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Abstract: This paper presents a microgrid (MG) energy management strategy by considering
renewable energy and battery storage systems. Renewable energy, including wind power
generation and solar power generation, is integrated into the distribution network, for which
is formulated the optimal dispatch model of mixed-power generation by considering the
charging /discharging scheduling of battery storage systems. The MG system has an electrical link
for power exchange between the MG and the utility during different hours of the day. Based on
the time-of-use (TOU) and all technical constraints, an enhanced bee colony optimization (EBCO)
is proposed to solve the daily economic dispatch of MG systems. In the EBCO procedure, the
self-adaption repulsion factor is embedded in the bee swarm of the BCO in order to improve
the behavior patterns of each bee swarm and increase its search efficiency and accuracy in high
dimensions. Different modifications in moving patterns of EBCO are proposed to search the feasible
space more effectively. EBCO is used for economic energy management of grid-connected and
stand-alone scenarios, and the results are compared to those in previous algorithms. In either
grid-connected or stand-alone scenarios, an optimal MG scheduling dispatch is achieved using
micro-turbines, renewable energy and battery storage systems. Results show that the proposed
method is feasible, robust and more effective than many previously-developed algorithms.

Keywords: microgrid; time-of-use; bee colony optimization; renewable energy

1. Introduction

The greenhouse gas (GHG) emission of electric power sectors around the world is about 1/3
of the total world GHG emissions, indicating the significance of the electric power sector in the
global warming issue. In recent years, climate change due to GHG emissions has become a focus
of international organizations and governments. In order to reduce GHG emissions, many have
aimed to find more environmentally-friendly alternatives for electrical power generation. Distributed
generators (DGs) are required for local energy markets, as an important alternative energy production
option in the near future [1]. DG’s technologies may include photovoltaics (PV), small wind turbines
(WT), fuel cells, micro-turbines (MTs), efc. The integration of DGs and energy storage systems (ESS)
on a low voltage network is central to the concept of microgrids (MGs) [2]. MGs can operate in either
grid-connected mode or stand-alone mode [3] and usually require an energy management strategy
to ensure cooperation between the controllable units for achieving stable operation. Since MGs can
result in a decrease in electricity cost, higher service reliability, an increase of energy efficiency, etc.,
they are beginning to attract many utilities in the electricity market [4,5].

The energy management of an MG involves how to determine the most economic dispatch of
the DGs that minimizes the total operating cost while satisfying the load demand and operating
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constraints [6]. It is like a downsized version of the unit commitment problem that is traditionally
applied to large central generators in the MG. In the grid-connected mode, the MG adjusts the power
balance of supply and demand by purchasing power from the main grid or selling power to the
main grid to maximize operational benefits [7]. In the stand-alone mode, the micro-grid aims to
keep a continuous power supply to customers using DG bids. One of the main constraints with
DGs introduced is stability and reliability problems associated with their power scheduling [8].
The intermittent nature of some DGs, such as wind turbines and photovoltaic systems, leads to an
output that often does not suit the load demand profile. It is difficult to produce accurate day-ahead
schedules in MGs. Therefore, the energy storage systems, which play an important role in MGs, allow
those operations with a more flexible and reliable management of energy [9]. They can save energy at
low price hours and sell it at high price hours, which will help the network to work more efficiently
and economically. Meanwhile, the operation and control in an MG will become more complicated
and challenging.

