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Abstract: With the penetration of distributed generators (DGs), operation planning studies are
essential in maintaining and operating a reliable and secure power system. Appropriate siting and
sizing of DGs could lead to many positive effects forthe distribution system concerned, such as the
reduced total costs associated with DGs, reduced network losses, and improved voltage profiles
and enhanced power-supply reliability. In this paper, expected load interruption cost is used as the
assessment of operation risk in distribution systems, which is assessed by the point estimate method
(PEM). In light with the costs of system operation planning, a novel mathematical model of chance
constrained programming (CCP) framework for optimal siting and sizing of DGs in distribution
systems is proposed considering the uncertainties of DGs. And then, a hybrid genetic algorithm
(HGA), which combines the GA with traditional optimization methods, is employed to solve the
proposed CCP model. Finally,the feasibility and effectiveness of the proposed CCP model are verified
by the modified IEEE 30-bus system, and the test results have demonstrated that this proposed
CCP model is more reasonable to determine the siting and sizing of DGs compared with traditional
CCP model.

Keywords: distributed generators; siting and sizing; distribution systems; point estimate method;
hybrid genetic algorithm; chance constrained programming

1. Introduction

With the continuous exhaustion of fossil energy, the gradual increase in the global temperature
and the limitation of available transmission corridors, rapid development of distributed generators
(DGs) has been vigorously developing around the world [1]. The subsequent growth of DGs has
enabled distribution systems to actively respond to the dynamics of the main grid [2].

Although the use of DGs is helpful at many aspects, the extensive penetration of DGs could lead
to some security and economic risks to active distribution networks. Specifically, the intermittency and
variability of renewable-type DGs impose challenges when planning active distribution networks [3-5].
Inappropriate sitingand sizing of DGs could lead to many negative effects on the distribution
systems concerned, such as the relay system configurations, voltage profiles, and network losses [6].
Therefore, it is becoming increasingly important of siting and sizing the DGs in active distribution
networks planning.

There are various uncertainty handling methods developed for dealing with the uncertainties
caused by the randomness of DGs’output [7]. These methods can be categorized into three main
categories [8]: information gap decision theory (IGDT), robust restoration method and fuzzy modeling.
However, the mathematical models that are obtained are mixed-integer nonlinear programming ones
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with multiple included variables and constraints. Chance constrained programming in [9] is powerful
and robust in cases of severe uncertainty.

Many research papers on the subject of the optimal siting and sizing of DGs have become
available in the past decade [10-20]. However, most of them are based on how to establish the objective
function to obtain the maximum economic benefits. For example, in [10], an optimal distributed
generation allocation on an existing MV distribution network based on genetic algorithm considering
the uncertainties of DGs” numbers, locations and capacities was proposed; in [11,12], locations and
discrete capacities of DGs are determined in the view of minimizing the distribution network losses;
References [13,14] determined the locations and capacities of DGs in case of minimum network losses
based on an improved Hereford ranch algorithm and a combination of genetic algorithm and simulated
annealing respectively. These papers only considered the network losses with the penetration of DGs,
which is not adequate in determining the locations and capacities of DGs. In [15], an optimal investment
planning for distributed generation in a competitive electricity market was proposed. In [16,17], a
multi-objective evolutionary algorithm for the sizing and siting of distributed generation was proposed.
In these papers, many costs including investment cost and network loss cost are considered but chance
constraints of the established system operation planning are not considered. Also, in these papersthe
only DGs considered arediesel generators and micro-turbines.

In recent years, [18] presented an chance constrained programming (CCP) framework of
optimal siting and sizing of DGs with the minimization of the DGs’ investment cost, operating
cost, maintenance cost, network loss cost, as well as the capacity adequacy cost. The authors of [19,20]
determined the optimal location for placing the distributed generators based on loss sensitivity factor
and also proposed a successive sizing based algorithm for determining their optimal sizes. In these
papers, chance constraints are considered, but none of the papers mentioned above considered the
costs of operation risk caused by DGs.

Many other research papers have showed that the presentation of DGs could increase the operation
risk in distribution systems such as load curtailment. In [21], a hierarchical method was presented
to evaluate the risk of active distribution networks considering the influence of different kinds of
DGs. In [22], a novel operation risk assessment method based on credibility theory was used to
assess the power system operations. Reference [23] presented a risk assessment approach to analyze
power system security for operation planning under high penetration of wind power generation.
These papers aimed at calculating the risk assessment of active distribution networks, which can
be evaluated by expected energy not supplied (EENS) [24-26]. In [27,28], the unit interruption cost
(UIC) is estimated, which can be used to assess the operation risk cost of distribution systems when
combined with EENS.

