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Abstract: This paper presents a decision support methodology for electricity market players’ 

bilateral contract negotiations. The proposed model is based on the application of game 

theory, using artificial intelligence to enhance decision support method’s adaptive features. 

This model is integrated in AiD-EM (Adaptive Decision Support for Electricity Markets 

Negotiations), a multi-agent system that provides electricity market players with strategic 

behavior capabilities to improve their outcomes from energy contracts’ negotiations. 

Although a diversity of tools that enable the study and simulation of electricity markets has 

emerged during the past few years, these are mostly directed to the analysis of market models 

and power systems’ technical constraints, making them suitable tools to support decisions of 

market operators and regulators. However, the equally important support of market 

negotiating players’ decisions is being highly neglected. The proposed model contributes to 

overcome the existing gap concerning effective and realistic decision support for electricity 

market negotiating entities. The proposed method is validated by realistic electricity market 

simulations using real data from the Iberian market operator—MIBEL. Results show that 
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the proposed adaptive decision support features enable electricity market players to improve 

their outcomes from bilateral contracts’ negotiations.  

Keywords: adaptive learning; bilateral contracts; decision support; electricity markets; 

game theory; multi-agent simulation 

 

1. Introduction 

The increasing use of renewable based generation has led to an intensive electricity markets (EM) 

restructuring process, which has been completely changing the EM paradigm. The privatization, 

liberalization and international integration of previously nationally owned systems are some examples 

of the transformations that have been applied [1]. These changes have progressively refined the used 

EM models, which began to operate using more reliable and complex models. However, EMs are still 

restricted to the participation of large players [2], which hardens the massive integration of renewable 

energy sources in the power system. This problem is being addressed in different ways in different parts 

of the globe [3] but some common solutions are also being globally adopted. Worldwide EMs are 

evolving into regional markets and some into continental scales, supporting transactions of huge amounts 

of electrical energy and enabling the efficient use of renewable based generation in places where it 

exceeds the local needs.  

A reference case of this evolution is the European EM where the majority of European countries have 

joined together into common market operators, resulting in joint regional EM composed of several 

countries [4]. Additionally, in early 2015, several of these regional European EM have been coupled in 

a common market platform, performing in a day-ahead basis [5]. The transformation of National EM 

into regional and continental EM is evidenced by other examples, such as the US EM, which operates 

using several regional markets, e.g., California Independent System Operator (CAISO) [6] and 

Midcontinent Independent System Operator (MISO) [7]. In Latin-American, Brazil has also integrated 

all the regions in a joint EM [8]. These markets, although not representing a Continent as a whole,  

can be considered as continental EM due to these countries’ size.  

Each EM has its own rules and clearing price mechanisms, taking into account the power systems 

reality and the available energy mix. Some markets have the clearing mechanism based on the 

optimization of offers, such as most EM in the US [7] and other based on symmetric or asymmetric 

auctions, as is the case of most European countries. In essentially all energy markets worldwide, energy 

trade by means of bilateral contracts is also supported [9]. Despite the differences, market mechanisms 

are tending to become more and more alike in order to ease the transition towards markets unification.  

Due to the constant evolution of the EM environment, including the introduction of new players [10] 

and changes in EM operation, it becomes essential for professionals in this area to completely understand 

the markets’ principles and how to evaluate their investments under such a competitive environment [11]. 

The use of simulation tools has grown with the need for understanding those mechanisms and how the 

involved players’ interaction affects the outcomes of the markets [12]. Artificial Intelligence (AI) plays 

an important role in this field, as multi-agent based simulation is particularly well fitted to analyze 

dynamic and adaptive systems with complex interactions among constituents, such as the EM [13].  
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This is supported by the several multi-agent modeling tools that can be fruitfully applied to the study of 

restructured wholesale power markets. Some relevant tools in this domain are AMES (Agent-based 

Modeling of Electricity Systems) [14], EMCAS (Electricity Market Complex Adaptive System) [15], 

GAPEX (Genoa Artificial Power Exchange) [16], and MASCEM (Multi-Agent Simulator of 

Competitive Electricity Markets) [13,17]. EM simulation platforms provide good solutions to test, 

validate and experiment new alternatives for market operation and players’ interactions. However, these 

tools are usually focused on the market perspective, being valuable for market operators and regulators, 

while almost completely disregarding the market negotiation players’ side. In fact, the decision support 

for electricity market negotiating players is a rather unexplored area, which should be properly addressed 

in order to provide the means for market players to adapt to the constantly changing EM environment, 

and learn how to take the most advantages out of market participation.  

