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Abstract: A new battery simulator based on a hybrid model is proposed in this paper
for dynamic discharging behavior and runtime predictions in existing electronic simulation
environments, e.g., PSIM, so it can help power circuit designers to develop and optimize their
battery-powered electronic systems. The hybrid battery model combines a diffusion model and
a switching overpotential model, which automatically switches overpotential resistance mode
or overpotential voltage mode to accurately describe the voltage difference between battery
electro-motive force (EMF) and terminal voltage. Therefore, this simulator can simply run in an
electronic simulation software with less computational efforts and estimate battery performances
by further considering nonlinear capacity effects. A linear extrapolation technique is adopted for
extracting model parameters from constant current discharging tests, so the EMF hysteresis problem
is avoided. For model validation, experiments and simulations in MATLAB and PSIM environments
are conducted with six different profiles, including constant loads, an interrupted load, increasing
and decreasing loads and a varying load. The results confirm the usefulness and accuracy of
the proposed simulator. The behavior and runtime prediction errors can be as low as 3.1% and
1.2%, respectively.

Keywords: battery simulator; overpotential; linear extrapolation; diffusion model; equivalent circuit
model (ECM); rate capacity effect; recovery effect

1. Introduction

With a high energy density, a high voltage level and a compact volume, lithium-ion batteries
have become one of the most attractive power sources for prevalent portable electronic devices,
hybrid electric vehicles (HEVs), electric vehicles (EVs), etc. For these applications, the ability of the
power source to maintain good operational functionalities is very important to users. For example,
long runtime is a key feature in the user’s perception for purchasing the electronic products that
use Li-ion batteries as power sources. To achieve this goal, a useful battery simulator is an
essential tool for tracking battery state-of-charge (SOC), simulating dynamic behavior and predicting
runtime [1–5]. The battery simulator should possess not only good accuracy, but also flexibility and
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feasibility, so that power circuit designers can co-simulate batteries and electrical circuits in existing
electronic simulation environments for optimizing system performances.

All battery simulators rely on a precise battery model. However, it is difficult to model a Li-ion
battery, because these complex and nonlinear electro-chemical reactions that take place in batteries
have many time-varying parameters. In the past, a variety of battery models has been introduced
and can be classified into three categories: electrochemical models [6–10], mathematical models [11–17]
and electrical equivalent circuit models (ECMs) [18–24]. The electrochemical models, such as
dual-foil, are the most accurate models, but also have very high complexity. This kind of model is
established in the electrochemical point of view, so users should require professional knowledge in
this field to manipulate these models, which makes them hard to be used by most of the power circuit
designers. In addition, the electrochemical models normally contain many nonlinear differential
equations and numerous parameters, so the simulations require heavy computational efforts.

The mathematical models, such as Peukert’s law [13], the kinetic battery model (KiBaM) [14]
and the diffusion model [15–17], estimate the battery runtime or the remaining capacity with specific
math equations that are derived from the empirical law or the kinetic reactions and diffusion
processes inside a battery. This type of model is simpler than electrochemical models, so it has
less computational efforts in simulation. Besides, KiBaM and diffusion models are able to describe
nonlinear capacity effects, such as the rate capacity effect and the recovery effect, so both of them are
popularly mathematical models. However, the mathematical models cannot provide battery dynamic
behavior, like voltage transient responses of current changes, so they are still not suitable for circuit
designers to develop battery-powered electronic systems.

The ECMs are adopted by many researchers in the studies of Li-ion battery monitoring and
management systems. The electrical circuit components, like resistance, capacitance and voltage
source, are basic elements to build the electrical models. As a result, these models are perfect for
circuit designers to simulate battery charging/discharging processes in electronic simulation tools
and to co-design with electrical circuits and systems. Despite the usefulness, the ECMs can only
describe linear capacity calculation. These nonlinear capacity effects are not considered in these
models. This is prone to cause some simulation errors on battery performance predictions and makes
the simulation results inaccurate. Recently, several hybrid models that combine a mathematical
and an electrical model have been proposed in [25–27] to integrate the ability of nonlinear capacity
estimation with the second-order electrical battery model [19]. However, these hybrid models increase
the computational efforts again due to the complexity of mathematical models and nonlinear relations
between battery SOC and electrical model parameters, so some of the hybrid models are not really
feasible to run in electronic simulation environments.

In this paper, a new battery simulator is proposed for battery dynamic behavior and runtime
predictions in power electronic simulation environments. The proposed simulator imitates a real
battery with a hybrid battery model that combines the diffusion model to enhance the ability of
capturing the nonlinear capacity effects and a switching overpotential model to simulate discharging
voltage responses. The switching overpotential model only uses an overpotential resistance or an
overpotential voltage, which is dependent on the SOC region, to describe the voltage difference
between battery electro-motive force (EMF) and terminal voltage. Thus, this simulator has low
computational efforts and makes itself more feasible to run in an electronic simulation software. A
linear extrapolation technique is applied in this paper to extract model parameters and avoid the EMF
hysteresis problem. The simulator is validated by experiments and simulations in the MATLAB and
PSIM environments. The validation results of both simulation tools show that the proposed simulator
has high accuracy. The behavior and runtime prediction errors can be as low as 3.1% and 1.2% in six
predefined test profiles.

This paper is organized as follows: the related works about the well-known second-order
electrical model and the diffusion model are introduced in Section 2. The proposed battery simulator
and linear extrapolation technique to extraction model parameters are addressed in Section 3.
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Section 4 illustrates the model validation plan, the experimental setup and processes. Section 5
gives the experimental results of parameter extraction and dynamic load tests. Section 6 discusses
the model comparison between the second-order ECM and the proposed battery simulator. Final
conclusions are made in Section 7.