In this paper, expected load interruption cost (ELIC) is used as the assessment of operation risk in
distribution systems, which is assessed by point estimate method (PEM). In light of the costs of system
operation planning, a novel chance constrained programming (CCP) framework mathematical model
for optimal siting and sizing of DGs in distribution systems is proposed considering the uncertainties
of DGs. Then, a hybrid genetic algorithm (HGA), which combines the genetic algorithm (GA) with
traditional optimization methods, is employed to solve the proposed CCP model. This HGA overcome
the drawbacks of both GA and traditional optimization methods.

Finally, the feasibility and effectiveness of the proposed CCP model are verified by the modified
IEEE 30-bus system, and the test results have demonstrated that this proposed CCP model is more
reasonable to determine the siting and sizing of DGs compared with traditional CCP model. Simulation
results also demonstrate that the appropriate siting and sizing of DGs could lead to many positive
effects on the distribution system concerned, such as the reduced total costs associated with DGs,
reduced network losses, and improved voltage profiles and enhanced power-supply reliability.



Energies 2016, 9, 61 30f 18

2. Output Power of Distributed Generators

The dynamic output power of DGs is intricate with great volatilities and randomness, which
mainly depends on the local weather condition. In distribution system, whether the load can be
supplied is much related with the output power of DGs when malfunction appears, so the output
power of DGs should be calculated for distributed system assessment. In this paper, wind generating
units and photovoltaic generation units are considered as DGs, but it should be mentioned that the
proposed optimization method in this paper could accommodate other DGs as well.

2.1. Output-Power of Wind Generating Units

The output-power of wind generating units is mainly related with the stochastic wind speed of
the surroundings where wind generating units locate. In the past decades, large amounts of researches
have demonstrated that the stochastic wind speed in most regions approximately follows the Weibull
distribution [18,29,30], and this conclusion is employed in this paper. In general, probability density
function of the stochastic wind speed can be depictedin Equation (1):

v k

fo(@) = S Dexpl~(2) &

where k and c are, respectively, the shape index and the scale index of the Weibull distribution, which
can be calculated by Maximum Likelihood Estimate and the historical data of wind speed.

In light with the known probability distribution function of the wind speed, the output power of
wind generating units can be fitted as follows [31]:

0, v < Uiy
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where, a1, a5, a3 and a4 are the fitting coefficients. P, and Py are the active output power and the
rated outputpower of wind generating units respectively, and v, vy, vj, and v,y are the wind speed at
the hub height of the wind unit, the rated wind speed, the cut-in wind speed, and the cut-out wind
speed respectively.

2.2. Output-Power of Photovoltaic Generating Units

Many factors, such as illumination intensity Ipy, array area of photovoltaic cell A, and
photoelectric conversion efficiency 1, can affect the output-power of photovoltaic generating units Ppy .
But, the illumination intensity is usually considered the dominant factor of affecting the output power
of a solar generating source. In a certain period of time, one hour or several hours, the illumination
intensity Ipy follows the Beta distribution, and its probability density function can be expressed

as follows: ) -
T(x+B) (Ipy \* Ipy \"~
f(I) = ()T ’ (Imax (1= Jmax ®G)
(e)I'(B) PV PV
Where « and  are the shape indexes of the Betadistribution. I3 is the maximum value of Ipy, I is
the gamma function.

Based on the known probability distribution function of the illumination intensity, the probability
density function of the output-power of photovoltaic generating units can be calculated as follows [32]:

_ T(ec+B) Ppy \*! Ppy \ P!
e = o (o) (- 7) W
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where, P5i?* is the maximum value of Ppy. Ppy is the output of photovoltaic generating units, which
can bedescribed as Ppy = A-1- Ipy. As can be shown in Equation (4), the output-power of photovoltaic
generating units Ppy follows the beta distribution B(x, {3).

3. Cost of Risk Assessment

3.1. Cost of System Operation Risk Level

The classic definition of power system reliability is related to the existence of sufficient facilities
within the system so that it is capable of supplying electric power to its customers with an acceptable
assurance of continuity and quality. The reliability performance of a distribution system can be
measured at each customer connection point and for the whole system or any group of customers.
In [26], SAIFI (system average interruption frequency index), SAIDI (system average interruption
duration index) and EENS are used as reliability assessment indexes in active distribution network.
In [21], four risk indices, including EENS, PLC (probability of load curtailment), EFLC (expected
frequency of load curtailment) and SI (severity index), are adopted to evaluate the system operation
risk level. It should be noted that EENS (expected energy not supplied, MWh/year) is one of the most
important parameters to reflect the risk level of transmission system. In this paper, the assessment
of system operation risk level is measured by the amount of expected load interruption cost (ELIC),
which is the product of the unit interruption cost (UIC) in $/kWh and the expected energy not
supplied (EENS).