The purpose of energy management of MGs is to improve energy efficiency and reduce power
losses. In either grid-connected mode or stand-alone mode, an optimal scheduling of units in the
energy management of MGs is carried out to maximize the benefits by operating the renewable DGs
and ESS [10,11]. The biggest challenge comes from the intermittent nature of the renewable DGs,
which is the unpredictable nature and dependence on weather and climate conditions, so that an
EES is required to ensure the power demand of the load at each interval. Therefore, the operation
scheduling of the dispatchable DGs in an MG is of particular concern, which can be formulated as
a non-linear and mixed-integer combinatorial optimization. Various numerical techniques have been
employed to address this problem [12-26]. Mazidi et al. [12] proposed a two-stage stochastic objective
function to solve the integrated scheduling of renewable generation and demand response programs
in an MG. An energy management strategy is proposed to control an MG powered by some DGs and
equipped with different storage systems: electric batteries and a hydrogen storage system [13-15].
The authors have proposed an MG economic dispatch that can coordinate power forecasting, energy
storage and energy exchanging together and then make better short-term scheduling to minimize the
total operation cost [16-19]. Marzband et al. [20] proposed an optimal energy management system for
islanded microgrids based on a multi-period artificial bee colony (MABC) algorithm and an artificial
neural network combined with a Markov chain (ANN-MC) approach to predict non-dispatchable
power generation and load demand, while taking uncertainties into account. An operational
architecture for real-time operation (RTO) is proposed to run the MG in islanded mode, ensuring
uninterruptable power supply services and reducing cost [21]. Marzband et al. [22] proposed
an energy management system (EMS) algorithm based on mixed-integer nonlinear programming
(MINLP) for MGs in islanded mode in different scenarios. A model for optimal energy management
with the goal of cost and emission minimization is presented based on the operation strategies of the
hybrid DGs [23,24]. Some artificial intelligent techniques have been presented to solve the economic
dispatch of MGs and have shown their effectiveness [25-29]. The common disadvantages of the above
methods are their long computation times and the lack of guarantee that a global optimal solution
can be found. In order to overcome the local optima problem, an enhanced bee colony optimization
(EBCO) algorithm is proposed in this paper.

Bee colony optimization (BCO), unlike most population-based algorithms, employs different
moving patterns to research the feasible solution space [30]. The BCO algorithm is improved by
referring to genetic algorithm (GA), evolutionary programming (EP) and particle swarm optimization
(PSO) for strengthening the optimization of parameter control and population evolution. The BCO
has many of the advantages of biological intelligence in searching, but it has the shortcoming of
easy and rapid convergence in computation and poor stability in higher dimensional search. The
energy management of MGs is a complex and high-dimensional problem with multiple constraints.
In this paper, therefore, an EBCO algorithm is proposed to address this problem. In the EBCO
procedure, the self-adaption and repulsion factors are embedded in the bee swarm of BCO in order
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to improve the behavior patterns of each bee swarm and to increase its search efficiency and accuracy
in high dimensions. Different modifications in moving patterns of EBCO are proposed to search
the feasible space more effectively. EBCO is intended to significantly improve the efficiency of MG
energy production and to optimize the use of existing DGs to maximize profit. The effectiveness
of the algorithm is demonstrated by performing optimization on several cases, and the results are
compared to those in previous publications. Our results show that the proposed method is feasible,
robust and more effective than many previously-developed algorithms.

2. System Model

A typical energy management strategy is shown in Figure 1. The purpose of this paper is to
develop an optimization model for MG schedule generation, taking into account available renewable
energy and battery storage resources. The MG system has an electrical link for power exchange
between the MG and the utility at different times of day. Excess power generated by the MG can
be sold to the utility using time-of-use (TOU). The MG can be operated in both grid-connected and
stand-alone scenarios. The objective of the energy management strategy is to generate suitable set
points for all sources and battery storage in such a way that the economically-optimized power
dispatch will satisfy a certain load demand. EBCO is used for economical energy management in both
grid-connected and stand-alone scenarios. EBCO is also expected to provide sufficient generation
capacity, control and different operational strategies. Models for micro-turbine (MT), wind turbine
(WT), photovoltaic (PV) and battery storage are all needed.

Local Day-Ahead Forecasted

Wind Global
Speed Radiation

WT Load PV

oy e

SW
o > MGs
Utility —'\—> . MT
Scenario
if grid-connected scenario
SW close Charging
or
EBCO Discharging
+ Battery
Storage
Energy g
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Figure 1. A typical energy management strategy.

2.1. The Model of Micro-Turbine

The MT is considered as a DG, which generates a constant power output. The fuel cost for
micro-gas turbines is considered as a quadratic model, which is expressed as in Equation (1):

Fi(P;(t)) = a;PA(t) + b Pi(t) +¢; M
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F(Pi(t)) = al-PiZ(t) + b; P;(t) + ¢; is the fuel cost of unit i at time ¢. a;, b;, ¢; are the coefficients of the
production cost of unit i. P;(t) is the power output of a committed unit i at time .