2. Related Work

2.1. Second-Order ECM

Currently, a famous second-order ECM for circuit simulation is proposed in [19]. The electrical
model shown in Figure 1 is composed of two subcircuits. The first subcircuit includes an RC pair
(Rself_dis//CFCC), and a current-controlled current source (CCCS) is for SOC tracking and runtime
prediction. The CFCC represents a full charge capacity (FCC) capacitor, which is used to store charge.
When the capacitor is full, the voltage of CFCC or VSOC(t) goes to 1 V, and this case represents 100%
SOC. Otherwise, the voltage drops down to 0 V or 0% SOC if the CFCC is empty. The Rself_dis, which
is connected to the CFCC, models the self-discharge phenomenon, and its value is dependent on the
charge retention rate of a real battery. The CCCS senses the battery current flowing into or out of
Subcircuit 2 and reproduces it in Subcircuit 1 for charge accumulation.
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Figure 1. Second-order equivalent circuit model (ECM).

Subcircuit 2 consists of an RC network and a voltage-controlled voltage source (VCVS). The
VCVS characterizes the battery EMF, and the voltage value is controlled by the VSOC(t) in Subcircuit 1.
The RC network is made up of a series resistance Rs and two RC parallel circuits (Rp_s//Cp_s and
Rp_l//Cp_l). The series resistance Rs is an equivalent resistance that comes from the pure resistances
of two electrodes, the electrolyte and the separator in a battery. The series resistance is responsible for
the instantaneous voltage drop when batteries have a step current change. Both RC parallel circuits
are responsible for the transient voltage change, but have different orders of the time constant. The
Rp_s//Cp_s is a short transient RC pair, while the Rp_l//Cp_l is a long transient RC pair.

Subcircuit 2 is able to simulate the battery I-V characteristics and transient responses. The output
voltage is approximated to Equation (1).

Vd(t) = EMF− Id(t)Rs − Id(t)Rp_s(1− e
− t

Rp_sCp_s )− Id(t)Rp_l(1− e
− t

Rp_l Cp_l ) (1)

{EMF, Rs, Rp_s, Rp_l , Cp_s, Cp_l} = f (SOC(t)) (2)



Energies 2016, 9, 51 4 of 21

where Vd(t) stands for discharging battery voltages and Id(t) is the discharging current. The {EMF, Rs,
Rp_s, Rp_l , Cp_s, Cp_l} parameters are all functions of SOC. However, in this standard ECM, the battery
SOC is calculated by the Coulomb counter, which can only describe linear capacity calculation.

SOC(t) = (1−
∫

Id(t)dt
Qnom

)× 100% (3)

where Qnom is the nominal capacity claimed by manufacturers. Hence, battery nonlinear capacity
effects, such as rate capacity effect and recovery effect, cannot be captured. This introduces some
SOC errors between actual batteries and this model and reduces the accuracy of simulation results.

2.2. Rakhmatov and Vrudhula Diffusion Model

The battery rate capacity effect and the recovery effect describe that the usable charge capacity
inside a battery normally reduces when the discharging current increases. However, the unavailable
charge will be useful after the discharging current changes to a light load or no load condition.
In 2001 and 2003, Rakhmatov and Vrudhula developed a diffusion model [15] to capture these
nonlinear capacity effects for battery time-to-failure prediction. The diffusion model uses Fick’s laws
to model the one-dimensional diffusion mechanism of the concentration of electroactive species in
the electrolyte. The derivation result is given in Equation (4).

α =
∫ L

0
Id(τ)dτ + 2

∞

∑
m=1

∫ L

0
Id(τ)e−β2m2(L−τ)dτ (4)

where α is the total charge capacity of a battery, L is the time-to-failure and β is a constant related to
the diffusion rate. In this equation, battery charge capacity is not simply calculated by a Coulomb
counter. The total charge capacity α is the sum of a usable capacity, which is current integration in the
first term, and an unavailable capacity in the second term. The unavailable capacity is a summation
of infinite integrations from m = 1 to m = ∞, but the first 10 terms mainly determine the final result.
The diffusion model estimates the battery remaining capacity by taking this unavailable capacity into
account and provides a more accurate time-to-failure prediction than the Coulomb counter in the
case of a constant current load or a piece-wise constant current load. However, this model is unable
to simulate the battery dynamic voltage responses of these various loads, so it is difficult to apply in
electronic simulation environments.

3. Proposed Battery Simulator

In this paper, the proposed battery simulator in Figure 2 is developed based on a hybrid model
that combines the diffusion model and a switching overpotential model. The diffusion model
replaces the Coulomb counter in the second-order ECM to evaluate the battery SOC, so that the
nonlinear capacity effects are able to reflect in the proposed simulator. The switching overpotential
model generates the overpotential based on the SOC reported by the diffusion model to simulate
the battery voltage behavior. The battery overpotential is the difference between the battery EMF,
which is equal to the sum of the equilibrium potentials of two electrodes inside a cell, and the actual
terminal voltage during current-flowing conditions. When a battery is charging or discharging, the
overpotential is produced by ohmic losses in the two electrodes and the electrolyte, as well as the
overpotential of the charge-transfer reaction, which includes two reactions: kinetic aspects and mass
transport phenomena.
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Figure 2. Hybrid battery model that combines a diffusion model and a switching overpotential model.