This paper approaches the problem of lack of decision support solutions for EM players by proposing 

an innovative model, based on game theory [18], to support EM players’ actions when participating in 

bilateral contract negotiations. The problematic of bilateral negotiation is a recurrent theme in the 

literature of several fields, e.g., social psychology [19], economics and management science [20], 

international relations [21], and AI [22,23]. A relevant review on automated negotiation for 

computational agents with a particular focus on AI has been presented in [24]. According to this study, 

automated negotiation is generally composed of four phases: (i) preliminaries (the nature of negotiation); 

(ii) pre-negotiation (preparing and planning for negotiation); (iii) actual negotiation (moving toward 

agreement); and (iv) renegotiation (analyzing and improving the final agreement). However, several 

models consider the first two phases as a single initialization phase where all the necessary requirements, 

protocols and decisions that are essential before the actual negotiation process, are defined [24].  

The initialization phase includes the selection of an appropriate initial strategy. The dual concern 

model for strategic choice in bilateral negotiation is proposed in [25]. This model stresses that 

negotiation strategies result from the combination of self-concern (own outcomes) and other-concern 

(other party’s outcomes). A similar model of strategic choice is proposed in [26], and states that 

negotiation strategies result from the interplay of concern about own outcomes and concern about the 

relationship with the other party. According to [27,28] the most important pieces of data that must be 

considered in this phase are: (i) the intended limits and targets of the opponent(s); (ii) the negotiating 

history of the opponent(s); and (iii) the intended strategies of the opponent(s). Negotiators may speculate 

about the limits of the other parties and think stereotypically. However, they can also gather this data 

directly from them through the exchange of information prior or during the actual negotiation. 

Negotiators should also gather information about the past behavior of the other parties. Some works 

consider models that use information about the opposing negotiators (typically encoded into probabilistic 

distributions) to negotiate more effectively, such as [29,30]. Despite the efforts of these works, the authors 

are aware of no work on explicitly modeling the pre-negotiation step of gathering information either 

directly or indirectly about the opponent(s). In fact, AI researchers have traditionally neglected the  

pre-negotiation step of gathering information about opposing negotiators [24]. In summary, although 

some advances have been made regarding the pre-negotiation phase, several problems are yet far from 

being adequately addressed, such as the definition of models to choose the most appropriate parties to 

negotiate with, and how relevant information regarding competitors’ history of previous negotiations 
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can be used to improve the decision making process, namely regarding the choice of the most suitable 

negotiation strategies and tactics [24].  

Given the identified limitations in the field, this paper gives its contribution by proposing a novel 

methodology to support the decisions of bilateral contract negotiating players. The proposed model 

applies the game theory concept to enable the analysis of several distinct potential scenarios that the 

supported player is most likely to face when assuming negotiations. The alternative scenarios are created 

based on the historic analysis of the opponents’ past actions. For this, forecasting methods are used, 

namely Artificial Neural Networks (ANN) [31] and Support Vector Machines (SVM) [32], among 

others. The forecasting results are then used by a fuzzy logic process to estimate the expected limit price 

values of the opponents when negotiating different amounts of power. A reputation model is also used [33], 

so that the decision takes into account, not only the expected negotiation prices, but also the benefit that 

establishing a contract with one or several players should represent to the supported player. Finally, 

several alternative decision methods are included to allow adaptation depending on the risk that the 

supported player is willing to face regarding the outcomes of the negotiation process. For this,  

a reinforcement learning algorithm is used, allowing the proposed model to learn which of the potential 

scenarios are most likely to represent a reliable approximation of the real negotiation environment that 

the player will face. The development of the proposed game theoretic based model aims at fulfilling an 

important gap in the field of bilateral contract negotiation, taking into account the advances that have 

been accomplished in parallel fields, such as AI and microeconomics. 

The study presented in [34] reviews several models that game theory/microeconomics provide to 

study the problem of negotiation and bargaining. According to [34] there are two main approaches, 

which both model the preferences of the agents over the possible agreements by using the utility 

functions of von Neumann and Morgenstern [18]. The first approach is called cooperative, while the 

second is called non-cooperative or strategic. The bargaining problem was indeterminate by economics 

until the works by Nash [35,36] where the formal theory of bargaining, usually called axiomatic 

bargaining, was introduced. During the years several studies have extended and perfected this work; 

some relevant advances are the introduction of multilateral bargaining [37,38], and the modeling of the 

bargaining problem as an alternating—offers game [39], which approximates the mathematical models 

to the actual molds of most negotiations. Developments in game theoretic models have also potentiated 

their application to several research fields, such as energy (e.g., [40] presents an energy management 

model based on game theoretic assumptions, in [41] the optimization of the distribution system planning 

is performed using game theory, and [42] proposes a game theory based strategy for electricity market 

participation). Another field whose proposed game theory approaches are especially relevant is in 

production systems. The authors in [43] propose a novel cooperative game theoretical approach for 