ELIC = UIC x EENS ®)

The UIC can be estimated by a method based on the revenue lost to a utility due to power
outages [27]. The index of EENS (expected energy not supplied, MWh/year) is calculated by
Equation (6):

Np
EENS = > (>, pr(s)- Co(s) - T; ©)
i=1 seQ;

where, N} is total number of load levels; Tj is the durationof load level i; Q; is system state set for load
leveli; pr(s) is occurrence probability of system state s; Cy(s) is total load curtailment in system state s.

3.2. Costs of System OperationPlanning

The costs of system operation planning can consists of many aspects, such as the investment
cost, operating cost, maintenance cost, network loss cost, and capacity adequacy cost. Capacity
adequacy cost can be reflected by ELIC to some degree, and operating cost for a renewable DG is zero.
Furthermore, the installed DGs in a distribution systems will bring a benefit to distribution systems,
which is to generate electricity replacing conventional fossil energy. As a result, the generation cost
replaced by DGs should be considered in the costs of system operation planning.

Therefore, investment cost C!, maintenance cost CM, network loss cost CL, and the generation
cost CPC replaced by DGs are used for the costs of system operation planning, which can be depicted
as Equation (7):

Cpc =Cl+cM 4 ¢t — PG 7)

In [33-35], many methods have been used to calculate the indexes of investment cost, maintenance
cost, and network loss cost. In this paper, network loss cost Ct can be depicted as Equation (8), the
investment cost C! can be depicted as Equation (9), the maintenance cost CM can be depicted as
Equation (10), the generation cost CPC replaced by DGs can be depicted as Equation (11):
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In Equation (8), C, is the unit electricity saleprice ($- kW1, Timax is the maximum hours of load
loss in branch j, and R; is the resistance of branch j. P; is the active power that flows through branch j,
Uy is the rated voltage of line j, and A; is the load power factor of branch j:

2 n
r(1+r)"PC
> OB - Promax Clrgi* i ©)
= (1+r)"P6 -1

M=

c' =
i=1

In Equation (9), Cf,,; represents the per-unit capacity investment cost of the DG m at node i, and
N is the number of candidate node. a; = f(x1, x2, x3) is the weighting coefficients of investment cost,
which relates to environmental factor x1, displacement factor x,, transportation and labor cost factor
x3. r is the discount rate, and npg is the lifetime of DGs. P;_,x is the upper limits of DGs capacities
in candidate node i, and E is candidate DG capacity in candidate node i, which will be introduced
in Section 4.2:

CM = Tmax . Cgpi -E- Pi—max (10)

1

M=
e

m

In Equation (10), Tmax is the maximum hours of DGs generation, N is the number of DGs, and
Chp; represents the per-unit capacity maintenance cost of the DG m at node i:

N 2
CPe = > E-Pimax i Teg - Ciy (11)

i=1m=1

In Equation (11), Teq is the equivalent generation hours of DGs generation, and Cyj, is the unit
on-grid electricity price of DG m. ; is the efficiency of DG m in node i.

4. Mathematical Model

4.1. Methodological Framework

The developed mathematical model of the CCP-based optimal siting and sizing of DGs in this
paper can be formulated as:

min f(E, X)
G=0

Hmin < H < Hmax

where, f(E, X) is the objective function, g;(E, X) are chance constraints, G = 0 represents the equality
constraints, and Hpin < H < Hmax is the inequality constraints. E is the decision-making vector;
X is a set of stochastic variables with known probability. A is the given confidence levels; Ny, is the
number of feeders in the distribution system; Hpin /Hmax is the set of the minimal /maximal limits of
inequality constraints.

4.2. Objective Function

In order to obtain the optimal locations and capacities of DGs, the optimization variable included
in the planning scheme should be constructed.

Suppose that m represents the species of DGs in the distribution system. m = 1/2 represent wind
generating units and photovoltaic generating units, respectively. If y represents the installed capacities
of DGs in the distribution system, then y,u1, Ym2, - - . , Ymn can represent the candidate locations and
installed capacities for DGs in the distribution system. y,,; (i = 1,2, ... , N) = 0 denotes that there will
not be a DG m built at candidate nodesi (i=1,2,... ,N).y,,; (i=1,2,...,n) >0 denotes that there will
be a DG m built at candidate nodes i (i =1, 2, ... , n), and the installed capacity is y,;.
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Furthermore, the installed capacities of DGs could be normalized, namely y,,; = Ymi/Pi—max-
Thence, the stochastic variables E in Equation (10) can be depicted as:

E:{yml‘lzlrzr/N/mzllz} (13)
In this paper, the objective function is described as:
min f = o1Cpg + o - ELIC (14)

where, a1, xp are the weighting coefficients. Cp is the costs of system operation planning associated
with the DGs, which can be calculated by Equation (7). ELIC is the costs caused by EENS, which can
be calculated by Equation (5).