The switching overpotential model generates the overpotential using a resistance mode or
a voltage mode. While simulating the voltage behavior, the proposed battery simulator applies
different modes in different SOC regions. In the past research, the measured data of the internal
resistance of a Li-ion battery cell show that the internal resistance in the flat region that is normally
20% to 80% SOC [19,28,29] is less affected by the current rate effect, so ECMs usually model the
internal resistance in this SOC region as a constant resistance. However, when the battery SOC is
close to the empty or full state, the SOC effect and current rate effect cannot be ignored. The internal
resistance in the two regions cannot just be considered as a simple constant resistance. The factors of
the SOC effect and current rate effect should all be taken into account.

To clearly define the SOC regions, the variance of the overpotential resistance, or Var(Rovp), is
used. The SOC region with a small resistance variance is defined when the Var(Rovp) of an SOC point
is less than two-times the average value of the Var(Rovp) curve. Thus, two SOC levels (SOCH and
SOCL) can be defined when the Var(Rovp) of an SOC point is larger than this threshold. The SOCH
is the upper limit of the flat region, and the SOCL is the lower limit of the flat region. In the flat
region, the proposed simulator adopts the resistance mode. Instead of using a constant resistance, the
proposed battery simulator adopts the average resistance of different current rates at each SOC point
to determine a battery overpotential voltage. The reason is that the average resistance can generate
a more realistic and smoother voltage response than a constant resistance. Thus, the overpotential
resistance is a function of SOC. The overpotential voltage in this region is expressed in Equation (5).

Vovp(t) = Rovp(SOC(t)) · Id(t) (5)

Unlike the voltage mode, the resistance mode only requires one lookup table for the
Rovp parameter.

In high and low SOC regions (SOC > SOCH and SOC < SOCL), the proposed simulator adopts
the voltage mode. In these two regions, the overpotential resistance or overpotential voltage is a
function of the SOC and current rate. To thoroughly model the voltage, the voltage mode directly
models the overpotential voltage as expressed in Equation (6).

Vovp(t) = A(SOC(t)) · Id(t) + B(SOC(t)), if SOC > SOCH or SOC < SOCL (6)

where the A and B parameters are functions of SOC; the unit of A is Ω, and the unit of B is
volts. With this method, two parameter lookup tables (A and B) at every SOC sampling point are
required. To sum up, the overpotential voltages in the three SOC regions are summarized as a single
mathematical form in Equation (7).

Vovp(t) =


A(SOC(t)) · Id(t) + B(SOC(t)), if SOC(t) > SOCH
Rovp(SOC(t)) · Id(t), if SOCL < SOC(t) < SOCH
A(SOC(t)) · Id(t) + B(SOC(t)), if SOC(t) < SOCL

(7)
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The flowchart of the proposed simulator is presented in Figure 3. After the simulator measures
the discharging current, the diffusion model calculates the change of nonlinear capacity and reports
the SOC to the switching overpotential model. The switching overpotential model finds the
EMF value from a lookup table stored in the EMF-SOC curve. The simulator then calculates the
overpotential voltage by the resistance mode or voltage mode, which is dependent on the SOC region.
Finally, the EMF and the overpotential voltage is added up and outputted to the terminal voltage for
discharging simulations.
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Figure 3. Flowchart of the proposed battery simulator for voltage simulation.

The switching overpotential model in the proposed simulator is modeled using the linear
extrapolation technique. The detailed modeling processes for EMF, overpotential resistance and
overpotential voltage are illustrated as follows. In addition, the method of nonlinear capacity
estimation is also presented.

3.1. Nonlinear Capacity Estimation

By sensing the discharging current, the accumulated and unavailable capacities are calculated
using Equation (8).

Qd(t) =
∫ t

0
Id(τ)dτ + 2

10

∑
m=1

∫ t

0
Id(τ)e−β2m2(t−τ)dτ (8)

where Qd(t) is the nonlinear capacity, and its maximum value is α during discharging periods.
For the consideration of computational efforts, the suggestion in [15] is adopted to compute only the
first 10-term summation of the unavailable capacity. Battery SOC is then estimated by Equation (9).
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SOC(t) = (1− Qd(t)
α

)× 100% (9)

To find the α and β parameters of a battery cell, several constant discharging current loads are
tested. Constant current is a special case for the diffusion model, and Equation (4) can be simplified
to Equation (10).

α = IdL

[
1 + 2

10

∑
m=1

1− e−β2m2L

β2m2L

]
(10)

where Id is the magnitude of a constant discharging current. An optimized set of the α and β is
acquired by minimizing the following equation.

N

∑
n=1
|Id(n) − Îd(n)|2 (11)

where N is the total number of constant current loads. The equation in Equation (11) can be expanded
as Equation (12).∣∣∣∣∣∣∣∣∣Id(1) −

α

L(1) +
10
∑

m=1

1−e
−β2m2 L(1)

β2m2

∣∣∣∣∣∣∣∣∣
2

+ . . . +

∣∣∣∣∣∣∣∣∣Id(N) −
α

L(N) +
10
∑

m=1

1−e
−β2m2 L(N)

β2m2

∣∣∣∣∣∣∣∣∣
2

(12)

where {Id(1), . . . , Id(N)} is the set of test current and {L(1), . . . , L(N)} is the set of runtime measured
from experiments. The least squares method is the tool used in this optimization analysis for finding
the best α and β values.