distributed production planning of a reconfigurable enterprises. The study presented in [44] focuses on 

negotiation process in virtual enterprise formulation as a basic research to clarify its effective 

management. Each enterprise is defined as a software agent with multi-utilities and a framework of 

multi-agent programming with game theoretic approach is proposed as negotiation algorithm amongst 

the agents. A negotiation approach that enables an agent to efficiently model opponents in real-time 

through discrete wavelet transformation and non-linear regression with Gaussian processes is proposed 

in [45]. Based on the approximated model the decision-making component adaptively adjusts its utility 

expectations and negotiation moves. A generic framework for automated negotiation is described in [46], 
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which captures descriptively the social dynamics of the negotiation process. The proposed framework 

enables the agents to behave responsively to the changes in the environment. In the study presented in [47] 

an evolutionary game model is developed to observe the cooperation tendency of multi-stakeholders. 

The proposed game model studies the trade behavior which can be realized as strategies and payoff 

functions of the suppliers and manufacturers. These are relevant contributions, and their potential for 

application in the energy field is highly significant. However, the usual scope of application of game 

theoretic based models in production systems is in problems where all sides share common goals, e.g., 

to reach an optimal production or cooperation planning, even when considering the individual specific 

goals of each entity as well. In the context of application of this work the objective is different: to provide 

the best decision support to a single player, considering the expected behavior of the opponents. Thereby, 

the common goal or equilibrium between the involved entities is not relevant, just the individualist 

objective of the supported player: to maximize its own gain from negotiations. For this reason, it is 

necessary to propose new models, considering the already achieved advances in the area, but taking also 

into account the specific needs of the targeted problem.  

After this introductory section, Section 2 presents the formulation of the addressed problem.  

Section 3 presents the proposed method, including the forecast based scenarios generation and the 

adaptive decision methods. The proposed methodology is tested and validated using realistic simulation 

scenarios, and the achieved results are depicted in Section 4. Finally, Section 5 provides the most relevant 

conclusions and contributions of this work.  

2. Problem Formulation 

The presented work concerns the decision support to electricity market negotiating players (both 

sellers and buyers when participating in bilateral negotiations. Bilateral negotiations can be undertaken 

with a single competitor, or by facing multiple competitor players. A seller player wishes to maximize 

its incomes by choosing to negotiate against the competitor or competitors that offer the best expectations 

of return. On the other hand, buyer agents desire to achieve as low contract prices as possible, thus the 

intention is to choose to negotiate against the competitor seller players that offer the lower expected 

contract prices. Besides the economic return of the established contracts, players should, when choosing 

the opponents, take also into account the expectation of opponents’ ability to accomplish the contracted 

terms of the contract, i.e., an opponent that allows achieving a very good contract price but that after the 

agreement is done, is not able to deliver the committed amount of power, may not be the most 

advantageous option. For this reason, the defined utility function considers not only and economic 

component, which assesses the potential economic gain form establishing a contract, but also a 

reputation component, which allows taking also into account with whom the contract is being settled. 

The balance between the two components is settled by the supported players’ propensity to risk. 

The formulation defined to address this problem considers the set of possible actions that the 

supported player is able to perform, i.e., all the alternative ways to distribute the desired amount of 

negotiated power among the available competitor players. The proposed formulation also considers a 

range of alternative scenarios that represent different potential negotiation scenarios that the supported 

player may face when engaging the negotiation process.  
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The benefit for the supported player of adopting each action under each scenario is evaluated using a 

utility function. The utility function Uas, which is presented in Equation (1), allows assessing the outcome 

of action a in scenario s and ranges from 0 to 1. 

ܷ௔௦ ൌ ௔௦ᇱܧݎ ൅ ሺ1 െ ሻܴ௔ (1)ݎ

where r represents the supported player’s propensity to risk, and ranges from 0 to 1. ܧ௔௦ᇱ  is the normalized 

economic gain (income when selling or cost when buying, assuming values from 0 to 1) of performing 

action a under scenario s, and Ra is the reputation component that results from negotiating the amounts 

defined in a with each of the corresponding competitor players (also ranging from 0 to 1).  

Uas is defined so that a high propensity to risk considers almost exclusively the potential economic 

gain of the player, while neglecting the reputation of the players with whom contracts will be negotiated. 

On the other hand, a low value of propensity to risk means a larger weight to the reputation component, 

providing a larger influence to the reputation of competitor players and a lower importance to the 

economic gains, which results in safer and more reliable contract deals. Uas is thereby defined as a  

multi-objective function that allows maximizing the potential income of the player and minimizing the 

contract risk according to the preference (propensity to risk) of the supported player.  