4.3. Network Constraints

As shown in Equation (12), there are three kinds of network constraints, including equality
constraints, inequality constraints, and chance constraints.
(1) The equality constraints include the well-known load-flow equations, which can be depicted
in Equation (15):
P = U,%] u]'(G,‘]‘COSGZ‘]‘ + Bl‘]‘COSGi]‘)
JEL
Qis = Ui, Uj(GijcosBj; — Bjjcos;j)

jEi

(15)

where, Pj; and Q;; are the total active, reactive output power of the generators at node i, U; and U; are
the voltage amplitude at node i and j respectively. G;; and B;; are the conductance and susceptance
between node i and j respectively. 6;; is the voltage angle between node i and j.

For E, if y1; > 0, yp; = 0; if y; > 0, y3; = 0. Namely, wind generating units and photovoltaic
generating units cannot be installed in node i simultaneously. Therefore, an additional equality
constraint is included in the equality constraints in this paper, which is shown in Equation (16):

Yii-y2i=0 (i=12,---,N) (16)

(2) The inequality constraints include the given permitted penetration capacity of DGs in the
distribution system and the upper limits of DGs capacities in candidate node 7, which are shown in
Equations (17) and (18) respectively:

N 2
D> Ymi - Picmax < PDGia (17)
i=1m=1

O<ym<1, VieN;m=12 (18)

where, Ppgmax is given permitted penetration capacity of DGs in the distribution system.
(3) The chance constraints in this paper mainly include node voltage constraints and branch
transmission power constraints, which are shown in Equations (19) and (20) respectively:

PAUM < Uy < UM =B, , =120 N, (19)

P7{|Pi‘<Pz'rnaX}>Bp/ i=1/2/"'/Nu (20)

where,{- } represents the probability of a certain event occurs. Ny, is the total number of nodes in the
distribution system, and N, is the total number of branches in the distribution system. U™™ and UM
are the upper and lower limits of the voltage U; in node i respectively. 3, is the given confidence
level of node voltage constraints, and {3, is the given confidence level of branch transmission power
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constraints. P; is the transmission power in branch i, and P/"®* is upper limits of transmission power
in branch i.

5. Solving Strategies

To solve the developed mathematical model of the CCP-based optimal siting and sizing of DGs in
Equation (10), three steps are needed, as shown in Figure 1. In Step A, expected load interruption cost
ELIC is calculated according to the output of wind generating units, photovoltaic generating units,
and energy storage system. In Step B, total costs associated with the DGs Cp¢ are calculated according
to the output of wind generating units, photovoltaic generating units, and energy storage system.
In Step C, the objective function of optimal siting and sizing of DGs is firstly set up based on ELIC
and Cpg.Then, with the network constraints, the developed mathematical model of the CCP-based
optimal siting and sizing of DGs is solved, and the optimal solution E* is obtained.

| Expected load
interruption cost

Step A | ——

| .
Optimization | s (])p:,lmall:_*
Variables E | olution
.- - - -1 = = N
Step B
Total costs associated
| with the DGs
|
|
‘ Output of Wind Output of photovoltaic
l generation units generating units

Figure 1. Flowchart of the developed chance constrained programming (CCP)-based method for

optimal siting andsizing of distributed generators(DGs) in distribution systems.

5.1. Calculation of Expected Load Interruption Cost (ELIC)

In [21], a hierarchical risk assessment method based on discrete probability model of DGs, the
enumeration method and Monte Carlosimulation was proposed to calculate EENS. This method
is much effective, but is relatively complex. In [36], point estimate method (PEM) was used for
transmission line overload risk assessment. This method is much effective, but is relatively complex.
Compared with Monte Carlosimulation, PEM is slightly low in accuracy, but the computational cost
of PEM is largely reduced. Therefore, point estimate method (PEM) is used to calculate the EENS
parameterin this paper:

(1) The point estimate method (PEM), proposed by Hong in 1998, is used to calculate the estimation
value E(Z)) of F(X) (Z = F(X) = F(X1, X5, ..., Xi)) when the probability distribution functions of
random variables X = (Xj, X», ..., Xj;) are known [37,38]. The mathematical principle of PEM can be
depictedin Equation (21):

m K
E(Zj) ~ Z Z wl,kF](u'Xll XLkttt FLXm) (21)
I=1k=1

where, w; x is the weights of random variable X; in x; s, and py;, is the mathematical expectation of
random variable X;. In this paper, random variable X; is the wind speed v or illumination intensity Ipy
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of DGi. X;={Xpili=1,2,...,N;m=1,2}, and Xy; is the wind speed v, X»; is illumination intensity
Ipy. x; ;. can be got by Equation (22):

Xik = Hx; + ‘Ei,kO_Xi/i =12,.... mk=1,2,...,2K—-1 (22)

where, oy, is the mathematical variance of random variable X;. The values of &; ; and w; can be
obtained by Equation (23):

K .