3.2. Linear Extrapolation for EMF Extraction

Several EMF extraction methods have been introduced in the past, like voltage relaxation,
linear interpolation and linear extrapolation. The voltage relaxation is a popular method to extract
the battery EMF-SOC curve by repeated charge-relaxation or discharge-relaxation tests. However,
the required relaxation time is usually long because it is hard to make sure whether or not the
battery voltage is completely relaxed. To shorten the measurement time, [30] gives the test cell
a short relaxation time and finds the average EMF-SOC curve from both of the charge-relaxation
and discharge-relaxation test results. This method speeds up the test time, but the effect of EMF
hysteresis [31,32] will lead to some errors.

Linear interpolation uses a similar concept to measure an average EMF-SOC curve from test
results of a fully charging and discharging cycle. The charging and discharging currents should
be the same and small enough to reduce measurement errors. Nevertheless, the occurrence of the
EMF hysteresis effect still causes errors in the extracted EMF-SOC curve. In this paper, a linear
extrapolation method is chosen, because it can avoid the hysteresis effect and acquire an accurate
EMF-SOC curve.

The linear extrapolation method applies different discharging currents to the test cell and then
linearly extrapolates battery voltages to the case of zero current for obtaining EMF values at various
SOC points. A demonstration of linear extrapolation for EMF extraction is illustrated in Figure 4.
There are two discharging currents, Id(1) and Id(ref), for example. The Id(ref) is a reference current and
is smaller than Id(1). At the same SOC point, a high discharging current leads to a small terminal
voltage. As a result, Vd(SOC(2), Id(1)) is smaller than Vd(SOC(2), Id(ref)), and Vd(SOC(1), Id(1)) is
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smaller than Vd(SOC(1), Id(ref)). With the information about test current rates and measured voltages,
the EMF values at SOC(1) and SOC(2) can be easily extrapolated by Equations (13) and (14).

EMF(SOC(1)) =
Vd(SOC(1), Id(ref))−Vd(SOC(1), Id(1))∣∣∣Id(ref) − Id(1)

∣∣∣ × Id(1) + Vd(SOC(1), Id(1)) (13)

EMF(SOC(2)) =
Vd(SOC(2), Id(ref))−Vd(SOC(2), Id(1))∣∣∣Id(ref) − Id(1)

∣∣∣ × Id(1) + Vd(SOC(2), Id(1)) (14)

Figure 4. Demonstration of linear extrapolation for EMF extraction using Id(1) and Id(ref).

Based on the same concept, a general equation to extract EMF values at other SOC points is
formulated with Equation (15).

EMF(SOC(j)) =
Vd(SOC(j), Id(ref))−Vd(SOC(j), Id(1))∣∣∣Id(ref) − Id(1)

∣∣∣ × Id(1) + Vd(SOC(j), Id(1)) (15)

where SOC(j) is in the range from 0 to 100%, and j = 1, 2, . . . , J.
To improve the accuracy, EMF at a particular SOC point can be obtained by more discharging

currents, such as the current set {Id(1), . . . , Id(N)} tested in the α and β estimation. Equation (15) is
then modified to Equation (16).

EMF(SOC(j)) =
1
N

N

∑
n=1

Vd(SOC(j), Id(ref))−Vd(SOC(j), Id(n))∣∣∣Id(ref) − Id(n)

∣∣∣ × Id(n) + Vd(SOC(j), Id(n))

 (16)

However, due to the voltage measurement errors, which may be contributed by the quantization
error of analog-to-digital converters (ADCs) or slight temperature variations, a small voltage error
(ev) can result in a significant EMF error (e f ). The location of the reference current is very important
for improving the accuracy of the measured EMF-SOC curve. If the reference current is close enough
to the zero current, the impacts of voltage errors on EMF values decrease. To search a proper location
of the reference current, the Id(ref) is defined as Id(n)/X in Figure 5, and the value of X is determined
by ev(n) and e f (n). For a small ev(n), the relation between ev(n) and e f (n) is shown in Equation (17).

e f (n) =
ev(n)∣∣∣Id(ref) − Id(n)

∣∣∣ × Id(n) − ev(n) (17)
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Substituting Id(n) = XId(ref) into Equation (17), the relation is simplified to Equation (18).

e f (n) =
X

X− 1
ev(n) − ev(n) (18)

Figure 5. The Id(ref) should be close enough to the zero current, so the impacts of voltage errors on
EMF values can be reduced.

In this paper, the ratio of e f to ev is further defined as an error ratio in Equation (19).

error ratio =
e f (n)

ev(n)
=

1
X− 1

, X > 1 (19)

Thus, given a specification of the error ratio, the location of the reference current can be
quickly determined.

3.3. Overpotential Resistance Modeling

In the SOC region with small resistance variations, the overpotential resistance models the
voltage difference between the EMF value and the terminal voltage. According to the proposed model
in Figure 2, the expression of battery voltage is given by Equation (20).

Vd(SOC(j), Id(n)) = EMF(SOC(j))− Id(n) · Rovp(SOC(j), Id(n)) (20)

where Rovp is a function of SOC and discharging current. To get Rovp, Equation (20) is rewritten and
becomes Equation (21).

Rovp(SOC(j), Id(n)) =
EMF(SOC(j))−Vd(SOC(j), Id(n))

Id(n)
(21)

Therefore, the EMF(SOC(j)) calculated in Equation (16) is needed before the overpotential
resistance modeling.

Compared to Equation (15), another approach to acquire the Rovp is presented in the
following equation.