Both the reputation and the economic components range from 0 to 1, so that both components present 

a similar influence on Uas, depending only on the risk. The reputation component Ra is defined as in 

Equation (2). 

R௔ ൌ ෍ܴ௣

௡௣

௣ୀଵ

௔௣ܣ
ܶܲ

 (2)

where p represents each competitor player from the total set of potential competitor players np. Rp is the 

reputation of player p, ranging from 0 to 1. Aap is the amount of power that is allocated by action a to be 

negotiated with player p (ranging from 0 to TP), and TP is the total amount of power that the supported 

player needs to negotiate with all competitors. Ra thus represents the accumulated reputation of the 

players with whom negotiations will occur by undertaking action a. Each of the competitor players’ 

reputations is relative to the percentage from the total power that is allocated to that player, i.e., if the 

total amount of needed power is allocated to the negotiation with a single player, Ra is equal to Rp; 

contrarily, if the total amount is divided equally among two competitor players, the reputation of both 

will also contribute equally to the value of Ra. 
The economic component ܧ௔௦ᇱ  defines the level of income or cost, in a scale from 0 to 1,  

by normalizing the actual income/cost values Eas, as presented in Equation (3). 

௔௦ᇱܧ ൌ

ە
۔

ۓ
௔௦ܧ െ ௠௜௡ܧ

௠௔௫ܧ െ ௠௜௡ܧ
, ݄݊݁ݓ ݄݁ݐ ݀݁ݐݎ݋݌݌ݑݏ ݎ݁ݕ݈ܽ݌ ݏ݅ ݈݈݃݊݅݁ݏ

௠௔௫ܧ െ ௔௦ܧ
௠௔௦ܧ െ ௠௜௡ܧ

, ݄݊݁ݓ ݄݁ݐ ݀݁ݐ݋ݎ݌݌ݑݏ ݎ݁ݕ݈ܽ݌ ݏ݅ ݃݊݅ݕݑܾ
 (3)

where Emin is the minimum value of Eas that results from all combinations action-scenario, and Emax is 

the maximum value of Eas from all combinations. By using Equation (3) when a player is selling, ܧ௔௦ᇱ  

will assume the maximum value of 1 when the return of Eas is maximum, while when a player is buying, 

௔௦ᇱܧ  will assume the maximum value of 1 when the return of Eas is minimum (minimum buying cost).  
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Eas represents the absolute value of income/cost that results from transacting the amounts of power with 

the competitor players defined in action a under the expected prices from each player that result from 

scenario s, as defined in Equation (4).  

௔௦ܧ ൌ ෍ܣ௔௣ܧ ௦ܲ௣஺ೌ೛

௡௣

௣ୀଵ

 (4)

where ܧ ௦ܲ௣஺ೌ೛  is the expected price of player p in scenario s, for the amount of power Aap. 

ܧ ௦ܲ௣஺ೌ೛ranges from 0 to ∞, depending on the contract price forecasts. 

Eas thus represents the total income/cost of the supported player when negotiating the amounts of 

power defined in action a with the competitor players defined in same action, and achieving the expected 

prices defined in scenario s. 

The risk management capability provided by the utility function enables further adaptation to the 

decision making process, by not limiting the supported player to exclusively pursue the maximum 

possible economic gain, but also taking into account the potential benefit of the established contracts 

depending on the reputation of the competitor players with whom negotiations will take place.  

The reputation is included in the model in order to endow the proposed decision support methodology 

with the capability of considering, not only the potential economic gain of the supported player in the 

undertaken negotiations, but also the benefit from a contract reliability standpoint. The reputation 

component represents the level of confidence that the supported player can have on the opponent’s 

service, i.e., in this case, the level of assurance that the opponent will fulfil the conditions established in 

the contract. Several works regarding the computational modeling of reputation and trust can be found 

in the literature, as discussed in [33], which provides an interesting review on the subject. The most 

recognized and globally accepted models are those resulting from the work of Sabater and Sierra [48]; 

the REGRET system, developed by these authors, accommodates several models for representing and 

assessing the reputation, trust, and credibility of different types of actors and players. The present work 

considers such proposed models to model the reputation of bilateral contract negotiating players.  

The reputation Rp of the competitor player p is assessed from the perspective of the supported player 

sp. Two components are considered: the individual component Rsp,p, which represents the direct 

observations and experience of the supported player in regard to the subject competitor player; and the 

social component Rs, considering the perspective of the group in which each player is inserted, and also 

the prejudice regarding the player type. All reputation components range from 0 to 1. Group and player 

type, in the scope of this work, refer to the generation type of seller players (e.g., players that represent 

wind farms will tend to have a similar reputation, as they will have the same type of difficulty in fulfilling 

the agreed amount of power, as they are equally dependent on the wind speed), and consumer types,  

in case of buyer players (e.g., large industry, medium commerce, small players). The prejudice refers to 

the a-priori idea regarding the reliability of each player type. Rp is, therefore, defined in Equation (5). 

