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Abstract: An opportunity wireless charging system for electric vehicles when they stop and wait
at traffic lights is proposed in this paper. In order to solve the serious power fluctuation caused by
random access loads, this study presents a power stabilization strategy based on counting the number
of electric vehicles in a designated area, including counting method, power source voltage adjustment
strategy and choice of counting points. Firstly, the circuit model of a wireless power system with
multi-loads is built and the equation of each load is obtained. Secondly, after the counting method of
electric vehicles is stated, the voltage adjustment strategy, based on the number of electric vehicles
when the system is at a steady state, is set out. Then, the counting points are chosen according to
power curves when the voltage adjustment strategy is adopted. Finally, an experimental prototype is
implemented to verify the power stabilization strategy. The experimental results show that, with the
application of this strategy, the charging power is stabilized with the fluctuation of no more than 5%
when loads access randomly.
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1. Introduction

With the rapid development of battery technology, from the hybrid electric vehicle (HEV) to the
battery electric vehicle (BEV), the automobile is gradually moving away from dependence on fossil
fuels. However the energy density and the speed of energy supply a battery possesses are far lower
than those of petrol [1]. As a result, the electric vehicle (EV) is characterized by inconvenient and
frequent charging, a bulky battery pack and limited driving range.

In order to remove the need for the charging cable, researchers have investigated EV static
wireless charging (EVSWC) technology when an EV stops at the assigned position. Compared
with the cable charging method, the EVSWC system is more convenient and can avoid electric
sparks and worn circuits. The studies of EVSWC technology mainly cover efficient high-frequency
inverters in primary side, effective high-frequency rectifiers in secondary side, electromagnetic couplers
with high lateral misalignment tolerance, novel compensation circuits in both primary side and
secondary one, and interoperability of different EV wireless charging equipment. The design and
implementation of a wireless power transfer battery charger for an electric city car is presented in [2].
A 2 kW 700 mm-diameter pad, with a horizontal radial tolerance of 130 mm with a 200 mm air gap,
was constructed and tested in [3]. A double D (DD) coil and a unipolar coil are selected for the
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study in [4]. In [5], a compensated coil is integrated into the main coil structure, and a system with
the proposed integration method is able to transfer 3.0 kW with an efficiency of 95.5% at an air gap
of 150 mm. The series LC (SLC) resonant and the hybrid series-parallel (LCL) resonant full-bridge
inverter topologies used for wireless electric vehicle (EV) charging are comparatively studied in [6].
The interoperability between different systems of contactless EV battery static charging by means of
inductive coupling is investigated in [7].

Furthermore, to solve the issues of bulky battery and limited driving range, and to develop new
energy storage devices with higher energy density, researchers have put forward the EV dynamic
wireless charging technology (EVDWC), which can supply electricity for a running EV. EVs tend to have
a limited driving range because of the restricted number of battery. With the application of dynamic
wireless charging technology, EVs can be powered wirelessly while running. As a result, the size of
the battery will decrease and in theory the car could even run without battery. A typical EVDWC
system consists of the wireless power transmission unit, electric automobile unit and coordinated
control unit [8]. The primary structures of EVDWC systems can be divided into a single long coil
structure and a multiple short-segmented coil structure. The researches about systems with a single
long coil structure mainly focus on modeling methods, novel coil structures and electromagnetic
radiation elimination methods. A system with a single long coil structure is modeled on Laplace
phasor transform in [9]. Hao et al. [10] build the approximate dynamic model of EVDWC system
with LCL-T structure by using the generalized state-space averaging method. The research team
at the University of Auckland proposes a three-phase wireless power transmission structure for
EVDWC [11]. Researchers in KAIST (Korea Advanced Institute of Science and Technology) devote
themselves to designing the coils structures of primary and secondary sides [8] and finding the
electromagnetic radiation elimination methods [12]. Compared to a system with a single long
coil structure, a system with a multiple short-segmented coil structure depends on EV positioning
technology and switching control method of multiple primary coils. Bertoluzza et al. [13] investigate
the coupling characteristics of double D (DD) coils with different dimensions in a short-segmented
coil structure system. In [14], an efficiency of 92.5% at an output power of 5 kW is achieved with the
application of a double-coupled configuration in a short-segmented wireless charging system for EV.
An EVDWC system with a simultaneous two-transmitter method is proposed to obtain constant power
supply in [15]. Kibok et al. [16] investigate characteristics of the received power changing with the
position of the secondary coil in EVDWC systems with multiple short-segmented coils.