2.2. The Model of the Wind Turbine

A wind turbine extracts energy from the wind and converts it into mechanical power, which is
a complex aerodynamic system. In practice, the actual wind power almost entirely depends on the
wind speed, which is a random variable. A model of wind power output between wind speed and
mechanical power extracted can be described as in Equation (2) [31]:

1
Pu(t) = 5 p 0> (t) Cp(A, 0) Aw 2)
Cp(A, 0) is assigned as follows:
18.4
Cp(A,0) =0.73 x (T —0.580 — 0.0020“* — 13.2) x e i 3)
1
1
Ai = 1 0.003

A—0020 9341
The ON/OFF status of the WT is explained as Equation (4):

o(t) = vi(t) if Ustart <O(t) < Ufull
o(t) = vpun if vpa <0(t) < Vstop 4)
U(t) =0 lf Ustop < U(t) or U(t) < Ustart

2.3. The Model of the Photovoltaic

A series and parallel combination of PV cells form a PV array. The dominant factor affecting the
power output of a PV module is the solar irradiance intensity. The power output from a PV can be
calculated as Equation (5) [32]:

Py(t) = Kpy x Pg(t) x Apy 5)

where Ps(t) represents PV output power at time t; P;(f) is global radiation at time ¢; Apy is the area of
the PV array (W/m?); Kpy is the efficiency of the PV.

2.4. The Model for Battery Storage

The power output of a battery can be calculated as the difference between stored energies of two
consecutive stages. Energy stored in the battery device is expressed as follows [17].
(1) If the battery is charging;:

ncPs(t) < Qs max (6)
Qs(t+1) = Qs(f) +ncPs(f) )
(2) If the battery is discharging:
npPs(t) < Qs(t) ®)
Qs(t+1) = Qs(t) —mpPs(t) ©)

where 1¢ and np are the charging efficiency and the discharging efficiency, respectively. Pp(t) is the
electrical power of the battery output at the f-th hour. Qs(#) is the aggregated capacity of batteries at
the t-th hour. Qs max is the rated maximum storage energy.
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3. Problem Formulation
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The energy operation management in a typical MG can be defined as an optimization function,
which minimizes the total operating cost while satisfying the equality and inequality constraints. The

objective function and associated constraints of the problem can be formulated as follows:

min Obj(-) Z {Z Ei(P, )+ Piio(t) x price(t)} (10)

The constraints include both the system constraints and the unit’s constraints and involve:
(1) Load balance:

H

Z Zpload] JrPLoss —Z{ZP Z

t=1 t=1 s=1

(2) Unit power generation limitation:
Pmin,i < Pi(t> < Pmax,i

(3) Minimum up-time constraint:

x?l’l 2 TlOI’l

(4) Minimum down-time constraint:

& 5 ol
i = i

(5) Ramp up rate:
Pi(t) - P;(t —1) < UR;,
if U(i,t)=1landU(i,t —1)

(6) Ramp down rate:
Pi(t—1) — Pi(t) < DR;,

if U(i,t)=landU(i,t—1) =1

(7) Interchange with utility constraints:
Prie,min < Prie(t) < Prie,max
(8) The capacity constraints for the battery:
P min < Pp(t) < Ppmax

Figure 2 shows the electricity price in a day [33].
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Figure 2. The time-of-use (TOU) rate in a day.
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4. Enhanced Bee Colony Optimization

Bee colony optimization (BCO) was developed by [30] for numerical optimization in 2005. This
algorithm mimics the food foraging behavior of honey bees. In the EBCO algorithm, the swarm also
consists of three categories, scout bees, employed bees and onlooker bees. They carry out various
activities to sustain the hive life. The scout bees perform a random search for new food sources, and
employed bees have the role of exploiting the identified food sources and sharing the various pieces
of information with onlooker bees waiting in the hive to make a better decision. The EBCO includes
the following phases: initialization, employed bee phases, onlooker bee phases and scout bee phases.
The EBCO can be described as follows.

