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Abstract: Photovoltaic (PV) panels convert a certain amount of incident solar radiation into electricity,
while the rest is converted to heat, leading to a temperature rise in the PV. This elevated temperature
deteriorates the power output and induces structural degradation, resulting in reduced PV lifespan.
One potential solution entails PV thermal management employing active and passive means.
The traditional passive means are found to be largely ineffective, while active means are considered
to be energy intensive. A passive thermal management system using phase change materials (PCMs)
can effectively limit PV temperature rises. The PCM-based approach however is cost inefficient unless
the stored thermal energy is recovered effectively. The current article investigates a way to utilize the
thermal energy stored in the PCM behind the PV for domestic water heating applications. The system
is evaluated in the winter conditions of UAE to deliver heat during water heating demand periods.
The proposed system achieved a ~1.3% increase in PV electrical conversion efficiency, along with the
recovery of ~41% of the thermal energy compared to the incident solar radiation.

Keywords: photovoltaics (PV); phase change material (PCM); thermal management; water heating;
energy recovery

1. Introduction

The most efficient photovoltaic (PV) cells convert up to 27.6% of incoming solar radiation into
electricity based on PV cell material [1,2], while the remaining more than 72% is reflected or converted
into heat [3,4]. The incident energy converted into heat leads to elevated PV temperatures [5]. The PV
temperature varies depending on the incoming solar radiation intensity (G), ambient temperatures
(Tamb), inclination of the PV panel, wind speed (Vw), mounting scheme of the panel, partial shading,
dust accumulation and faults conditions in the panels [6,7]. The increased PV temperature consequently
reduces the open circuit voltage [8], although a marginal increase in current [9] also occurs, with a net
effect of a drop in PV power [8,10]. The temperature-induced power drop has been extensively studied
and temperature-based power drop coefficients (Tc) ranging from 0.3%/◦C to 0.5%/◦C are determined,
based on the cell technology used [11–14]. The Tc value may further increase over time due to thermal
annealing depending on the cell operation conditions [15].

The effects of increased temperature on PV lifespan are reviewed in [16], where it was concluded
that PV cells degrade faster in hot climates due to long-term thermal ageing caused by their elevated
operating temperatures [17]. Additionally the PV panels lose structural integrity due to delamination
caused by prolonged operations under elevated temperatures [18]. The conventional PV cooling
techniques rely on active (air or water) circulation and passive air circulation, comprehensively
reviewed by [19]. This work concludes that passive cooling (natural ventilation) is not an optimum
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option as the PV temperatures can still rise up to 70 ◦C. Active cooling can limit the temperature within
30 ◦C, however it consumes tremendous amounts of power through the use of fans or pumps which
may override the potential benefits achieved by cell cooling.

A novel method was introduced to cool the PV panels by employing phase change materials
(PCMs) on a model PV [20]. Various PCMs were characterized and a selection criteria was developed
for their intended use in relation to PV cooling in outdoor ambient conditions [21]. The so-called
photovoltaic-phase change materials (PV-PCM) system was evaluated for different PCM containment
options [22] and a combination of PCMs with different melting points [23] which were then tested
under various solar radiation intensities indoors [24] resulting in effective temperature control.
The PCM cooling performance was further enhanced by inserting internal metallic fins which yielded
improved PCM melting and solidification due to enhanced thermal conductivity. Conclusively,
the PV-PCM technology have been proved to be effective in limiting temperature rise and increasing
the performance of PV devices under single Sun [25] as well as low solar radiation concentration [26].
The PV-PCM technology has been tested in different climatic conditions [27] concluding that such
technology is found to be more effective in warmer climates. Although the technology is effective
in PV cooling as reviewed in detail by [28], it is still not commercially viable [29] unless the thermal
energy part can be stored. Temperature regulation and electrical performance enhancement using
PV-PCM technology is reviewed comprehensively by [30] emphasizing a need for more research on
optimization of heat extraction and utilization.

The current research further enhances previous findings by investigating the extraction of heat
stored in PCM and utilizing it for water heating applications. The article presents experimental results
in order to quantify the electrical efficiency improvement and thermal energy benefits for water heating
using the PV-PCM technology.