Because of many factors including existing technology and relevant policies about road
reconstruction, there are still many problems to be solved before promoting the practical application
of EVDWC systems in a short timeframe [17]. However, we can turn our attention to road junctions
at traffic lights and build an opportunity wireless charging system for electric vehicles there.
This opportunity wireless charging system at traffic lights is a combination of EVSWC and EVDWC.
EVs can enter the waiting area that is also the opportunity wireless charging area and be charged
conveniently while they wait for the traffic lights. This method contributes to enlarging driving range
and is the basis of a whole-road EVDWC system.

Unlike the existing EVSWC system, the EV wireless charging system at traffic lights will need
to solve two main problems. Firstly, due to the fact that waiting time cannot be very long (usually
between 30 s and 100 s), the rate of the charging power is expected to need to be several kilowatts so
that charge the battery in a short time. According to advanced EVDWC technology, the system can
generate a high rate of charging power [8]. Another problem caused by the random access loads in the
system is studied in this paper: On the one hand, if the power source voltage is constant, the access
process of a new load will lead to a decline of charging power in the previous loads. On the other
hand, if the voltage is adjusted regardless of the position of the random access load, the previous loads
are threatened by an unbearably high rate of charging power. The issue of random access loads in
EV wireless charging system received little attention. This paper focuses on a power stabilization
strategy to deal with the issue of random access loads in EV wireless charging systems at traffic
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lights. The detection method of EVs is necessary but not a key research point in this paper. In [18],
a combination of vertically and horizontally oriented magnetic sensing coils is arranged to provide
a signal that is used to control the steering of a driverless passenger vehicle. A three-coil detection
system is proposed to detect the approaching EV in [19].

In Section 2, an opportunity EV wireless charging system at traffic lights is outlined. In Section 3,
a circuit model of a wireless power transmission system with one primary coil and multi secondary
coils is built. Equations of the received power of every load are then obtained. In Section 4, the power
stabilization strategy is proposed, including counting method, power source voltage adjustment on
the basis of the number of EVs when the system is at a steady state and choice of the counting points.
In Section 5, the experimental prototype with the application of the power stabilization strategy is
built and the theoretical analysis is verified by the experimental results.

2. Overview of Opportunity EV Wireless Charging System at Traffic Lights

The single long rectangular primary coil is installed under the lane at the traffic lights. When the
traffic light is red, the EV can be charged wirelessly and conveniently when the EV is detected in the
effective wireless charging area. The principle of the opportunity EV wireless charging system at traffic
lights proposed in this paper is shown as Figure 1.
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Figure 1. Principle of the opportunity electric vehicle (EV) wireless charging system.

The primary side of the proposed system consists of a traffic light information unit, EV counter
information unit, control unit, high-frequency inverter, and the primary coil with compensation circuit.
The secondary side includes the secondary coil with compensation circuit, rectification and voltage
regulation unit, and the load. The communication mode of information of traffic lights is one-way
communication in order to avoid influences on the traffic light system. The control unit combines
the traffic lights information and the counter information, and also controls the DC voltage of the
high-frequency inverter. The energy is transferred wirelessly through the electromagnetic coupling
between the primary and secondary coils. The structure diagram of the opportunity EV wireless
charging system is shown in Figure 2. In order to solve the issue of low electricity quality, at least
two aspects should be dealt with in practical application. Firstly, a front-end power factor corrector
(PFC) stage should be installed in front of the rectifier and the high-frequency inverter in order to
handle the reactive burden. Secondly, the dc-link capacitor should also be installed between the
rectifier and the high-frequency inverter in order to handle the ripple current.
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Figure 2. The structure diagram of the opportunity EV wireless charging system. 
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Figure 2. The structure diagram of the opportunity EV wireless charging system.