4.1. Initial Solutions

The initial parameters in the EBCO are the number of food sources (NFS), which is equal to
the bees. The initial population of solutions is filled with the NFS number of randomly-generated
food sources in a limited area. The random positions of food sources are generated by the
following equation:

Xij = Xj,min + rand x (Xj,max — Xj,min) , i= 1, 2,..., NFS, ] = 1, 2,...,] (18)

Xijj is the i-th population of solution vector j-th and NFS is set to 50. X; min and X max represent
the lower and upper boundaries of solution vector j-th. rand is a uniformly-distributed random
number in the range of (0, 1). The fitness function is defined as:

M N
. . 2
Fitness; = Obj(Xij) + Y Aegm|B(Xij) |2+ D" Nineg,n|(Xi) — Stim| (19)
m=1

n=1

Obj is the objective function. h(X;;) and g(X;;) are the equality and inequality constraints. M and
N are the numbers of equality and inequality constraints. Aeg, m and Ay, 4, are the penalty factors that
can be adjusted in the optimization procedure. g, is defined by:

X] lf Xj,min < X] < Xj,max
8lim = Xj,min lf X] < Xj,min (20)
Xj,max lf X] > X]',max

If one or more variables violate their limits, the penalty factors will increase, and the
corresponding individual will be rejected to avoid generating an infeasible solution.

4.2. Employed Bees

In the BCO, based on the behavior of the bees, a hard restriction exists on the flying pattern
of bees. BCO may cause premature convergence by using the information achieved by a swarm
imperfectly. In the EBCO, the better part of the employed bees fly considering the social and cognitive
information achieved by the swarm. Each bee knows its current optimal position (pbest), which
is analogous to the personal experiences of each particle. Each bee also knows the current global
optimal position (gbest) among all bees in the population. EBCO can have several solutions at the
same time, and particles have a cooperative relationship for sharing messages. In other words, it
tries to reach compatibility between local search and global search. At this stage, each employed bee
makes a change on the position of food sources to generate a new food sources in the neighborhood
of its present position as follows:

Xiter+1 _ xiter | sign x [cl -rand - (pbest; ,, — Xy ¢y - rand - (gbest; — Xl:t“’)] (21)

Jme Jmne jme jne
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ter

c1 = (c1p —cqp) x + ¢4, €2 = (Cof — €24) ¥ + Coi

itermax itermax

where rand is the random numbers between zero and one. k is a randomly-chosen index, and k # i.
c15 and ¢y are the initial acceleration constants. ¢1; and ¢y; are the final acceleration constants. itermax
is the maximal iteration, and iter is the current iteration. sign is the concept of the interference factor.
C1f, C2f, C1is C2i and itermax are set to 1.5, 0.5, 0.5, 1.5 and 200, respectively.

In the EBCO, a self-adaption repulsion factor is introduced to further strengthen the global search
capability of BCO. This factor can fly over some parts of the search space and may include profitable
information by the bee swarm. The increasing diversity of a bee swarm is incorporated in order to
avoid premature convergence. To enlarge the search area that might have been neglected, the concept
of the interference factor, sign, is introduced in Equation (22):

o 1, if rand < pr
sign = { ‘1 olse (22)

Its initial setting is pr = 0.7. When the randomly-generated rand is larger than the predefined pr,
a reverse search, as given in Equation (22), will take place. sign is the self-adaption repulsion factor.
The sign values used by bee swarms are recorded, and the pr value is based on self-adaption repulsion,
which is adjusted according to the fitness value in each iteration. In this paper, set prmax = 0.9 and
Pmin = 0.1. The searching procedure is described as follows (Algorithm 1):

Algorithm 1 Self-adaption repulsion factor search

1: if Min. Fitness (Xf]?er) comes from sign = 1

2: pr=pr+0.1

3:if pr > prmax then pr = prmax and ¢t = ct +1
4: elsect =0

5:if ct = ctmax then pr = 0.7 and ct = 0

6: else Min. Fitness (Xf]t”) comes from sign = —1
7:pr=pr—0.1

8: if pr < pryin then pr = prpin and ct = ct + 1
9:elsect =0

10: if ct = ctmax then pr = 0.7and ct = 0

11: end

If in the current iteration, the optimal fitness value is generated at sign = 1, let pr = pr + 0.1 to
increase the probability of positive feedback for each bee swarm, as shown in Figure 3. Conversely,
if in the current iteration, the optimum fitness value is generated at sign = —1, the probability of
negative feedback should be increased. ct is the number of iterations in this procedure. ctmay is the
upper limit of ct, and ctmax = 5. After, pr is continuously maintained at the maximum or minimum
values for ct times and meets. The updated food sources are used in this study to improve the
diversity of the solutions, and this behavior is referred to as the self-adaption repulsion factor.
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A Self-Adaption Repulsion Factor A

