prediction was done
using only previous PV power data, without any weather data.

NNE2D was compared with two persistence models used as baselines and a method based on
SVR. It achieved MRE of 6.47%–8.16% and coverage probability ICP of 67.04–67.66 for the 10–90th
percentiles and MRE of 6.50–8.83 and ICP of 42.96%–45% for the 25–75th percentiles, considerably
outperforming the methods used for comparison. NNE2D also showed superior performance when
compared to similar but multivariate methods that use both PV power and weather data. This shows
that for very-short term forecasting up to 3 h, there is no need to use weather data. In addition, NNE2D
was fast to train which makes it suitable for both online and offline training.

Considering both prediction accuracy and the computational requirements, we conclude that
NNE2D is a promising approach for 2D-interval forecasts and is viable for practical applications. It can
be used to predict other summary statistics for future intervals, not only percentiles, depending on the
specific task and forecasting scenarios.

There are several avenues for future work that we will explore. Firstly, we plan to conduct a
detailed sensitivity analysis investigating the impact of the relative size of the training, validation and
testing sets and the effect of resampling of these sets when evaluating the performance. Secondly,
we will examine if the daily periodical component of the PV power (more pronounced for some types
of days, e.g., sunny) can be used to improve the results. Thirdly, we will explore alternative data
normalization methods, e.g., based on the daily cycle, that consider the sunrise and sunset times and
the solar height. Furthermore, we plan to apply our method to other energy time series, in particular
wind energy, electricity demand and electricity price.
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