The opportunity EV wireless charging system at traffic lights is a complex system with many
issues to be investigated. In order to focus on the power fluctuation caused by the random access loads,
theoretical analysis is carried out and a control strategy is proposed under the following hypotheses:

(i) The actual implementation of obtaining the information of traffic lights and the detection method
of EVs are not mentioned in this paper.

(ii) When the traffic light is red and the EV is about to enter the effective wireless charging area,
the EV is assumed to need charging and can be wireless charged.

(iii) When the traffic light turns green, the whole system turns off. Namely, all EVs quit simultaneously
at that time.

(iv) The parameters of secondary coils in each EV are identical. The load characteristics are supposed
to be identical too. In this paper, the actual load, including rectifier and battery, is simplified
as the AC equivalent resistive load, which can be directly connected with the secondary coil.
The differences of load characteristics caused by different batteries can be eliminated by using
impedance conversion technology. At the preliminary stage of our research, we mainly focus on
the wireless charging system for EVs with the same power level. In the future, we will deal with
EVs of different power levels in the proposed system.

(v) On the one hand, most of the energy is transferred wirelessly through the fundamental square
wave from the high-frequency inverter. On the other hand, the harmonics cause slight extra loss
in primary side. Since the harmonic components count for a slight part in inverter output voltage,
the loss caused by the harmonics is far less than that caused by the fundamental component.
So the power source can be assumed to be ideal high-frequency sinusoidal in theoretical analysis.

3. System Modelling and Analysis

The circuit model of the proposed opportunity EV wireless charging system at traffic lights is
displayed in Figure 3. The primary side and the secondary side are compensated with the resonant
capacitors. Uin and Rin represent the voltage and the internal resistance of the high-frequency power
source respectively. Rp, Lp, and Cp represent the resistance, the inductance and the compensation
capacitor of the primary coil respectively. The number of loads in system is n. Rsk, Lsk and Csk denote
the resistance, the inductance and the compensation capacitor of the kth (1 ≤ k ≤ n) secondary coil
respectively. RLk is the kth load. Mks represents the mutual inductance between the kth secondary coil
and the primary coil. Mij is the mutual inductance between the ith (1 ≤ i < n) secondary coil and the
jth (i < j ≤ n) secondary coil.
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Z·



•
Ip
•

Is1
...
•

Isk
...
•

Isn


=



•
Uin
0
...
0
...
0


(1)

where Ip is the current of the primary circuit, Isk is the current of the kth secondary circuit, and Z is the
impedance matrix of the system.

Z =



Z00 Z01 · · · Z0k · · · Z0n
Z10 Z11 · · · Z1k · · · Z1n

...
...

. . .
...

. . .
...

Zk0 Zk1 · · · Zkk · · · Zkn
...

...
. . .

...
. . .

...
Zn0 Zn1 · · · Znk · · · Znn


(2)

The non-diagonal element Zk0 = Z0k = −jωMks and Zij = Zji = −jωMij. The diagonal
elements Z00 and Zkk (1 ≤ k ≤ n) represent the impedances of primary circuit and secondary circuits
respectively, where Z00 = Rin + Rp + jωLp +

1
jωCp

and Zkk = RLk + Rsk + jωLsk +
1

jωCsk
. ω = 2π f ,

and f is the working frequency.
Since the distance between two secondary coils is long enough in this system, the mutual

inductance between two secondary coils can be ignored, namely, Mij = 0. According to the hypotheses
mentioned above, the inner resistance of every secondary coil is assumed to be Rs and each load is
assumed to be RL. The working frequency is set to be the resonant frequency of every circuit, namely,
jωLp +

1
jωCp

= 0 and jωLsk +
1

jωCsk
= 0. The impedance matrix, Equation (2), can be simplified as
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Z =



Rin + Rp −jωMs1 · · · −jωMsk · · · −jωMsn

−jωM1s RL + Rs
...

. . .
−jωMks RL + Rs

...
. . .