0

Vpr=pr+0.1

Pl =0.9
pr=0.8

Dlin =0.1

Figure 3. Probability variation of pr.

4.3. Onlooker Bees

The onlooker bees in the improved bee swarm algorithm will follow the employed bees to obtain
nectar information. Instead of joining the group of employed bees, the onlooker bee will only follow.
The flying path of the onlooker bees is modified by using the probabilistic selection method, as shown
in Equation (23), to follow the employed bees. In the working mode of the onlooker bees, the repulsive
force is also included in order to enlarge the search area, as shown in Equation (24).

1
Fitness(Xiter)
iter\ __ jne
Prob(X]-,m,) = ¥Es 1 (23)
nem1 Fitness(X]l:fzg)
X;If;g“ = X 4 sign x (cy - rand - (XIter — Xiter ) (24)

where Prob(X]’:t,‘Z,) = [X1,ner Xo,nes - - -+ XJne] is the better fitness value of the food source and #e is the
number of employed bees. 7o is the number of onlooker bees.

4.4. Scout Bees

In the EBCO, the model of the scout bees will no longer be a baseless random search. The
working model of the scout bees was modified to the average value of the global optimum
solution and all swarm locations. After comparison, the new location of scout bees is generated
by Equation (25):

xiter+1 X]”,Z + sign x (rand - (gbest; — 1 - mean''®")) (25)

jns

I = round[1 + rand(0,1)]

where variable ns is the number of scout bees and mean is the average of all variable solutions in the
t-th iteration. The population size for employed bees, onlooker bees and scout bees are 20, 20 and
10, respectively.

4.5. Stop Condition

The terminating condition is the maximal number of iterations. If the preset target is not yet
attained, then go back to Section 4.2 and repeat the operation. Figure 4 shows the flowchart of EBCO.
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Figure 4. The flowchart of enhanced bee colony optimization (EBCO).

5. Case Studies

Output

Employed Bees 40%
Equation (21)

4

Onlooker Bees 40%
Equation (24)

4

Scout Bees 20%
Equation (25)

L 1

In this paper, a typical low voltage MG is considered as the test system for the application of
the proposed methodology, as shown in Figure 5 [34]. The configuration of the MG system consists
of a set of DG units, including three MTs, a WT, a PV and battery storage. The system is exchanged
with the utility from the point of common coupling (PCC). The total load demand, the forecasted
wind speed of the WT and the forecasted global radiation of the PV in a typical day is shown in
Figures 6-8. It should be noted that a time period of one day with an hourly time step is considered
in this study. All DGs produced the active power at the unity power factor.

I Battery
Switch

Point of common
coupling (PCC)

Utility

Figure 5. The diagram of a typical low-voltage MG system.
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Figure 6. Load demand in a typical day.
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Figure 7. The forecasted wind speed of the WT in a typical day.
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Figure 8. The forecasted global radiation of the PV in a typical day.
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5.1. Results at Different Scenarios

In order to analyze and compare the performance of the MG system in the different
scenarios, two scenarios were simulated; a grid-connected situation and a stand-alone scenario. In
a grid-connected scenario, the cost-benefit power trading between the MG system and the utility
can be used at any time. In a stand-alone scenario, demand side management considered the power
balance, which means to meet load demand by using DGs, WT, PV and battery storage. In both
scenarios, there is a high penetration level of DGs with a larger power fluctuation.