ܴ௣ ൌ ௜ܴ௦௣,௣ݓ ൅ ௦ܴ௦ (5)ݓ

where wi and ws are weights that are attributed to the individual and social component, respectively.  

The sum of both weights should be equal to 1, and these should reflect the confidence that the supported 

player has on its own experience and on the experience of others.  
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Rsp,p is updated whenever a new observation is available. A positive or negative experience of the 

supported player regarding the subject competitor affects the new value of Rsp,p as defined in Equation (6). 

ܴ௦௣,௣ ൌ
ܧܲܰ
ܧܰܶ

 (6)

where NPE represents the number of positive experiences and TNE the total number of experiences that 

the supported player has had with the subject competitor player.  

The social component Rs allows, not only to include the opinion of others, but also to surpass the 

difficulties that arise from the usually very limited number of experiences that two players have directly 

with each other (it is unusual that players establish a large number of different contracts with the same 

player). Thus, the social component allows using information on similar players, and also to make use 

of the experience of other players regarding their personal experiences with the subject player.  

Rs is defined as in Equation (7). 

ܴ௦ ൌ ௚௣ܴ௦௣,ீ௣ݓ ൅ ௚௦௣ܴீ௦௣,௣ݓ ൅ ௚ܴீ௦௣,ீ௣ݓ ൅ ௣ݓ ௦ܲ (7)

where Rsp,Gp represents the reputation of the subject competitor player’s group form the perspective of 

the supported player, RGsp,p represents the reputation that the subject competitor player has from the 

perspective of the supported player’s group, RGsp,Gp represents the reputation that the competitor player’s 

group has from the eyes of the supported player’s group, and Ps is the prejudice component.  

Rsp,Gp is defined by considering the individual reputation of all members that are part of the subject 

competitor player’s group, as described in Equation (8). 

ܴ௦௣,ீ௣ ൌ ෍ ௦௣,௣೔ܴ௦௣,௣௜ݓ
௣೔∈ீ௣

 (8)

where ∑ ௦௣,௣೔ݓ ൌ 1௣೔∈ீ௣ . Rsp,pi is the reputation of member i of the subject competitor player’s group 

from the standpoint of the supported player sp; and wsp,pi represents the weight that is given to each of 

these individual reputations of the group members. These weights can be defined according to the 

similarity of each group member with the subject player. 

RGsp,p is defined ty taking into account the opinion of each player that is part of the supported player’s 

group in regard to the reputation of the subject competitor player, and is defined as in Equation (9). 

ܴீ௦௣,௣ ൌ ෍ ௚௦௣೔,௣ܴ௚௦௣೔,௣ݓ
௚௦௣೔∈ீ௦௣

 (9)

where ∑ ௚௦௣೔,௣ݓ ൌ 1௚௦௣೔∈ீ௦௣ . Rgspi,p is the reputation of the subject competitor player from the 

perspective of each member i of the supported player’s group; and wgspi,p represents the weight that is 

given to each of these individual reputations of the group members. These weights can be defined 

according to the credibility of each group member from the perspective of the supported player. 

RGsp,Gp is defined by taking into account the opinion of each player that is part of the supported 

player’s group in regard to the reputation of each member of the subject competitor player’s group, and 

is defined as in Equation (10). 

ܴீ௦௣,ீ௣ ൌ ෍ ௚௦௣೔,ீ௣ܴ௚௦௣೔,ீ௣ݓ
௚௦௣೔∈ீ௦௣

 (10)
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where ∑ ௚௦௣೔,ீ௣ݓ ൌ 1௚௦௣೔∈ீ௦௣ . Rgspi,Gp is the reputation of the subject competitor player’s group from the 

perspective of each member i of the supported player’s group; this reputation value is achieved by 

applying Equation (8) from the perspective of each player of the supported player’s group. wgspi,Gp 

represents the weight that is given to each of these individual reputations of the group members. These 

weights can be defined according to the credibility of each group member from the supported  

player’s perspective. 

Considering the credibility of the opinions of other players to define the weights that will be attributed 

to their responses, requires analyzing the responses that are given from each player, and comparing them 

to the actual experience of the subject player; e.g., if a certain player attributes a large reputation value 

to the subject competitor player, and when the supported player establishes a contract with this opponent 

verifies that this player is not able to fulfill the contracted conditions, the supported player will not only 

update the reputation of the competitor player taking into account the bad experience, but will also update 

the credibility on the responses of the player that provided the misleading evaluation of the competitor 

player’s reputation. The credibility update is performed by using Equation (6); however, in this case,  

the good or bad experience is not assessed by the player’s ability in fulfilling the contracted terms,  

but by comparing its provided opinion regarding the opponent’s reputation with the actual verified 

experience with the same opponent. 