−jωMns RL + Rs


(3)

The current in the primary circuit can be calculated as

•
Ip =

Uin(
Rin + Rp

)
+ω2(

n
∑

i=1

Mis
2

(Rs+RL)
)

(4)

The current in the kth secondary circuit is

•
Isk =

jωMksUin(
Rin + Rp

)
(Rs + RL) +ω2(

n
∑

i=1
Mis

2)
(5)

After the inner resistance of the power source is ignored, the received power of the kth load can
be expressed as

Poutk = Isk
2RLk =

ω2Mks
2Uin

2RL[
Rp (Rs + RL) +ω2(

n
∑

i=1
Mis

2)

]2 (6)

The diagram of mutual inductance calculation is shown in Figure 4. N1 and N2 represent the
numbers of turns in primary coil and secondary coil respectively. µ0 is the vacuum permeability and µr
is the relative permeability. lp and lks are the current loops in the primary circuit and the kth secondary
circuit respectively. dlp and dlks are infinitesimal in the current loops respectively. Rk is the vector
distance between dlp and dlks. The central coordinates of the primary coil and secondary coil are O1

(0, 0, 0) and O2 (x, 0, h) respectively, where x is the abscissa of the secondary coil center and h is the
vertical height.
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According to the Neumann formula, Mks can be calculated as

Mks =
N1N2µrµ0

4π

∮
lp

∮
lks

dlpdlks

Rk
(7)

The curve of Mks versus position variation of the secondary coil can be obtained as shown
in Figure 5.
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The effective wireless charging area is the area where the secondary coil can be located right above
the primary coil. The lateral misalignment is not taken into account in this paper. As shown in Figure 5,
the effective wireless charging area can be expressed as x1 ≤ x ≤ x2, where x1 is − (a2 − a1) /2 and
x2 is (a2 − a1) /2. The received power changes little when the EV is in the effective charging area
because the Mks does not change much there. On the other hand, the final stopping place of each EV is
uncertain. Hence Mrms (the Root Mean Square of Mks) is chosen to express the mutual inductance in
the effective wireless charging area approximately.

Mrms =

√∫ x2
x1

Mks
2dx

x2 − x1
(8)

After Equation (8) is written into Equation (6), when the secondary coil is in the effective wireless
charging area completely, the received power can be calculated as

Poutk =
ω2Mrms

2Uin
2RL[

Rp (Rs + RL) + nω2Mrms
2
]2 (9)

If Uin always remains constant, it is difficult for Poutk to maintain stability because n is randomly
changing. In order to reduce adverse effects that the random access of the new load has on the
received power of previous loads, a power stabilization strategy, including counting the number of
EVs, adjusting the power source voltage and choosing the counting points, is proposed in the following
part. The received power of loads will be stabilized and the system’s adaptation to the random access
load will be promoted with the application of this strategy.

4. Analysis and Control Strategy of Received Power Stabilization

4.1. Source Voltage Adjustment Strategy Based on Counting Loads when the System is at a Steady State

As the premise of the power stabilization strategy is based on step voltage adjustment,
the counting method in the effective wireless charging area is shown in Figure 6. The tail counter and
the head counter (such as the photoelectric counter and hall sensor counter) are installed in both ends
of the effective wireless charging area. Since the effective wireless charging area is in the one-way lane,
the number of EVs in the designated area n can be expressed as

n = ntail − nhead, n ≥ 0 (10)

where ntail is the number of EVs passing the tail counter and nhead is the number of EVs passing the
head–tail counter.
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The source voltage adjustment strategy based on the EV counting method is as follows.
When n = 0, the voltage should be adjusted to Uin(0) = 0 (n = 0). When n ≥ 1, the received power
can be stabilized around the expected value Pout0 by voltage adjustments. According to Equation (9),
power source voltage Uin(n) can be expressed as

Uin(n) =

√
Pout0

[
Rp (Rs + RL) + nω2Mrms

2
]

√
RLωMrms

(n ≥ 1) (11)

which is equivalent to

Uin(n) =

√
Pout0Rp (Rs + RL)√

RLωMrms
+ n
√

Pout0ωMrms√
RL

(12)

which is rewritten as the following expression
Uin(n+1) = Uin(n) +

√
Pout0ωMrms√

RL

Uin(1) =
√

Pout0Rp(Rs+RL)√
RLωMrms

+
√

Pout0ωMrms√
RL

(13)

where Uin(k) is the power source voltage when the number of loads in the effective wireless
charging area is k.