Zw,ka,k]:)\, 7 :]-//2K_1

k=1 l 1 K J . . (23)
Aij=E [(xi - Hxi)]]/(fx/

When K =3, and &;3 = 0 (2m + 1 PEM), Equation (23) can be solved as Equation (24):

3 3
&i1= é Al Aig— 17\1‘,32

3
&in =

>

>

i3
; —A[Nia— 17\1‘,32

w3 =——-——"3
m - Aia—A3

(2) The procedure for computing the index of EENS is summarized in Figure 2. In Figure 2, the
2m + 1 point estimate method (PEM) was used, namely K=3. f(xy;x) is calculated by Equation (2),
in which PN =Y Pi—max- g(xZi/k) =A- n - X2 ks and A ‘n- If)n‘?x = Y- Pi—max- Yii and Yoi satisfy the
equality constraint Equation (16).

Select system state s

Initialize: i=1, Load curtailment
calculation £(Z)=0, output of
DGs computation

Select input variable X;;,

Xoi (1,2, V), Yiis yai

k=1

i=i+l | Compute the value of S, = i1, +&,0,,

Compute the value X, ; of Xi

b= [+ 800030 v =0

SN I

Optimal power flow, and calculate the
Load curtailment caleulation Co(s)
Co(s)=E(Z2)=E(2)

F@ F By X5 M)

Compute the value of expected
energy not supplied
EENS=EENS+EENS(s)

No Al system

state?

Output the value of EENS

Figure 2. Flow chart of computing procedure for expected energy not supplied (EENS).
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Also, optimal power flow was used to calculate the index of load curtailment calculation Cy(s),
which was described in [39]. Due to the limited space of this paper, the detailed process of optimal
power flow is not covered.

(3) The UIC can be estimated by several methods such as a method based on customer damage
functions or a method based on the revenue lost to a utility due to power outages [23]. In this paper,
UIC is estimated by a method based on the revenue lost to a utility due to power outages, which can
be referred in [27]. In light with EENS and UIC, the value of expected load interruption cost (ELIC)
can be calculated by Equation (5).

5.2. Calculation of System Operation Planning Cost

As shown as Section 3.2, network loss cost CL, investment cost C!, maintenance cost CM and the
generation cost CPC replaced by DGs can be calculated by Equations (8)—(11), respectively. The system
operation planning cost Cp¢ can be calculated by Equation (7).

It should be noted that the output power of wind generating units and photovoltaic generating
units in year are generated on an hourly basis. The unit electricity sale price C, in Equation (8) and the
unit on-grid electricity price C}}}, of DG m in Equation (11) are not constant, but can be approximately
calculated by average prices of last year.

5.3. Solving Strategy of Chance Constrained Programming (CCP)-Based Optimization

In [40,41], a particle swarm optimization (PSO) algorithm is used to solve the CCP-based
optimization described by Equation (12). In [18], a Monte Carlo simulation embedded
genetic-algorithm approach is employed to solve the optimization problem described by Equation (12).
The PSO algorithm requires a better set of initial values for the design variables and may easily fall
into local optimum. GA can locate the solution in the whole domain, but it does not solve constraint
problems easily, especially for exact constraints.

In order to overcome these drawbacks above, a hybrid genetic algorithm (HGA) [42], which
combines the GA with traditional optimization methods, is used for solving the CCP-based
optimization described by Equation (12) in this paper. In the first step of HGA, the GA is applied
to provide a set of initial design variables, thereby avoiding the trial process. Thereafter, traditional
algorithms are employed to determine the optimum results. The procedure for CCP-based optimization
based on HGA is described as Figure 3.

Initialize: Specify the parameters
associated with GA, the population size N,
the crossover P,, the mutation P, and the
maximum-permitted generation number N,

All chromosomes in the
Population — E

—

)
Optimization by using

traditional method with

initial design Variable £

Randomly generate
Npchromosomes

Upgrade these chromosomes
according to P, and Py,

All chromosomes
feasibility?

Generation number
reaches N.?

Select the best chromosome
as the optimal solution E*

I

END

Figure 3. Flow chart of hybrid genetic algorithm (HGA) for CCP-based optimization procedure.



Energies 2016, 9, 61 10 of 18

In Step C of Figure 1, objective function f is firstly got by system operation planning cost Cpg and
expected load interruption cost ELIC. And then, chance constraints based on Equations (16) and (17)
should be checked [43]. The detailed solving steps for CCP-based optimization based on HGA are
as follows:

a  Specify the parameters associated with the GA, including the population size Np, the crossover
P¢, the mutation Pjs and the maximum-permitted generation number Nc.

b  Randomly generate Np chromosomes.

Update these chromosomes according to the crossover P¢ and the mutation Py;.