Figure 9 shows the generation supply scheme in the grid-connected scenario. The generation
supplied by the DG’s units and utility units is 44.74% and 55.26% of total generation, and the loss
is 3.06%. The MG is self-sufficient to meet the load demand, and the power from the WT and PV
meet about 45.89% of the load demand. If the system supplied all power from the utility, the total
cost is about NT$8305.235. The power from the PV and WT meet most load demand; the cost can be
cut down to NT$5521.03. With the cooperation of the battery and other MTs, the cost is reduced to
NT$5037.031 through the control sequence determined by optimizing dispatch. It is noted that the
production cost of MTs is greater than that of the electricity purchased from the utility.

Total Power(kW)
3500

96.94%

. Discharging

Load Loss MT  Utility WT PV Charging

Figure 9. The generation supply scheme in the grid-connected scenario.

Figure 10 shows the generation supply scheme in the stand-alone scenario. The generation
supplied by MT units, the WT and the PV is 55.0%, 33.95% and 11.07% of total generation,
respectively. The loss is reduced from 3.06% to 2.47%. Since the power from the utility is broken
down in the stand-alone scenario, the MTs must produce more power to meet the load demand.
In the stand-alone scenario, half of the electricity is generated by MTs.

Total Power(kW)
3500

97.53%

55.00%

Load Loss MT  Utility WT PV Charghl‘)glschargmg

Figure 10. The generation supply scheme in the stand-alone scenario.

Table 1 shows the simulation results with different scenarios. 100 test runs are conducted for each
scenario. From Table 1, it can be seen that the proposed algorithm offers good performance in terms
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of searching solution, number of generations to convergence and the average execution time. The
average execution time for two cases is only 0.78 and 2.45 s, respectively. It is obvious that the EBCO
can solve the problem efficiently and often achieve a fast and global or near global optimal solution.

Table 1. Simulation results of the test systems.

Item Grid-Connected Scenario  Stand-Alone Scenario
Best (NT$) 5037.031 15,925.274
Worst (NT$) 5048.385 15,951.841
Average (NT$) 5041.457 15,936.813
Average number of generations to converge 150 173
Number of trials reaching optimum 63 46
Average execution time (s) 0.78 242

5.2. Convergence Test

Table 2 shows the comparisons of EP [26], GA [27], PSO [25], BCO [30] and EBCO during
different scenarios. The tests are carried out on a P-IV, Core 2 Duo 2.4 Hz, 2.0 GHz CPU and
4 GB DRAM memory. From Table 2, the improvement of the EBCO over other algorithms is clear.
Figures 11 and 12 illustrate the convergence characteristics of EP, GA, PSO, BCO and EBCO in the
grid-connected scenario and stand-alone scenario. This also shows the capacity of EBCO to explore
a more likely global optimum.

Table 2. Comparison of the evolutionary programming (EP), genetic algorithm (GA), particle
swarm optimization (PSO), bee colony optimization (BCO) and enhanced bee colony optimization

(EBCO) algorithms.
Algorithms Grid-Connected Scenario (NT$) Stand-Alone Scenario (NT$)
EP 5049.711 17,153.754
GA 5045.813 16,958.279
PSO 5038.196 16,224.526
BCO 5038.209 16,122.949
EBCO 5037.030 15,925.270
5200
5180 | EP .
5160 — GA i
“ PSO
5140 | | BCO .
— EBCO
& 5120 |
2
O 5100 e
5080 R
5060 :
5040 B =

5020 1 1 1 1 1 L L L L
0 20 40 60 80 100 120 140 160 180 200

Iteration

Figure 11. The convergence characteristics of EP, GA, PSO, BCO and EBCO in the
grid-connected scenario.
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Figure 12.
stand-alone scenario.

5.3. Robustness Test

The convergence characteristics of EP, GA, PSO, BCO and EBCO in the

All mentioned algorithms were also tested in the grid-connected scenario and stand-alone
scenario with the results shown in Tables 3 and 4. Each algorithm was executed by 100 trials with
the same initial parents. It can be seen that EBCO improves the searching performance, with the best
probability of guaranteeing a global optimum. From Tables 3 and 4 the EBCO algorithm demonstrates
better accuracy, while the number of trials reaching the optimum is greater than those in EP, GA, PSO
and BCO. Although the average execution time is also much lesser than that of GA and slightly
higher than those of EP, PSO and BCO, the average number of generations to converge is only 150.
The practical execution time of EBCO is thus lower than those of other algorithms.