According to Expression (13), the voltage adjustment based on EVs counting method to stabilize
the received power is as follows. When the first EV is detected, the power source voltage is

Uin(1) =
√

Pout0Rp(Rs+RL)√
RLωMrms

+
√

Pout0ωMrms√
RL

. If the number of EVs is increased by one, the power source

voltage is expected to be increased by ∆U =
√

Pout0ωMrms√
RL

.
This paper takes a four-load opportunity EV wireless charging system as an example. In fact,

the number of loads should match the power supply transmitted by the grid. In the simulation study,
the length and the width of the primary coil are 20 m and 0.9 m respectively. The number of turns of
primary coil is six. The secondary coils are square and the length of the sides is 0.9 m. The number of
turns of the secondary coils is seven. The vertical distance between the primary side and the secondary
side is 0.20 m. Other parameters are shown in Table 1.

Table 1. System parameters.

Symbol Note Value

f Resonant frequency 85 kHz
Pout0 Expected power 10 kW
Rp Primary coil resistance 1.5 Ω
Rs Secondary coil resistance 0.2 Ω
RL Load resistance 50 Ω

The calculation result of Mrms is 23.4 µH, according to Equation (8). After the other parameters
are put into Equation (13), the relationship between the power source voltage when system is at
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a steady state and the number of loads can be obtained as shown in Figure 7. To be more specific,
Uin(1) = 262 V and ∆U = 177 V.
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4.2. The Strategy of Determining Counting Points Based on Bounded Domain of Received Power

In the opportunity EV wireless charging system at traffic lights, the mutual inductance is
determined by the position of the tail counter when the power source voltage is about to adjust.
The mutual inductance between the previous secondary coil and the primary coil is Mks = Mrms, where
1 ≤ k ≤ n− 1 and those n− 1 secondary coils are in the effective wireless charging area. The mutual
inductance between the nth secondary coil (new load) and the primary coil is expressed as Mns.

According to Equation (6), while the new load is entering the effective wireless charging area
gradually, the received power of the previous loads can be expressed as

Poutk =
ω2Mrms

2Uin(n)
2RL{

Rp (Rs + RL) +ω2
[
(n− 1) Mrms

2 + Mns
2
]}2 , (1 ≤ k ≤ n− 1) (14)

and the received power of the new nth load can be calculated as

Poutn =
ω2Mns

2Uin(n)
2RL{

Rp (Rs + RL) +ω2
[
(n− 1) Mrms

2 + Mns
2
]}2 (15)

When the nth coil is counted but not completely in the effective charging area, Mns is a small
value and the voltage is adjusted according to the increased EV number. Then Poutk will increase
dramatically and exceed the expected range. In order to choose the optimal counting points, curves
of the received power of each load versus position variation of the new load should be investigated.
According to Equations (14) and (15), the curves of a one-load system, two-load system, three-load
system and four-load system are shown respectively in Figure 8.

In the one-load system, the primary side will be in a state of overcurrent for a long time if the
tail counter is installed far away from the effective charging area. As shown in Figure 8, the received
power fluctuates with different rates as a result of the varying mutual inductance between primary
side and secondary side. The fluctuation of the received power is assumed to be limited within 5%
in this paper. The bounded domain of received power is displayed in Figure 8. The positions of the
tail counter in each situation are the intersections of the power curves and the domain boundaries,
namely, CPa = −9.12 m, CPb = −8.76 m, CPc = −8.94 m, CPd = −9.00 m. Finally, in order to meet the
requirements simultaneously, the optimal position of the tail counter is chosen as CPopt = −8.76 m.
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The head counter and the tail counter should be installed symmetrically. Hence, the optimal position
of the head counter is chosen as x = 8.76 m.
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To sum up, the power stabilization strategy in the opportunity EV wireless charging system
at traffic lights can be concluded as follows. Firstly, the optimal counter positions are defined with
the application of the theoretical analysis above. Then the number of loads in the effective wireless
charging area is obtained on the basis of Equation (10). Finally, the power source voltage is adjusted
according to Equation (13) and the received power can be stabilized in the bounded domain.