Rovp(SOC(j), Id(n)) =
Vd(SOC(j), Id(ref))−Vd(SOC(j), Id(n))∣∣∣Id(ref) − Id(n)

∣∣∣ (22)
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This approach only requires test currents and measured voltages, but is validated when the
reference current is close enough to the zero current. The average overpotential resistance is then
obtained by averaging the resistances of different current rates at each SOC point.

Rovp(SOC(j)) =
1
N

N

∑
n=1

Rovp(SOC(j), Id(n)) (23)

3.4. Overpotential Voltage Modeling

In the SOC region with high resistance variations, the simulator runs in the overpotential voltage
mode. The overpotential voltage at a particular SOC point and a discharging current rate is the
difference between the extracted EMF value and the measured battery voltage as Equation (24).

Vovp(SOC(j), Id(n)) = EMF(SOC(j))−Vd(SOC(j), Id(n)) (24)

When the discharging current increases, the decreasing Vd(SOC(j), Id(n)) usually leads to a high
overpotential voltage. Figure 6 is an example of relations between the discharging current and
overpotential voltages at various SOC points. The overpotential voltage can be modeled to a linear
equation of a discharging current as Equation (25).

Vovp(SOC(j), Id(n)) = A(SOC(j)) · Id(n) + B(SOC(j)) (25)

where A(SOC(j)) and B(SOC(j)) are parameters related to the battery SOC. When the simulator
runs in the voltage mode, the two parameters are found firstly according to the SOC value. Then,
the overpotential is generated by Equation (25). To obtain these two parameters, linear regression
analyses are utilized for this curve fitting problem.

Figure 6. Example of the relations between the battery discharging current and overpotential voltages
at various SOC points.

4. Model Validation

To validate the proposed battery simulator, experiments of model parameter extraction and
dynamic load prediction are carried out on a single cell. The experimental setup is shown in Figure 7.
The test cell is a Nokia BL-5C polymer Li-ion battery, which has a 1020-mAh nominal capacity and
a 3.7-V nominal voltage. A GW Instek GBT-2211 battery tester (Good Will Instrument Co., Ltd.,
New Taipei City, Taiwan) charges and discharges the Li-ion cell and acquires measurement data
every second. The GBT-2211 battery tester has maximum 250-W charging and discharging powers
for testing different types of battery, such as nickel-cadmium, nickel-metal hydride, Li-ion or polymer
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Li-ion batteries. A GMB GOV-103 constant climate chamber adjusts the ambient temperature within
26 to 28 °C.

Figure 7. Experimental setup of the model validation.

4.1. Model Parameter Extraction

The parameters of the switching overpotential model and the diffusion model are all extracted
from 11 constant discharging current tests. The experimental procedure is illustrated as follows.

• Charging process:
The test cell is charged with a constant current-constant voltage (CC-CV) profile. The charging
current in the CC regime is 0.8 C. The charging voltage in the CV regime is 4.2 V. The cutoff
current is 0.05 mA. When the charging current drops down to this level, the test cell is fully
charged or 100% SOC.

• Discharging process:
In total, 10 constant currents are applied firstly. The current range is from 0.1 C to 1.0 C, and the
increment is 0.1 C. In addition, a small current rate, 0.02 C, is tested, and the result is the reference
current for EMF measurement. The cutoff voltage in discharging processes is 3.0 V. When the cell
voltage is less than 3.0 V, the battery is fully discharged or 0% SOC.

• Relaxation time:
One hour of relaxation time is required after charging or discharging processes and makes sure
that the cell is fully recovered for the next test.

4.2. Dynamic Load Prediction

A series of discharging profiles is defined to check the feasibility and accuracy of the proposed
battery simulator. There are six profiles in total, including two constant current loads, an interrupted
current load, an increasing current load, a decreasing current load and a varying current load. The
detailed configurations regarding the six profiles are listed in Table 1. The cutoff condition for each
test is either the voltage drops below 3 V or the estimated capacity is empty. The same profiles are also
simulated in the MATLAB and PSIM environments for comparisons. Figure 8 shows the simulation
environment in PSIM. The results of experiments and simulations are all provided to validate the
usefulness of the proposed battery simulator.
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Table 1. Predefined dynamic discharging profiles.

Profile Description Configuration: Current (Time)

P1 heavy load 0.9 C (100 min)

P2 light load 0.5 C (150 min)

P3 interrupted load 1.1 C (20 min)-rest (20 min)-1.1 C (100 min)

P4 increasing load 0.4 C (20 min)-rest (10 min)-0.6 C (20 min)-rest (10min)
0.8 C (20 min)-rest (10 min)-1.0 C (100 min)

P5 decreasing load 1.0 C (20 min)-rest (10 min)-0.8 C (20 min)-rest (10 min)
0.6 C (20 min)-rest (10 min)-0.4 C (100 min)

P6 varying load 0.2 C (20 min)-0.5 C (10 min)-0.9 C (10 min)-0.6 C (10 min)
0.3 C (60 min)-0.2 C (20 min)-0.5 C (10 min)-0.9 C (60 min)

Figure 8. PSIM environment for battery simulation.

5. Experimental Results

5.1. Results of Parameter Extraction

Experimental results of the 11 constant discharging currents are shown in Figure 9. The
discharging time is summarized in Table 2. The discharging time of the 1 C test is 54 min, while
the 0.02 C test spends almost 46 h. The diffusion model parameters are estimated by the experimental
results of 0.1 C to 1.0 C tests. The discharging time of the 0.1 C to 1.0 C tests is {L(1), . . . , L(10)}, and
the discharging currents are {Id(1), . . . , Id(10)}. By taking the measurement results into Equation (12),
an error surface in Figure 10 is plotted in the range of α = 58,000 mA·min to 66,000 mA·min and
β = 0.5 to 2. An optimization point is found at the location of α = 61,970 mA·min (or 1032.83 mAh)
and β = 1.28.