Q n

Check the feasibility of all chromosomes until all the chromosomes are feasible. In this procedure,
all network constraints including chance constraints should be checked for the chromosomes.
In this paper, check of chance constraints is based on Monte Carlo simulation procedure, which
was introduced in [18] in detail.
e  Repeat Steps b—e until the generation number reaches Nc¢.
All the chromosomes in e are regarded as E.
g Calculate the objective function value of all chromosomes and the fitness value of
each chromosome.
h  Select the best chromosome found in the above solving procedure as E*.

6. Case Studies

To demonstrate the performance of the proposed model and method, it is applied to the modified
IEEE 30-bus system shown in Figure 4. The parameters of wind generating units and photovoltaic
generating units are given below, and other characteristic parameters are given in [44]. The base
value is 100 MVA. For photovoltaic nodes, upper and lower voltage bounds are 1.1 and 0.95 p.u.
and upper and lower voltage bounds are 1.06 and 0.94 p.u. for all other nodes. All case studies are
carried out using MATLAB on an Advanced Micro Devices 64 Dual Core CPU 3.3 GHz PC (Lenovo,
Wuhan, China).

AN

Wind generating
units 1

generating units 2 |
T 21
18 19 20

T
23

Wind generating
units 2

Figure 4. DGs connected to the IEEE 30-bus system.

The candidate notes for the species and maximum installed capacity of DGs are shown in Table 1.
In Table 1, 1 and 2 represent wind generating units and photovoltaic generating units respectively.
For different candidate notes, the weighting coefficients of investment cost a; = f(x1, xp, x3) is different,
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which is also list in Table 1. In addition, the maximum total generation capacity of DGs in the IEEE
30-bus system accounts for 30% of total load.

Table 1. Candidate notes for the species and maximum capacity of DGs.

Candidate Notes Species m Maximum Installed Capacity of DG m/(MW) a;
3 1,2 30,20 1.01
7 1,2 20, 20 1.03
14 1,2 20,20 1.05
19 2 20,20 1.05
24 1,2 20,20 1.03
26 1,2 30, 30 1.04
30 1,2 20, 20 1.02

In all case studies, the per-unit capacity investment costs and per-unit capacity maintenance costs
for wind generating units and photovoltaic generating units are shown in Table 2. To facilitate the
calculation and simplify the model of Equation (12), electricity price is considered constant in one year,
which can be estimated by the average value of last year. In this case, the unit electricity sale price C, is
0.07 $/kW- h. The unit on-grid electricity prices for wind generating units and photovoltaic generating
units are also list in Table 2, in which government subsidies are considered.

Table 2. The per-unit capacity Cost of DGs.

m Investment Costs /$- kW1 Maintenance Costs /$- (kW-h)~! On-Gridprice /$- (kW-h)~!
1 1200 0.04 0.13
2 1400 0.03 0.15

6.1. Calculation of ELIC

By the procedure for computing the index of EENS and the estimated value of UIC in Figure 2,
the value of ELIC can be calculated. In this case, UIC is chosen as 0.32 $/kW- h, which is also considered
constant in one year.

For the wind generation units, vy = 15m/s, v, =4 m/s, vour = 20 m/s. The shape index k = 6.25,
the scale index ¢ = 10.45, and the fitting coefficients a; = 0.0014848, a; = —0.041545, a3 = 0.43333 and
asy = —1.1636. For the photovoltaic generation units, the shape indexes o« =15.34, 3 =4.2, A=2.16 m,
n = 13.44%.

For instance, wind generating units and photovoltaic generating units are installed in note 7, 14
respectively. Then, the value of ELIC was calculated by 2m + 1 point estimate method (PEM), which is
shown in Figure 5.

900

ELIC/k$
* %
S K
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700
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Figure 5. The value of ELIC impace with y17 and y14.
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As can be seen from Figure 5, ELIC decreases with the increment of DGs’ capacity. When y17 = 1
and yp14 = 1, the value of ELIC reach its minimum value, which is about 701.08 k$. On the other
hand, the locations of DGs also affect the value of ELIC. For instance, if wind generating units and
photovoltaic generating units are installed in note 19, 30 respectively, the value of ELIC is shown
in Figure 6.

Figure 6. The value of ELIC impace with y119 and y3p.

Compared to Figure 5, although DGs’ capacity has no changes, the value of ELIC changes when
the locations of DGs change. For an example, ELIC = 701.08 k$ when y;7 = 1 and y714 = 1, but
ELIC = 686.55 k$ when 119 = 1 and y»39 = 1. In addition, the distribution of DGs also affects the value
of ELIC. Generally, ELIC decreases with the distribution of DGs. That is to say, the value of ELIC
will be larger with more DGs connected to IEEE 30-bus system although the total capacity of DGs
is constant.