5. Experimental Verifications

The experimental prototype of an opportunity EV wireless charging system with four loads at
most is proposed in Figure 9. The width and length of the rectangular primary coil are 0.15 m and
3.33 m respectively. The number of the turns is six. The secondary coils are square coils of seven turns
and with a side of 0.15 m. The vertical distance between primary side and secondary side is 0.03 m.
The inductance, the resistance and the compensation capacitor of the primary coil are 153.1 µH, 0.5 Ω
and 22 nF respectively. The inductance, the resistance and the compensation capacitor of the secondary
coils are 20.4 µH, 0.1 Ω and 168 nF respectively. Because of the manufacture of the coils and the
capacitors with a fixed value, the working frequency is set to 87 kHz. In accordance with the theoretical
analysis before, after the numerical simulation method, the power source voltage adjustment strategy
is clarified as follows. The voltage is 5.0 V when only one load is detected and it increases by ∆U = 3.5 V
when a new load accesses. Furthermore, the tail counter position is determined as CPopt = −1.45 m
based on 5% bounded domain of received power. The head counter is omitted due to the symmetrical
installment of the two counters.
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Figure 9. The experimental prototype of the opportunity EV wireless charging system with four loads.

In the experimental process, when the first load is located at the tail counter, the power source
voltage is adjusted to Uin(1) = 5.0 V approximately. After changing the position of the first load and
measuring the received power of it, the curve of received power versus position variation of the first
load is shown in Figure 10a. When a new load is located at the tail counter, the voltage of power
source increases by 3.5 V, namely, Uin(2) = 8.5 V, Uin(3) = 12.0 V and Uin(2) = 15.5 V. The other curves of
received power versus position variation of the new access load are shown in Figure 10. According
to the experimental results, the received power is around 10 W with fluctuation constrained in 5%.
The voltage waveforms of the power source and the voltage waveforms of loads in systems with
different load numbers when systems are at a steady state are shown in Figure 11. The voltages are
measured with voltage probes (Tektronix TPP0500B, Beaverton, OR, USA).Energies 2016, 9, 811 12 of 14 
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Figure 10. The experimental curves of received power versus position variation of the new access 

load: (a) one-load system; (b) two-load system; (c) three-load system; (d) four-load system. 
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Figure 11. The voltage waveforms of power source and the voltage waveforms of loads: (a) one-load 

system; (b) two-load system; (c) three-load system; (d) four-load system. 

The efficiency stack graph of systems with different load numbers when systems are at a steady 

state is shown in Figure 12. The efficiency increases with the increased load number. 

Figure 10. The experimental curves of received power versus position variation of the new access load:
(a) one-load system; (b) two-load system; (c) three-load system; (d) four-load system.
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Figure 10. The experimental curves of received power versus position variation of the new access 
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the changing load number. The received power of loads is stabilized around 10 W and the power
fluctuations are limited within 5%. Experimental results demonstrate the correctness of previous
theoretical study.
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6. Conclusions

This paper proposes an opportunity EV wireless charging system at traffic lights. However,
due to the random access of EVs in this system, the constant power source voltage cannot meet the
requirement of stable received power. In order to solve this issue, a power stabilization strategy
of random access loads is proposed. Based on a model of a wireless power transfer system with
one primary side and multiple loads, the relationship between received power and the number of
loads is established. Then the adjustment strategy of the power source voltage is investigated with
the application of the EV counting method. Furthermore, the counting points are chosen based on
the voltage adjustment strategy and the bounded domain of received power. Finally, the power
stabilization strategy of random access loads in the EV wireless charging system at traffic lights is
validated by experiments.
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