2. Methodology

The research methodology consists of the thermo-physical characterization of the PCM and
integration of PCM into PV for its passive cooling. The PCM is characterized by differential scanning
calorimetry (DSC) to confirm its thermos-physical properties. The PCM is encapsulated at the back of
the PV to study its cooling effect and thermal energy storage capability. The cooling effect is quantified
by the temperature changes in PV achieved by the presence of the PCM on the front and back surfaces
of the PV. The thermal energy storage by the PCM is determined by changes in temperature and
physical state (solid-liquid) of the PCM. The thermal energy stored in PCM is extracted by water
circulation. The useful thermal energy gain by the water is calculated by changes in (averaged) water
temperatures in the storage tank. The enhanced PV power due to the PV cooling is calculated by
measuring the open circuit voltage and short circuit current of the respective PVs. Finally, an energy
balance is carried out by comparing the solar gains by PV to the sum of electrical energy produced
by PV, heat losses by PV, and heat stored in PCM behind PV. The heat stored in PCM is eventually
compared with useful energy gain by the water circulated behind the PV containing the PCM.

2.1. Experimental Setup

Polycrystalline EVA-encapsulated PV panels with dimension of 53 cm × 63 cm, rated capacity
of 40 W and module efficiency of 15% were tested outdoors facing south at the latitude of Al Ain
(24.1◦ N, 55.8◦ E). The electrical performance of the modules was confirmed by measuring the open
circuit voltage (Voc) and short circuit current (Isc) prior to inclusion of the PCM in the panels. One PV
panel (without PCM) was treated as reference and the other two were connected to internally finned
containers filled with solid PCM using epoxy resin glue. The containers and internal fins were
fabricated from a 4 mm thick sheet of aluminum alloy (1050A). A tubular (1 cm internal diameter)
metallic heat exchanger fabricated from the same alloy was embedded in the container to circulate
water as heat transfer fluid, as shown in Figure 1.
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Figure 1. Construction of integrated photovoltaic phase change material (PV-PCM) system and metallic pipe heat exchanger immersed inside PCM container. Figure 1. Construction of integrated photovoltaic phase change material (PV-PCM) system and metallic pipe heat exchanger immersed inside PCM container.
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50 L of water were contained in a polyethylene container with a thermal conductivity of
0.33–0.52 W·m−1·K−1 [31]. Upon PCM melting, water was circulated from the PV-PCM container
through insulated polymer pipes with thermal insulation of 1.2–3.0 Km2·W−1 at a flow rate of 0.027 L/s
to remove stored heat in the melted PCM. Multiple t-type copper-constantan thermocouples tested
in an ice-bath with a measurement error of ±0.3 ◦C were installed on the three PV systems as shown
in Figure 2. The thermocouples covered the front PV surface, back PV surface, inside the PCM and
inside the water tank. The thermocouples were positioned on the front surface and were shielded from
direct irradiation using a strong tape. A self-powered pyrometer with 0.20 mV per Wm−2 sensitivity
and ±5% calibration uncertainty [32] was installed at the latitude angle of the site (24.1◦ N, 55.8◦ E) to
measure solar radiation intensity (G). A weather station with temperature accuracy of ±1 ◦C [33] was
installed to measure ambient temperature (Tamb) and wind speed (Vw). All the sensors were connected
to a National Instruments (NI) compact Rio to log the data as shown in schematic of the experimental
set up in the Figure 2. The measurement uncertainties for all the devices are listed in Table 1.
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Figure 2. Experimental setup consisting of PV-reference, PV-PCM, and PV-PCM-W, water tank, data
logger, weather station, Pyranometer and desktop computer for the outdoor experiment for consecutive
3 days from 30 January 2015 to 2 February 2015.

Table 1. Accuracies and measurement ranges of the devices used in experiments for weather data,
temperature and PV performance measurements and data acquisition.