Table 3.

grid-connected scenario.

Robustness test for the EP, GA, PSO, BCO and EBCO algorithms in the

Maximal Minimal Average Average Number Number of Average
Algorithm Converged Converged Converged  of Generations to  Trials Reaching Execution

Cost (NT$) Cost (NT$) Cost (NT$) Converge Optimum Time (s)
EP 5074.095 5049.711 5060.149 191 4 0.56
GA 5067.188 5045.813 5054.248 193 6 1.53
PSO 5053.567 5038.209 5047.794 190 45 0.67
BCO 5051.554 5038.196 5046.624 169 42 0.72
EBCO 5048.385 5037.030 5041.457 150 64 0.78

Table 4. Robustness test for the EP, GA, PSO, BCO and EBCO algorithms in the stand-alone scenario.

Maximal Minimal Average Average Number Number of Average
Algorithm Converged Converged Converged  of Generations to  Trials Reaching Execution

Cost (NT$) Cost (NT$) Cost (NT$) Converge Optimum Time (s)
EP 17,382.375 17,153.754 17,266.188 197 1 1.68
GA 17,186.573 16,958.279 17,010.570 198 2 5.94
PSO 16,391.596 16,224.526 16,286.286 191 26 2.18
BCO 16,279.849 16,122.949 16,164.635 187 31 2.23
EBCO 15,951.841 15,925.270 15,936.813 173 46 2.42
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6. Conclusions

This paper presents an EBCO approach to solve the energy management strategy of MGs by
considering renewable energy and battery storage systems. The energy management strategy is
formulated as an optimal dispatch model of mixed-power generation, which has an electrical link
for power exchange between the MG and the utility. Both grid-connected and stand-alone scenarios
are evaluated at different TOUs in order to minimize MG operational costs. This study used an EBCO
algorithm to analyze the efficiency of a typical distribution system, considering all relevant technical
constraints. EBCO consolidates bee colony moving patterns and repulsion techniques for a diversity
of solutions and can improve the quality of results in some optimization problems. In either the
grid-connected scenario or the stand-alone scenario, an optimal scheduling of units in the energy
management of MGs is carried out by operating the renewable energy and battery storage systems.
The effectiveness of the EBCO is demonstrated and tested on a low-voltage distribution system. The
results shown provide an effective tool for the energy management of MGs. It can also follow the
proposed strategies to increase the economic operation of MGs efficiently for the power industry.
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Nomenclature
GHG greenhouse gas
DG distributed generator
MINLP mixed-integer nonlinear programming
ESS energy storage system
MABC multi-period artificial bee colony
RTO real-time operation
EBCO enhanced bee colony optimization
EP evolutionary programming
TOU time-of-use
H the scheduling time
N the total number of micro gas turbines
WT wind turbine
PV photovoltaic
MT micro-turbine
MG microgrid
ANN artificial neural network
BCO bee colony optimization
GA genetic algorithm
PSO particle swarm optimization
PCC point of common coupling
U;(t) the on/off status of unit i at time ¢
UR;/DR; ramp up/down limit of unit i
Py(t) power output from the wind turbine at time ¢
p air density (kg/m?)

Cp the performance coefficient of wind power
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Ay the area covered by the rotor (m?)

u(t) the wind speed (m/s) at time ¢

A the tip speed ratio

0 the pitch angle of rotor blades (deg)

v;(t) the current wind speed (m/s) at time ¢

Ustart the start wind speed (m/s)

full the rated wind speed (m/s)

Ustop the stop wind speed (m/s)

Pyio(t) the electricity purchased from or sold to the utility at time ¢
Price(t) the TOU rates

Pross () the total system transmission loss at time ¢

P; min/ Pi max the minimum/maximum generation limits of unit i
"/ Tl.of f the minimum up-time/down-time of unit i

x"/ xiof f continued up-time/down-time of unit i

Pyio(t) active power bought/sold from/to the utility at time ¢

Ptie,min/Ptie,max

minimum /maximum active power production of the utility at time ¢

Pg(t) the storage capacity of the battery at time ¢
Pg min/ PB max the minimum /maximum storage capacity of the battery
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