Energies 2016, 9, 51 13 of 21

(a) (b)

0 500 1000 1500 2000 2500 3000
3

3.2

3.4

3.6

3.8

4

4.2

Time (min)

B
a
tt

e
ry

 v
o

lt
a
g

e
 (

V
)

 

 

0.02C

0.1C ~ 1.0C

0 100 200 300 400 500 600
3

3.2

3.4

3.6

3.8

4

4.2

Time (min)

B
a
tt

e
ry

 v
o

lt
a
g

e
 (

V
)

 

 

0.1C

0.02C

0.2C
0.3C
0.4C
0.5C
0.6C

0.7C
0.8C
0.9C
1.0C

Figure 9. Battery voltage curves of the constant discharging current tests.

Table 2. Measured runtime of the constant discharging current tests.

C-rate (C) 1.0 0.9 0.8 0.7 0.6 0.5
Discharge time (min) 54.37 60.67 68.73 75.75 91.95 110.683

C-rate (C) 0.4 0.3 0.2 0.1 0.02
Discharge time (min) 139.03 185.15 278.38 558.08 2740.93

Figure 10. Error surface to find the optimization set of the α and β parameters.

Taking the measured α and β into Equations (8) and (9) obtains SOCs of the 11 discharging tests
for extracting parameters of the switching overpotential model, e.g., the EMF-SOC curve, Rovp-SOC
curve and Vovp-Id curves. The battery voltage-SOC curves are shown in Figure 11a. The result
of the 0.02 C current rate is a reference voltage curve for linearly extrapolating EMF-SOC curves.
Figure 11b presents the results of EMF-SOC curves extracted from 0.1 C to 1.0 C current rates. Only the
EMF-SOC curve of the 0.1 C test has a high error ratio in that the X is five in this case. Other EMF-SOC
curves all present good consistency because the error ratios are less than 1%. To improve the accuracy
of EMF extraction, the final EMF-SOC curve is an average result of these extracted curves. The value
at each SOC point is computed by Equation (16). Figure 11c compares the voltage curves of a
discharge-relaxation method, the linear extrapolation method and the 0.02 C discharging results.
The discharge-relaxation method uses a 0.1 C discharging rate to measure the EMF-SOC curve.
The EMF voltage is measured every 4.5% SOC. The relaxation time is one hour at each test SOC point
to ensure that the battery voltage is fully recovered. The EMF errors between the discharge-relaxation
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curve and the extrapolation curve and between the discharge-relaxation curve and the 0.02 C
discharging curve are all shown in Figure 11d. The EMF error is calculated based on Equation (26).

EMF error =
EMFdis-rel −V

EMFdis-rel
× 100% (26)

where EMFdis-rel is the EMF value measured by the discharge-relaxation method and V can be the
voltage of the linear extrapolation method or the 0.02 C discharging result. From Figure 11d, it is
obvious to observe that the error curve of the 0.02 C discharging result is higher than the error curve
of the extrapolation method. The average error of the 0.02 C discharging result is about 0.5%, but
the average error of the extrapolation method reduces to 0.15%. Thus, the extrapolation method is
necessary for obtaining an accurate EMF-SOC curve.
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Figure 11. Experimental results of parameter extraction: (a) battery voltage-SOC curves; (b) EMF-SOC
curves; (c) EMF comparisons; (d) EMF errors; (e) Rovp-SOC curves; (f) variance of Rovp; (g) Vovp-Id
curves; (h) parameters: A, B and Rovp.
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With battery voltage-SOC and EMF-SOC curves in hand, Rovp-SOC curves are then extracted
from Equation (21). The results are shown in Figure 11e. The overpotential resistances in 10% to
90% SOC vary in 0.35 Ω to 0.52 Ω, but have large variations near 60% SOC. The variance of Rovp, or
Var(Rovp), is presented in Figure 11f. The maximum variance is 1.7 mΩ2 and happened in the 0.1 C
test result due to the low current rate. These variations are also observed in the measured voltage
curves and are probably caused by the chemical reactions, such as phase transformations in lithium
electrode materials [33]. The overpotential resistances have sharp changes above 90% SOC and below
10% SOC. Consequently, most of the battery models have low accuracy when they operate in the two
SOC regions.

Figure 11g analyzes the overpotential voltages in the SOC range from 0.1% to 99.9%. The
linear regression analysis outputs the curve-fitting results of A, B and Rovp parameters in Figure 11h.
According to the average variance of Rovp, the SOC is divided into three regions. The first SOC region,
or Region I, begins from 100% to 55%. This region covers the maximum variance, so the battery
simulator runs in the voltage mode. The second SOC region, or Region II, begins from 54.9% to 10.1%.
The second region has a stable Rovp. The average variance is less than 0.1 mΩ2, and the average Rovp

is 0.38 Ω. In the second region, the battery simulator operates in the resistance mode. The third SOC
region, or Region III, is close to empty capacity. The SOC is in the range from 10% to 0.1%. The Rovp

variance increases again, so the voltage mode is a better choice. In the third region, parameter A has
a sharp decrement, so the overpotential voltage would still have small prediction errors.