3. Proposed Methodology 

The defined problem can be looked at as a multi-player game, where each player tries to maximize 

its own profit when selling and minimize its costs when buying. There is no optimal solution for this 

problem from the perspective of the complete set of players since the objectives of all players are 

contradictory, as the benefit of one player means the prejudice of the other. This is thus, exactly the 

nature of game theory [34]. From the global perspective of the whole set of players, the best solution 

would be to reach an equilibrium point between the actions and consequent outcomes of each player [36]. 

However, in this study the objective is to provide decision support to a single player, trying to maximize 

its own potential gain while completely disregarding the results of the other. For this reason, the proposed 

methodology adapts the general concepts of game theory to achieve the maximum potential gain for the 

supported player.  

The proposed game theory based scenario analysis method has, therefore, the objective of supporting 

the decisions of bilateral contracts’ negotiating players, namely concerning the pre-negotiation stage. 

The outputs of the proposed method are: (i) the selection of the most appropriate competitor players to 

negotiate with, aiming at optimizing the gain of the supported player in its transactions; (ii) the suggested 

amount of power that should be negotiated with each of the selected competitors in order to maximize 

the outcomes of the supported player; and (iii) the expected target price of each selected competitor 

player. These outputs are essential to enhance the results of the negotiation process, and are achieved 

through the application of a game theoretic based scenario analysis decision method, which evaluates 

the potential results of assuming different actions under distinct negotiation scenarios. The general 

process of the proposed methodology is illustrated by the diagram of Figure 1. 
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Figure 1. Decision process of the proposed methodology. 

Figure 1 shows that the proposed methodology is composed by three main parts, as follows:  

 Scenarios definition. As detailed in sub-Section 3.1 and considers the specification of different 

potential negotiation scenarios that the supported player may face when engaging the negotiation 

process. These alternative scenarios are created based on the analysis of the past results of the 

potential competitor players. Several forecasting methodologies are applied to predict the 

expected established contract price for each player, for different transacted amounts. Since the 

history log is often reduced, an estimation process is also required, to achieve the expected 

prices when negating amounts that are not possible to predict by the forecasting process; 

 Possible actions definition. As presented in sub-Section 3.2, this process refers to the stipulation 

of the set of alternative actions that the supported player can undertake. The total amount of 

power that is intended to be negotiated is distributed among the potential competitor players by 

a recursive process, covering all the possible combinations; 

 Decision process. The selected competitor players to negotiate with and the respective target 

amounts of negotiating power and expected prices result from the application of a game 

theoretic decision method, which uses the utility function presented in Section 2 to evaluate the 

potential outcome of each pair action-scenario. Hence, the result of assuming each alternative 

action under each scenario is calculated, using the reputation of the competitor players as the 

means to complement the assessment of the benefit for the supported player. Three distinct 

decision methods can be used: (i) a Pessimistic approach, (ii) an Optimistic approach, or  

(iii) the Most probable case. Reinforcement Learning Algorithms (RLA) [17] are used to 

provide the proposed method with learning capabilities, in order to perceive, throughout the time, 

which are the scenarios that present the higher probability of occurrence in each current context.  

The decision methods are presented in sub-Section 3.3. 

A detailed description of the proposed pre-negotiation model is provided in the following sub-sections. 

As mentioned above, the pre-negotiation stage will be followed by an actual negotiation phase.  
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This phase can involve a simple bilateral negotiation between two players or alternatively a set of 

concurrent bilateral negotiations, i.e., the supported player can negotiate simultaneously with several 

competitor players. Each negotiation will involve mainly an iterative exchange of proposals and counter-

proposals regarding the prices for the energy. 

3.1. Scenarios Definition 

The alternative negotiation scenarios represent the alternative situations that the supported player can 

face when participating in bilateral contract negotiations. Scenarios are composed by the prices that are 

expected to be achieved from the negotiation with each of the potential competitor players,  

when negotiating different amounts of power. The amount is closely related to the expected price,  

since it is usual that a player agrees with different prices when negotiating distinct amounts of power. 

The expected prices from each player are calculated by several forecasting methodologies (as presented 

in sub-Section 3.1.1). However, predictions of expected prices for different amounts of power than those 

contained in the historic log are often required. Hence, an adequate estimative to is essential to reach  

the values that are not attainable via forecasting (as presented in sub-Section 3.1.2). Each estimative,  

based on the predicted prices resulting from each forecasting methodology, results in an  

alternative scenario. 