Measurement Parameter Device Model Measurement Range Accuracy

Solar radiation [34] Apogee pyranometer SP-110 36–1120 nm ±1%
Data acquisition [35] NI-Compact Rio 9073 NA (Not Applicable) ±0.02%

Current [36] NI-Analogue module 9227 5 Arms ±0.01%
Surface temperature [37] Ni-Analogue module 9213 −75–250 ◦C ±1%

Ambient temperature [38] Starmeter weather station WS1041 −40–60 ◦C ±1%
Wind speed [38] Starmeter weather station WS1041 0–50 m·s−1 ±1%

Voltage [39] NI-Analogue module 9221 −60–60 V ±0.25%
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2.2. Experimental Procedures

The PCM was characterized through differential scanning calorimetry (DSC) to verify its
thermo-physical properties given in Table 2 [40–43]. The PCM was filled as liquid (10.2 L) in the
containers attached to the PV and subsequently cooled until it completely solidified. The solidified
PCM left a 7 cm free space on top intended to accommodate volume expansion during PCM melting.
The experiments were conducted for three consecutive days from 30 January 2015 to 2 February 2015
and same PCM solid state at the start of experiments were assured for each day. Water circulation
was triggered every day upon PCM complete melting at 13:00 and was stopped upon complete heat
removal at 16:00. The data was logged for the reference PV, the PV with PCM (PV-PCM) and PV-PCM
with water circulation (PV-PCM-W) with a time step of 5 min.

Table 2. Thermo-physical properties of PCM, metallic and bonding materials used in the experiments
in solid state.

Properties Melting
Point (◦C)

Congealing
Point (◦C)

Latent Heat
(kJ/kg)

Specific Heat
Capacity
(kJ/kg·K)

Heat
Conductivity

(W/m·K)

Density
(kg/L)

Volume
Expansion

Flash
Point (◦C)

PCM RT42 [40] 38–43 43–37 145% ± 7.5% 2 0.2 0.88 12.5% 186
Polystyrene 240 NA NA NA 0.032 NA NA 350

Aluminum [41] 650 NA NA 0.91 222 2.71 24 × 10−6/K NA
Epoxy Resin [43] 130 NA NA NA 1.26 2.09 34 × 10−6/K 350

3. Results and Discussion

3.1. Weather Data

Figure 3 shows global solar radiation intensity (G) and wind speed (Vw) during the three days of
the experiment.
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Figure 3. The measured solar irradiance (G) and wind speed (Vw) data for consecutive 3 days from
30 January 2015 to 2 February 2015 at the site in Falaj Hazza Campus, UAE University, Al Ain, UAE.

It indicates that for all the three days, G remained fairly stable with similar profile however with
a slight difference in the peak as well as average hourly radiation intensity summarized in Table 3.
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Table 3. The measured average, peak and daily total data for solar radiation and wind speed for PV
back and front surface for consecutive 3 days from 30 January 2015 to 2 February 2015 in Falaj Hazza
Campus, UAE University, Al Ain, UAE.

Day

Wind Speed (m/s) Solar Radiation
Intensity (W/m2)

Daily Total
Radiation (Wh/day)

Average at the PV Peak at the PV
Average Peak Available AbsorbedFront

Surface
Back

Surface
Front

Surface
Back

Surface

1 0.08 0.04 0.50 0.15 595 960 1657 1256
2 0.08 0.04 0.68 0.21 582 940 1634 1234
3 0.17 0.09 0.87 0.26 552 920 1540 1140

For all the three days, the speed (Vw) remained very low with a peak and average values of 0.9 m/s
and 0.2 m/s. The airflow around the PV surface caused by windy conditions induces natural convection
heat losses empirically predicted by Tiwari [44]. The approach is based on combined convective and
radiative heat loss coefficient (h) applicable to air velocities ≤3 m/s given by Equation (1):

h = 5.7 + 3.8 Vw (1)