5.2. Results of Dynamic Load Prediction

Figure 12 makes comparisons between experimental and MATLAB simulation results. For the
constant current loads, the proposed simulator shows good matches in Figure 12a,b. In both cases,
the rate capacity effect is reflected at the beginning of the simulations, so the terminal voltages in
experiments and in simulations match well when the test cell is close to empty. The experimental
runtimes of the heavy load and the light load tests are 63.13 and 116.87 min, respectively. The
simulated runtime of both cases has less than 0.2% prediction errors. The normalized root mean
square deviation (NRMSD), which is defined as Equation (27), recognizes the differences between
simulated curves and experimental curves.

NRMSD =
1

Vb,max −Vb,min

√√√√√ K
∑

t=1
(V̂b(t)−Vb(t))2

K
× 100% (27)

where K is the total measured points, V̂b(t) is the simulated voltage value at time t and Vb(t) is the
experimental voltage value. The NRMSDs of the two cases are 2.2% and 1.16%. The small errors
confirm that the proposed simulator is able to predict dynamic discharging behavior.

For the interrupted load, the simulation result in Figure 12c also shows a good agreement with
the experimental result. The capacity recovery effect occurs during the rest period from 20 min to
40 min. After the rest period, the rate capacity effect takes place again, so the simulator successfully
predicts the final runtime with a 0.92% error and dynamic behavior with 2.33% NRMSD.

For the increasing and decreasing loads, the rate capacity effect and recovery effect happen
alternatively. The simulation result of the increasing load in Figure 12d predicts the runtime with
a 0.54% error, while the prediction error of the decreasing load in Figure 12e slightly increases. In the
overpotential voltage mode, the prediction error only grows to 1.2%. The error is mainly generated
near the fully-discharged condition. A possible reason for this error would be that the low current in
the finalstep lasts a long time in the low SOC region. As a result, prediction error is accumulated and
increases the voltage differences between the simulation and experimental values. The NRMSD of the
increasing load is 1.36%, so the proposed simulator has a good behavior prediction on the increasing
load. By comparison, the NRMSD of the decreasing load is 3.14%.
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Figure 12. Model validation by MATLAB simulations: (a) heavy load (P1); (b) light load (P2);
(c) interrupted load (P3); (d) increasing load (P4); (e) decreasing load (P5); (f) varying load (P6).

For the varying load, there is no rest time in this profile. Besides, the current changes without
any rule. The simulation result in Figure 12f validates again that the proposed simulator can
accurately predict the dynamic discharging behavior and further evaluate the runtime under various
discharging profiles.

Figure 13 checks the battery voltage-SOC curves of the P3 to P5 profiles. In these plots, the
SOCs estimated by the proposed simulator and the Coulomb counter are compared. The Coulomb
counter estimates SOCs using the nominal capacity as the maximum available capacity. During the
rest time, the recovering capacities are observed by the proposed battery simulator. However, the
SOCs reported by the Coulomb counter do not have any change in this period of time, so this causes
some runtime prediction errors.
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Figure 13. Capacity recovery effects in the P3 to P5 profiles.

Figure 14 presents the PSIM simulations for the same profiles. The simulation comparisons are
made in Table 3. The runtime and behavior errors show that there are very small differences between
PSIM simulation results and MATLAB simulation results. This means that the proposed battery
simulator is successfully implemented in the PSIM simulation environment for dynamic discharging
behavior and runtime predictions. For both simulation tools, the simulation time of the P1 to P6

profiles is smaller than 5 s.
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Figure 14. Model validation by PSIM simulations: (a) heavy load (P1); (b) light load (P2);
(c) interrupted load (P3); (d) increasing load (P4); (e) decreasing load (P5); (f) varying load (P6).

Table 3. Simulation result comparisons. NRMSD, normalized root mean square deviation.

P1 P2 P3 P4 P5 P6

MATLAB
runtime error 0.11% 0.20% 0.92% 0.56% 1.19% 0.34%

behavior error (NRMSD) 2.22% 1.16% 2.33% 1.26% 3.14% 1.04%

PSIM
runtime error 0.15% 0.17% 0.95% 0.56% 1.15% 0.34%

behavior error (NRMSD) 2.42% 1.14% 2.33% 1.25% 3.07% 1.04%

A more aggressive discharge profile to prove the predictive capability of the battery simulator is
the discharge-relaxation experiment that has been applied to find the EMF-SOC curve in Figure 11c.
The experiment and PSIM simulation results are shown in Figure 15. The experiment time is 1753.4
min, or 29.2 h. The runtime predicted by the proposed simulator is 1760.4 min, or 29.3 h. The runtime
error is 0.4%. The behavior prediction error shows that the NRMSD is 0.96%. The PSIM simulation
time of the 0.1C discharge-relaxation test is 44 s.
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Figure 15. Validation of the 0.1 C discharge-relaxation test.
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6. Discussion

A model comparison between the standard second-order ECM in [19] and the proposed battery
simulator was conducted. To show the improvement, a dynamic current load and a constant current
load were tested in simulations and experiments. Both current profiles have the same average current.
The profile configuration of the dynamic current load is listed in Table 4. Although the time of 0.909 C
is 100 min, the actual time is determined by the battery voltage. When the battery voltage drops to
the 3.0-V cutoff voltage, simulations and experiments are terminated. The dynamic current load was
tested firstly to realize in real time 0.909 C for calculating the average current rate. The constant load
was then performed with this average current rate.

Table 4. Profile configuration of dynamic current load.