In addition, it also indicates that wind generating units' power support is with better effectiveness
than photovoltaic generating units, because the value of ELIC when y17 = 0 and y14 = 1 is much bigger
than the value of ELIC when y17 = 1 and 1514 = 0.

6.2. Calculation of System Operation Planning Cost

According to Section 5.2, the system operation planning cost Cp¢ can be calculated by Equation (7).
The maximum hours of load loss in branch j Timax = 3000 h, the discount rate r = 0.12, and the lifetime
of DGs npg = 5. The equivalent generation hours of DGs generation qu = 3000 h. For instance,
wind generating units and photovoltaic generating units are installed in note 7, 14 respectively. Then,
the value of cost Cpg can be shown in Figure 7, in which all network constraints are satisfied.

3

Cost of system planning/k$

Figure 7. The value of Cpg impace with ;7 and y14.
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As can be seen in Figure 7, the value of system operation planning cost Cpg = 1478.27 k$ when
17 = 0 and yo14 = 0, in which Cl = 1478.27 k$, C! = 0, CM = 0, CP® = 0. In pace with the increase
of DGs’capacity 17 and 1714, system operation planning cost Cpg will cut down at a certain range.
When y17 = 1 and 1714 = 1, cost Cpg reach its minimum value 1186.56 k$, in which CL =1203.63 k$,
Cl = 5487.65 k$, CM = 3741.25 k$, CP© = 9245.97 k.

This result shows that the installed capacities of DGs are not adequate. Namely, system operation
planning cost Cp¢ can further cut down with the increase of DGs’capacities. In addition, it also shows
that the locations of node 7 and 14 may not be the suitable locations for optimalsiting of DGs. Namely,
the locations of DGs also affect the value of system operation planning cost Cpg. Anyway, the value of
system operation planning cost Cpg can reach its minimum value when y,,; is at a certain fixed value
for optimal sizing and siting of DGs.

6.3. Solving Strategy of CCP-Based Optimization

According to Section 5.3, an embedded genetic-algorithm approach is employed to solve the
optimization problem described by Equation (12). In the objective function which is shown in
Equation (14), the weighting coefficients «; and «; can greatly affect the optimization results of
Equation (12). Therefore, the optimization problem described by Equation (12) is solved in four cases.
In case 1, &1 =1 and ap = 0, which means that ELIC is not considered and this optimization of
Equation (12) is the traditional method for optimal siting and sizing of distributed generators in
distribution systems. In case 2, o = 0.7 and oy =0.3. Incase 3, x; =0.5and &y =0.5. Incase 4, &1 =0
and a; = 1, which means that system operation planning cost Cp is not considered. In all the cases,
the parameters are specified as follows: N¢ = 1000, Np = 30, P¢c = 0.3. Optimal sizing and siting results
of DGs in cases 1-4 are shown in Table 3.

Table 3. Optimal sizing and siting of DGs in case .

Notes Species m of DGs Optimal Sizing of DGs in Case n

1 2 3 4
X 1 18.56 17.33 17.19 15.28
2 0 0 0
, 1 0 0 0 7.11
2 12.68 0 0 0
1 0 0 0 13.26
14 2 0 0 0 0
B 1 0 0 9.07 1452
2 0 16.91 0 0
1 0 0 0 5.81
24 2 0 0 0 0
6 1 0 0 0 11.77
2 0 0 18.35 0
0 1 17.27 18.44 15.67 17.23
2 0 0 0 0

As can be seen from Table 3, the optimal installed capacities of DGs are different in different cases.
In case 4, ELIC is only considered as the objective function in Equation (14). Because of the monotone
decreasing characteristic of ELIC, ELIC reaches to its minimum value when installed capacities of
DGs reach to its maximum value, which is restricted by network constraints. The results in case 4 also
showed that ELIC decreases with the increment of dispersion degree. In addition, wind generating
units’ power support is with better effectiveness than photovoltaic generating units as the installed
capacities of photovoltaic generating units vy, = 0.
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In case 1, system operation planning cost Cpg is only considered as the objective function in
Equation (14). In this case, the optimal installed capacities of DGs are relative concentrated because
dispersion degree of DGs will increase the investment cost and maintenance cost. In cases 2 and 3,
the optimal installed capacities of DGs increase with the increase of oy, which means that ELIC is
given more consideration.

The total optimal installed capacities of DGs, the value of ELIC and system operation planning
Cost Cpg in cases 14 are shown in Table 4. The values of ELIC and system operation planning
Cost Cpg in cases 1-4 are also given in Table 4.

Table 4. The value indexes for optimal sizing and siting of DGs in case 7.