The h calculated through Equation (1) ranges between 7.6–9 W/m2·K at peak and 6–6.34 W/m2·K
on average for the front surface for the three days. The h value calculated for the back surface remained
lower than that of the front surface, ranging from 6.3–6.7 W/m2·K at peak and −0.58–6 W/m2·K on
average. It can be noticed that on average the h value did not differ substantially between the front
and back PV surface. However the peak h value at the PV back surface remained substantially lower
than at the front surface. The substantially lower peak h value at the back surface yielded lesser heat
loss and resulted in a substantial temperature rise at the back compared to the surface of the reference
PV, noticeable in Figures 4 and 5.
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(Tβf) PV-PCM-water circulation (Tγf) and ambient temperature (Tamb) for consecutive 3 days from
30 January 2015 to 2 February 2015 at the site of system deployment.
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Figure 5. The measured temperatures at back surfaces of reference PV panel (Tαb), PV-PCM (Tβb),
PV-PCM-water flow (Tγb) and inside phase change material temperature (Tpcm) for consecutive 3 days
from 30 January 2015 to 2 February 2015 at the site of system deployment.

The lower h values indicate that natural convection cannot effectively cool the PV at this site,
thereby resulting in higher PV temperatures that eventually affects the PV electrical conversion
efficiency. However, lower h values can be potentially beneficial once the concept of thermal energy
storage and recovery is introduced in the PV, as it would minimize heat losses. The solar radiation
absorbed by the PV (Qpv) depends on the surface area (A) and cleanliness of the PV surface represented
by dusting coefficient 0.77 (dc) and the absorptance (α) of the PV panel as given by Equation (2):

QPV = G × A × dc × α (2)

The Qpv values are summarized in Table 3, which indicates that PV receives reasonably different
amount of radiation each day, with a highest deviation amongst the three days of 9.2%.

3.2. Temperature Drop

The measured front surface temperatures of the reference PV (Tα), PV-PCM (Tβ) and PV-PCM
with water circulation (Tγ) along with ambient temperature (Tamb) are presented in Figure 4. Figure 4
shows that at start of the experiment, Tamb was 16 ◦C, which increased with a stable gradient reaching
peak of 32 ◦C at 13:00 for day 1. It can be observed that Tamb remained at all times below the PCM
melting initiation temperature (Tm) of 37 ◦C indicating that Tamb alone would not trigger PCM melting.
At the start of the experiment, Tαf, Tβf and Tγf were almost the same (11 ◦C) being substantially lower
than Tm, indicating that PCM contained at the PV back was in solid state at the start of the experiment
which was also confirmed by visual inspection. As radiation hits the PV at 7:00 am, the temperature
started to increase for the three PV modules however each with a different gradient. As expected, Tαf
exhibited a higher gradient of rise followed by Tβf and Tγf with a time lag caused by a higher thermal
inertia achieved by the inclusion of the PCM (in PV-PCM and PV-PCM-W) compared to the PV alone.
The Tαf reached its peak at 53 ◦C at 1:25 PM while Tβf and Tγf remained below 44 ◦C at the same time
yielding a drop of 9 ◦C at peak. The average Tαf reached 38.5 ◦C, followed by 33.5 ◦C and 33.4 ◦C
in the cases of Tβf and Tγf, respectively, rendering an average temperature drop of 5 ◦C compared
to the PV without PCM. The water circulation at 13:00 induced a slight additional temperature drop
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observed in Tγf. A similar trend in temperature rise was observed for the remaining two days with
slightly different magnitudes. The different Tαf, Tβf and Tγf values resulted in different amounts
of heat being discarded to the environment through natural convection and radiation, quantified by
Equations (3)–(5):

Qlαf = h × A × (Tαf − Tamb) (3)

Qlβf = h × A ×
(
Tβf − Tamb

)
(4)

Qlγf = h × A ×
(
Tγf − Tamb

)
(5)

where Ql and A represent the heat loss and cross-section area of the PV panel, respectively. Applying
Equations (3)–(5), on the measured data, it is found that the front surface of the reference PV discarded
380 Wh/day to ambient, which was reduced to 242 Wh/day (for PV-PCM) and 232 Wh/day for
PV-PCM with water flow.