Profile Configuration: Current (Time)

Dynamic current load 0.182 C (20 min)-0.364 C (10 min)-0.545 C (10 min)-0.727 C (10 min)-0.909 C (100 min)

The simulation results of the standard second-order ECM are shown in Figure 16.
Table 5 summarizes the runtime and discharging capacity of the two current profiles. For the
second-order ECM, the time of 0.909 C in the dynamic current load is 42.4 min, so the total discharging
time is 92.4 min. The average current rate is 0.63 C. The discharging capacity is 830.022 mAh. The
simulation results of the constant current load with 0.63 C show that the runtime and discharging
capacity are almost the same. The runtime of the constant current load slightly increases 0.33% when
it is compared to the result of the dynamic current load. The discharging capacity of the constant
current load slightly increases 0.29%. The test results show that basically the two current profiles are
the same for the standard ECM. However, this is not true for a real battery. In reality, the increasing
current of the dynamic current profile will cause the available discharging capacity to reduce due
to the rated capacity effect. The runtime will also reduce. Thus, the discharging capacity and the
runtime of the dynamic current load should be lower than the results of the constant current load.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Time (min)

L
o

a
d

 c
u

rr
e

n
t 

(C
-r

a
te

)

 

 

Constant load - 0.63C

Dynamic load - 0.63C (Avg)

0 10 20 30 40 50 60 70 80 90 100
3

3.2

3.4

3.6

3.8

4

4.2

SOC (%)

B
a

tt
e

ry
 v

o
lt

a
g

e
 (

V
)

 

 

Constant load

Dynamic load

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

Time (min)

D
is

c
h

a
rg

in
g

 c
a

p
a

c
it

y
 (

m
A

h
)

 

 

Constant load

Dynamic load

(a) (b) (c)

Figure 16. ECM simulation results: (a) load current; (b) battery voltage; and (c) discharging capacity.

Table 5. ECM simulation results of two different profiles with a 0.63 C average current.

Profile Runtime Discharging capacity

Dynamic current load 92.4 min 830.022 mAh
Constant current load 92.7 min 832.404 mAh

Growth rate (+0.33%) (+0.29%)

The same tests were conducted in experiments with the Nokia BL-5C polymer Li-ion battery cell
and simulations with the proposed battery simulator. The experimental data and simulation results
are shown in Figure 17. Two current profiles for testing in experiments are shown in Figure 17a.
Figure 17b shows not only experimental battery voltages of the two current profiles, but also the
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simulated battery voltages of the proposed battery simulator for validations. Figure 17c shows the
discharging capacities of the two current loads. Table 6 summarizes the runtime and discharging
capacity. Experimental data show that the time of 0.909 C in the dynamic current load lasts only
37.3 min. The total experimental time of the dynamic current load reduces to 87.3 min, and the
average current is 0.61 C. Comparing to the 0.6 C constant current, which was performed in model
parameter extraction tests to obtain the α and β parameters in Section 4, the runtime is 91.95 min. This
result is much higher than the runtime of the dynamic current load.
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Figure 17. Experimental data and simulation results of the proposed battery simulator: (a) load
current; (b) battery voltage; and (c) discharging capacity.

Table 6. Experimental data and simulation results of the proposed battery simulator.

Profile Runtime Discharging Capacity
Experiment Simulator Experiment Simulator

Dynamic current load 87.37 min 87.98 min 988.216 mAh 997.222 mAh
Constant current load 91.95 min 91.98 min 1011.450 mAh 1011.111 mAh

Growth rate (+5.24%) (+4.55%) (+2.35%) (+1.39%)

The nonlinear capacity effects can be clearly observed from the experimental data and simulation
results. Due to the increasing load current, the rated capacity effect causes the available discharging
charge of the dynamic current load to reduce, so the runtime is less than the time of the constant
current load. The experimental data show that the runtime and the discharging capacity of the
constant current load increase 5.24% and 2.35%, respectively. The simulation results show that the
runtime and the discharging capacity of the constant current load increase 4.55% and 1.39%. If the
average current of the current profile rises, the runtime differences between a dynamic current load
and a constant current load will also increase. This example definitely illustrates the superiority
of the proposed battery simulator over the standard ECM. The proposed battery simulator has the
capability of reflecting the nonlinear capacity effects in a dynamic discharging current load. However,
the standard ECM cannot make the difference between a constant current load and a dynamic current
load with the same average current rate. Thus, the standard ECM cannot reflect the runtime and
discharging capacity reductions under a dynamic current load.

7. Conclusions

This paper has presented a new battery simulator, which can predict battery dynamic behavior
and runtime in existing electronic simulation environments. A hybrid battery model that combines
the diffusion model for enhancing the ability to capture the nonlinear capacity effects and a switching
overpotential model for simulating the battery terminal voltage have been presented. The linear
extrapolation technique has also been introduced to extract the parameters of the two models. A
Nokia BL-5C polymer Li-ion battery cell with the 1020 mAh nominal capacity has been used to
validate the proposed simulator. In total, 11 constant discharging current, 0.02 C and 0.1 C to
1.0 C, have been tested for extracting parameters, including α and β for the diffusion model and
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EMF, overpotential resistance and voltage for the switching overpotential model. The six predefined
profiles have been tested in the experiments to check the estimation performances of the simulator
under a heavy load, a light load, an interrupted load, increasing and decreasing loads and a varying
load. The same profiles have also been tested in MATLAB and PSIM simulations. The results confirm
the usefulness and accuracy of the simulator to predict dynamic discharging behavior and battery
runtime in electronic design environments for co-simulating and co-designing with electrical circuits
and systems.
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