3.1.1. Contract Price Forecasting 

The prediction of competitor players’ expected negotiation prices requires adequate forecasting 

techniques, able to provide adequate data analysis; namely of the historic of competitor players’ past 

contracts, the amount of power that each price is associated to, and also the context to which the contract 

settlement refers to. The way each contract price is predicted can be approached in several ways, namely 

through the use of statistical methods, data mining techniques [49], neural networks (NN) [31], support 

vector machines (SVM) [32], or several other methods [17]. However, no method presents a better 

performance than all others in every situation, only in particular cases and contexts [17]. For this reason, 

and given that all forecasting methods are subject to some error degree, a set of different approaches is 

used, and the outcomes of each alternative are considered as basis to create a distinct scenario. In this 

way, the proposed methodology considers as many alternative scenarios as the number of different 

forecasting approaches. 

The variables that are used by the forecasting algorithms are: the contract price, the amount of traded 

power, the target player and the context in which the contract settlement has occurred. The feature 

selection is performed by using the context analysis and definition methodology, which has been 

presented in [50]. This methodology is used to separate the historic data into different groups, which 

represent different negotiation contexts. This way, the forecasting processes consider only the data that 

refers to the same context as the one the decision support is intended to (e.g., negotiation of bilateral 

contracts for business days or weekends; directed to peak or off-peak hours of consumption, etc.). Thus, 

the contextualization of the forecasting process is enabled, resulting in forecasts that most reflect each 

current circumstances and context. Additionally, the forecast of a player’s actions considers only the 

historic data of the same player. The used algorithms are listed as follows:  
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 A feed-forward ANN, trained with backpropagation using the historic contract prices of each 

subject player, for the amounts of power available in the history log. 

 SVM using the exponential radial basis function (eRBF) as training kernel. 

 Based on Statistical approaches. There are two strategies in this category: 

o Average of prices from the players’ past actions database; 

o Regression on the contract prices historic data. 

 Algorithms based on pattern analysis: 

o Sequences in the past matching the last few actions of the competitor player. In this 

approach are considered the sequences of at least 3 actions found along the historic of 

actions of this player. The sequences are treated depending on their size. The longer 

matches to the recent history are attributed a higher importance. 

o Most repeated sequence along the historic of actions of the target player. 

o Most recent sequence among all the found ones. 

 Algorithm based on history matching. Regarding not only the player actions, but also the result 

they obtained. This algorithm finds the previous time that the last result happened, i.e., what the 

player did, or how he reacted, the last time he performed the same action and got the  

same result. 

 Algorithm returning the most repeated action of the target player. This is an efficient method 

for players that tend to perform recurrent actions. 

The methods that are used in each decision support process depend on the requirements of the AiD-EM 

2E balance management mechanism. When the requirement is the achievement of the best possible 

decision support results, all approaches are used, resulting in a large number of alternative scenarios to 

be analyzed by the decision method of the proposed methodology. On the other hand, when the execution 

time restraints are significant, only a few approaches are used (the faster ones to execute), so that the 

time demand of the decision support method is reduced.  

The results of the forecasting process consider the expected contract prices for each competitor player, 

for the power amounts that are available in the history log. However, as explained before, the decision 

making process requires the expected prices of each player for each amount of negotiated power.  

For this reason, the estimation of the missing values is essential. 

3.1.2. Contract Price Estimation  

The decision making process requires the expected return prices for each possible amount of power, 

for each competitor player. This, however, is impracticable due to the number of possible amounts 

(which tends to infinite when increasing the number of decimal places of the power amount value).  

For this reason, a dynamic fuzzy variable that approximates the values of contract prices for different 

negotiated power amounts has been proposed in [51] and is used in the scope of this work. This 

methodology allows estimating the large number of historic contract prices by means of a single fuzzy 

variable, hence reducing drastically the execution time of the proposed methodology. 
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Historic contract information is limited, i.e., the information concerns only prices for certain values 

of contracted power amounts. When it is necessary to achieve expected prices for contracts based on 

amounts of power that have never been negotiated before, these value has to be estimated. Using fuzzy 

logic, the estimative is done by defining power intervals, for which the expected price is similar. The 

fuzzy process allows smoothing the interval transition values, e.g., when negotiating 50 MW with a 

certain player (part of one power interval) the expected price is X; when negotiating 51 MW with the 

same player, amount of a different power interval, the expected price is Y. However, the difference from 

50 to 51 MW is minimal, and not enough to represent a large difference in the expected price. The fuzzy 

process allows these transition values between different intervals to be smoother, avoiding abrupt price 

changes. Figure 2 shows the fuzzy variable that represents the different intervals. 

 

Figure 2. Dynamic fuzzy variable, adapted from [51]. 