The Tpcm along with the back surface temperatures of the reference PV (Tαb), PV-PCM (Tβb)
and PV-PCM with water circulation (Tγb) are presented in Figure 5. All the temperatures, Tαb, Tβb,
Tγb and Tpcm were almost the same at the start of the experiment, however they differed in transient
temperature rise afterwards, reaching peak values of 57 ◦C, 39 ◦C, 38 ◦C and 42 ◦C, respectively. It can
be see that inclusion of the PCM caused a delay in the temperature rise compared to the PV alone due
to the increased thermal inertia of the system caused by the PCM’s latent heat absorption. The peak
temperature drop was 19 ◦C (from 57 ◦C to 38 ◦C). Taking the average of the temperature curves,
it was noted that an average temperature drop of 10 ◦C was achieved at the back surface of PV-PCM
for day 1, attributed to the heat stored in the PCM. The reduced Tβb, Tγb prevented heat loss from the
back surface of the PV-PCM compared to the reference PV calculated by the combined convection and
radiation heat loss Equations (6)–(8) below:

Qlαb = h × A × (Tαb − Tamb) (6)

Qlβb = h × A ×
(
Tβb − Tamb

)
(7)

Qlγb = h × A ×
(
Tγb − Tamb

)
(8)

Heat losses at the back of the PV surface are calculated by applying Equations (6)–(8) on the
experimental data from Figure 5. The heat losses dropped from 409 Wh/day for the reference PV
(Qlαb) to 143 Wh/day for both PV-PCM and PV-PCM-W (Qlβb and Qlγb, respectively). By combining
the front and back surface heat losses, the total heat loss dropped from 794 Wh/day (reference PV) to
385 Wh/day in case of PV-PCM and 375 Wh/day for PV-PCM-W preventing a heat loss of 409 Wh/day
and 419 Wh/day, respectively.

Heat losses prevented by the PCM alone are calculated by deducting the sensible heat stored
in metallic parts in PV-PCM system calculated using Table 4 (53 Wh/day) [40,42,45]. The heat loss
thereby prevented by the PCM dropped to 356 Wh/day.

Table 4. Calculation of heat storage capacity and energy stored in PV-Ref, PV-PCM and PV-PCM-W for
the experiment conducted for three consecutive days 30 January 2015 to 2 February 2015 at the site of
system deployment in Falaj Hazza Campus, UAE University.

Element ρ (Kg/m3) Cp (J/kg·K) d (m) Area (m2) H (J/kg) A × d × ρ× Cp (J/K)

Silicon PV cells [45] 2330 677 0.0003 0.334 NA 158
Polyester/Tedlar [45] 1200 1250 0.0005 0.334 NA 250

Glass face [45] 3000 500 0.003 0.334 NA 1503
Aluminum [42] 2710 910 0.004 0.9728 NA 9596

PCM sensible heat [40] 880 2000 0.05 0.2968 NA 26118
PCM latent heat [40] 880 NA 0.05 0.2968 155000 NA
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It can be seen that the inclusion of a PCM reduced the PV temperature (Figures 4 and 5) while
reducing heat losses. The novelty of the latent heat storage concept lies in reducing the heat losses by
maintaining a lower temperature compared to sensible heat dissipation systems. The heat retention
along with lower PV temperature has two benefits. The reduced temperature can increase the PV
power output as discussed in Section 3.4, while the retained heat (solely due to heat loss prevention)
can be utilized for water heating, as discussed in Section 3.3. The PV temperature drop along with
heat retention and utilization by PCM is in agreement with the reported literature findings [46].

The retained heat was consumed in melting the PCM which can be determined by observing
changes in PCM temperature (Tpcm). Figure 5 shows that Tpcm reached 37 ◦C (start of PCM melting)
at 11:00, increasing to 42 ◦C (end of PCM melting) at 12:40 and continued to rise to 43 ◦C at 13:00.
This indicates that PCM had completely melted before 13:00 prior to triggering the water flow to
remove the heat stored in the melted PCM to heat the water. At nighttime, the Tpcm dropped below
37 ◦C (PCM solidification temperature) at 21:00 and reached the lowest value of 13 ◦C by the morning.
It indicates that the PCM had completely solidified before the start of the next day, which was
also confirmed by visual inspection. Since the PCM showed complete phase change (melting and
solidification), the energy stored can be calculated by assuming complete solid-liquid phase transition
given by Equations (9)–(11):

Qsα = ραVαCpα (Tαi − Tαf) (9)

Qsβ = ρβVβCpβ
(
Tβi − Tβf

)
+ ρpcmVpcmL (10)