Species m of DGs Case n
1 2 3 4
total installed capacities/MW 48.51 52.68 60.28 84.98
Cpc/k$ 1032.64 1048.23 1056.31 1547.66
ELIC/k$ 642.03 592.78 573.82 560.67

In case 4, the value of system operation planning cost Cp¢ is much larger than any other cases.
This is because of the inappropriate siting and sizing of DGs as ELIC is only considered. In case 1, the
value of ELIC is much larger than any other cases. These two cases are not suitable for optimal sizing
and siting of DGs because one index of Cpg and ELIC is much larger.

In cases 2 and 3, optimal sizing and siting of DGs are relatively more reasonable as the value
of Cpg and ELIC is moderate. In case 3, the total costs of Cpg and ELIC are the lowest. With more
consideration of ELIC is given, investment cost and maintenance cost will increase but network losses
will be reduced. When «;, > 0.5, the increasing rate of Cpg will increase fast which is unwilling to
occur for siting and sizing of DGs. Therefore, optimal sizing and siting of DGs are more reasonable
when oy < 0.5.

6.4. Comparison of Optimization Results

In case 1, ELIC is not considered and this optimization of Equation (12) is the traditional method
for optimal siting and sizing of distributed generators in distribution systems. In cases 2 and 3, ELIC is
considered with different degrees and this optimization of Equation (12) in these cases is the proposed
method for optimal siting and sizing of distributed generators in distribution systems.

In Section 6.3, the simulation results have shown that the proposed method for optimal siting
and sizing of distributed generators is more reasonable than the traditional method as the total costs
of Cpg and ELIC in case 2 or 3 are less than the total costs in case 1. For further comparison, voltage
variations, total harmonic distortion (THD) and voltage unbalance factor (VUF) at each node of the
test feeder in cases 1-3 are analyzed.

From Figure 8, it could be observed that in cases 1-3, the voltage profile at each node of the
test feeder has been greatly improved compared to the case of with no DGs installed in distribution
systems. Also, the voltage profile at each node in case 2 or 3 is more excellent than the voltage profile
in case 1 as the optimization results in case 2 or 3 is more reasonable than the optimization results
in case 1. In addition, the voltage profile in case 3 is more excellent than the voltage profile in case 2
because more DGs are installed in case 3.

The value of total harmonic distortion (THD) in distribution system with DGs in cases 1-3 is
also analyzed. For each installed DGs, the THD of grid-connected current I, is supposed as 5% and
consist of only second harmonic. As can be seen from Figure 9, the value of THD at each node in case
2 or 3 is largely reduced compared to the value of THD in case 1. This can greatly illustrate that the
optimization results in case 2 or 3 is more reasonable than the optimization results in case 1. Besides,
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the THD profile in case 3 is more excellent than the THD profile in case 2 because more operation risk
cost ELIC is considered in case 3.

Voltage unbalance factor (VUF) profiles at each node in cases 1-3 are shown in Figure 10. The value
of VUF at each node in case 2 or 3 is largely reduced compared to the value of VUF in case 1. In cases 2
and 3, the value of VUF at each node is less than 2%.

1.05- Case 2 /’< ith no DG; |
f\(@*
A S VAA

Voltage

L L i L i i
1 2 3 45 6 7 8 9 1011 12 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Node

0.95

Figure 8. Voltage variations at each node with added DGs in case n.

0.04r

Total Harmonic Distortion(THD)
g S e
=) > =3
T o 5

o
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L L Il L Il L Il Il Il L L L L L L L L L L L L L L L L L L L L
-0.01 1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Node

Voltage Unbalance Factor (VUF)
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-0'0]'1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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Figure 10. VUF (Voltage unbalance factor) at each node with added DGs in case 7.
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Generally, these simulation results demonstrate that the appropriate siting andsizing of DGs
could improve voltage profiles and enhance power-supply reliability and the proposed method for
optimal siting and sizing of distributed generators is more reasonable than the traditional method.

7. Conclusions

Expected load interruption cost is used as the assessment of operation risk indistribution systems,
which is assessed by point estimate method (PEM). This proposed expected load interruption cost
estimationmethod by PEM is slightly low in accuracy, but the computational cost of PEM is largely
reduced compared with Monte Carlosimulation.

Combined the costs of system operation planning with expected load interruption cost (ELIC)
in distribution systems, a novel mathematical model of chance constrained programming (CCP)
framework for optimal siting and sizing of DGs in distribution systems is proposed considering
the uncertainties of DGs. Then, a hybrid genetic algorithm (HGA), which combines the genetic
algorithm(GA) with traditional optimization methods, is employed to solve the proposed CCP model.
This HGA overcome the drawbacks of both GA and traditional optimization methods.

Test results have demonstrated that this proposed CCP model is more reasonable to determine the
siting and sizing of DGs compared with traditional CCP model. Simulation results also demonstrate
that the appropriate siting andsizing of DGs could lead to many positive effects on the distribution
system concerned, such as the reduced total costs associated with DGs, reduced network losses, and
improved voltageprofiles and enhanced power-supply reliability.
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