Qsγ = ργVγCpα
(
Tγi − Tγf

)
+ ρpcmVpcmL (11)

where ρ, V, Cp are density, volume and heat capacity, while subscripts i and f represent the initial
and final state of the PCM. Heat absorbed by the reference PV (Qα), PV-PCM (Qβ) and PV-PCM-W
(Qγ) calculated by Equations (9)–(11) are 15 kWh/day, 418 Wh/day and 429 Wh/day, respectively.
The heat stored (418 Wh/day and 429 Wh/day) is in close agreement to the prevented heat loss
(409 Wh/day and 419 Wh/day) by PV-PCM and PV-PCM-W, respectively, which proves the accuracy
of our experiments.

3.3. Useful Energy Gain for Water Heating

In order to extract the thermal energy stored in the PCM, water at an initial temperature of 29 ◦C
was pumped into melted PCM at a flow rate of 0.027 L/s starting from 13:00 (shown by arrows in
Figure 6) till 16:00 with a total volume of 50 L. The measured water temperature for the three days of
the experiment is shown in Figure 6. The initial ~2 ◦C increase in water temperature at the start of
the days is attributed to the heat exchange with the ambient. The water tank was insulated during
the daytime and uninsulated at nighttime to allow the water self-cooling to be ready for the next day
recirculation. The insulation was put on at 9:00 each day, which can be confirmed that after initial
temperature rise, the water temperature remained stable until the pump was turned on. It can be
observed that water temperature raised from 29 ◦C to 38 ◦C showing an increase of 9 ◦C. The heat
removed by circulating water (Qw) applying sensible heat gain Equation (12):

Qw = ρwVwCpw (Twi − Twf) (12)

where ρw, Vw, Cpw, Twi and Twf are the density, volume, specific heat capacity, initial temperature and
final temperature for water, respectively. Applying Equation (12) it is calculated that 521 Wh/day of
thermal energy was stored in the water, representing ~41% of the incoming global radiation incident
on the PV (1256 Wh/day) as presented in Table 3.
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Figure 6. Average water temperature inside water tank (Tw), inside temperature of PCM (Tpcm) and
inside temperature of PCM with water circulation (Tpcm-w) for three consecutive days from 30 January
2015 to 2 February 2015 at the site of system deployment in Falaj Hazza Campus, UAE University.

3.4. Improvement in PV Power Output

The decrease in temperature reported in Section 3.2 has a positive effect on the PV voltage but
a negative effect on current due to the decreased charge mobility. The measured Voc presented in
Figure 7 shows that PV-PCM and PV-PCM-W maintained a higher Voc compared to the reference PV.
The peak Voc was recorded as 18.6 V for reference PV (Vocα), 20.3 volt for PV-PCM (Vocβ) and 20.3 V
for PV-PCM-W (Vocγ). It indicates that inclusion of PCM yielded an ~9% increase in Voc by virtue of
maintaining lower temperatures.

The Isc presented in Figure 8 shows a relatively negligible difference amongst the three systems
apart from that at the peak. The reference PV maintained a slight higher current (Iscα) compared to
PV-PCM (Iscβ) and PV-PCM-W (Iscγ) due to being at higher temperature.
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Figure 8. Short circuit current for PV (Iscα), PV-PCM (Iscβ) and PV-PCM-W (Iscγ) for three consecutive
days from 30 January 2015 to 2 February 2015 at the site of system deployment in Falaj Hazza Campus,
UAE University, Al Ain, UAE.

From recorded Voc and Isc, the power produced by PV is calculated by applying the fill factor (FF)
correlation given by Equation (13):

P = (Voc × Isc) /FF (13)

where P is the electrical power produced by the PV. The FF is considered to be constant (0.7)
deduced from PV data sheet. Figure 9 shows that inclusion of PCM produced higher peak power
(Pβ = Pγ = 34 W) compared to the reference PV (Pα = 32 W) yielding an increase of ~6.5%. The average
power produced by inclusion of PCM (Pβ = Pγ = 20 W) was of ~6% higher compared to that of the
reference PV (Pγ = 18.9 W). The total electrical energy produced increased from 272 Wh/day for
reference PV to 288 Wh/day for the PV-PCM and PV-PCM-W (increase of 18 Wh/day) indicating
an increase of 6% (equivalent to increase in PV efficiency by 1.3%). However since water was circulated
behind the PV for heat extraction, the additional power would be needed to account for pressure drop
in water circuit. The additional power consumed by the pump due to pressure drop in PV water
circulation is calculated by assuming 10 m additional water head with a flow 0.027 L/s. It resulted
in the additional shaft power of 4 W with total energy consumed being 12 Wh/day as the water
was circulated for three hours a day. The additional power required (12 Wh/day) is still lower than
improved PV power output by PV cooling (18 Wh/day) so the concept is justified.
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Figure 9. Power produced by reference PV panel (Pα), PV panel with PCM (Pβ) and PV-PCM with
water circulation (Pγ) for three consecutive days from 30 January 2015 to 2 February 2015 at the site of
system deployment in Falaj Hazza Campus, UAE University, Al Ain, UAE.
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The total electrical energy produced, heat losses and the energy storage capacity of each of the
module are summarized in Figure 10. It shows that the reference PV showed a highest heat loss (Ql)
and lowest thermal energy storage capacity (Qs) while the PV-PCM and PV-PCM-W showed lower
heat losses and higher thermal energy storage capacity. It can also be seen that the PV-PCM and
PV-PCM-W produced higher electrical energy (Qe) compared to that of the reference PV. Thus it can be
concluded that the PV-PCM system can increase electrical output as well as thermal energy storage
capacity of PV system due to temperature regulation and latent heat absorption in PCM.
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Figure 10. Electrical energy produced (Qe), heat losses (Ql) and thermal energy stored (Qs) for PV-Ref
(Qα) PV-PCM (Qβ) and PV-PCM-W (Qγ) during three consecutive days from 30 January 2015 to
2 February 2015 measured at the site of system deployment in Falaj Hazza Campus, UAE University.

4. Conclusions

The proposed PV-PCM system with water circulation was evaluated for three winter days in Al
Ain, UAE to regulate PV temperature and extract the stored thermal energy in the PCM. Inclusion of the
PCM in the PV rendered a drop in PV front surface temperature (representative of PV cell temperature)
of 9 ◦C at peak and 5 ◦C on the average. The tested PV-PCM system reduced heat losses by up
to 435 kWh/day which resulted an increased thermal energy storage capacity by the same amount
compared to the PV without PCM. The stored energy is removed by water circulation which heated 50 L
of water by 9 ◦C from 29 ◦C to 38 ◦C thereby extracting 521 Wh/day thermal energy. The achieved water
temperature is appropriate for domestic hot water applications. Eventually, the proposed PV-PCM-W
system increased the electrical performance by ~6% (equivalent to an increase in PV efficiency of ~1%)
and thermal performance by ~41% compared to the available global solar irradiation.
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Abbreviations

BIPV Building integrated photovoltaic
CHP Combined heat and power
DSC Differential scanning calorimetry
EVA Ethylene vinyl acetate
PV Photovoltaic
PVT Hybrid photovoltaic thermal systems
PCM Phase change material
PV-PCM Photovoltaic-phase change material
PV-PCM-W Photovoltaic-phase change material with water circulation
STC Standard test conditions
W Water
i Initial state
f Final state

Symbols

A Area (m2)
Cp Heat capacity (kJ/kg·K)
d Thickness (cm)
dc Dusting coefficient
Isc Short-circuit current (ampere)
T Temperature (◦C)
Voc Open-circuit voltage (V)
G Global solar radiation intensity (W/m2)
H Latent heat of fusion (kJ/kg)
P Power (W)
Q Energy (Kwh)
V Volume (L)
Vw Wind speed (m/s)
α Absorptance of clear glass (%)
ρ Density (kg/m3)

Subscripts

α Photovoltaic reference
β Photovoltaic-phase change material
γ Photovoltaic-phase change material with water circulation
S Stored energy
e Electrical energy
b Back surface
l Energy losses
f Front surface
amb Ambient
m Melting
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