The lower limit of the function variable is zero and the upper limit is the maximum power in the input 

data. Intervals are constructed according to the forecasted prices resulting from the algorithms presented 

in sub-Section 3.1.1. Each forecasted price defines the maximum membership value of each fuzzy 

function, i.e., X1 to XN of Figure 2 are the power amounts for which a forecast has been performed.  

The limits of each function assume the value of the preceding and following price forecast, which assume 

membership values of zero. All membership functions are triangular, except from the first and last.  

The fuzzy variable is, therefore, dynamic, since its definition in done at runtime, depending on the 

number of performed forecasts, since these vary with the available historic data. 

A distinct fuzzy variable is created to estimate the missing values that result from the forecasts of each 

alternative forecasting approach, for each competitor player. Each negotiation scenario is composed by 

the estimates of the expected contract prices of all competitor players, resulting from the values returned 

by each forecasting methodology. 

3.2. Possible Actions Definition 

Once the alternative negotiation scenarios are defined, it is necessary to identify the set of possible 

actions that the supported player is able to perform. The alternative actions consist in the amount of 

power that will be allocated to the negotiation with each competitor player. The most advantageous from 

these alternatives will be chosen by the decision method (presented in sub-Section 3.3) as the action that 

presents the most potential for the success of the supported player, by optimizing its benefit. 

The definition of the alternative actions is done by distributing the total amount of desired negotiation 

power among the potential competitor players. Each alternative action comprehends a different 

distribution of the total amount among the competitor players, in a way that all combinations are 

represented by the different possible actions. This is achieved through the use of a recursive process that 
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guarantees that the total amount is always fully distributed among the players in each alternative action, 

and that all combinations are considered. The combinations range from allocating the total amount of 

power to the negotiation with a single competitor player, to the equal distribution of the desired 

negotiation amount among all competitor players. 

The enlarged range of possible actions enables the decision method to consider the evaluation of a 

great number of alternative action-scenario combinations, thus facilitating the achievement of the most 

advantageous action for the supported player to perform, with the aim of increasing the quality of the 

outcomes of the negotiation process.  

3.3. Decision Method 

The decision method has the role of assessing the combinations action-scenario and choosing the 

action that presents the greatest potential benefit for the supported player. Figure 3 presents an 

illustration of the decision making process. 

 

Figure 3. Decision making based on the evaluation of each action-scenario combination.  

The evaluation of the action-scenario combinations is performed using the risk-based utility function 

presented in Section 2, which adapts the evaluation of the potential benefit of the supported player to the 

player’s propensity to risk. The risk management is considered by including the reputation of each 

competitor player in the utility function evaluation; this way the supported player may choose to 

undertake negotiations with players that present a slightly lower potential profit, but compensate the gain 

by ensuring safer deals with players that present better reputations, which provide a different level of 

security, especially regarding the prospect of complying with the terms of the established contract. 

Finally, using the evaluation results of the performance of each action in each scenario, a decision 

method based on game theoretic concepts is used to make the final decision of what should be the best 

action for the player to perform. The decision method is also dependent on the player’s propensity to 

risk, and can assume one of three approaches:  

 Pessimistic approach. This decision method considers the usual mini-max game theoretic 

approach [34,42]. This method evaluates the global utility of each scenario individually, and 

chooses the action that presents the maximum utility (max) for the scenario with the minimum 

global utility (min). The global utility GU of scenario j is calculated as in Equation (11). 
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ܩ ௦ܷೕ ൌ ෍ܷ௔ೖ௦ೕ
௔∈஺

 (11)

where a is each action from the set of all possible actions A. Hence, the global utility of scenario j is the 

sum of the utilities of applying each possible action under scenario j. The scenario with the lowest GU 

is chosen, and the action that presents the higher utility under this scenario is selected as the final action 

to be used by the supported player. This decision method allows the supported player to prepare for the 

worst case scenario it can find, and perform the safer action, which provides the best outcomes for the 

worst possible scenario.  

 Optimistic approach. This approach uses the utility function evaluation of Equation (1) to find 

the action-scenario combination that presents the best gain among all combinations. The action 

that presents the higher possible gain is the one chosen as the final suggestion for the supported 

player to perform. This optimistic approach enables the supported player to risk, and perform 

the action that is able to provide the best possible gain under all scenarios. 

 Most probable scenario. The third decision method uses a learning process to assess the 

probability of occurrence of each alternative scenario. The final chosen action is the one that 

presents the higher expected utility value for the most probable scenario. This approach allows 

the supported player to be prepared for the scenario that is the most likely to occur, and perform 

the action that should provide the best outcomes under this scenario. An adaptation of the  

Q-Learning algorithm [52] is proposed to undertake the learning process. Q-Learning is a very 

popular reinforcement learning method. It is an algorithm that allows the autonomous 

establishment of an interactive action policy. It is demonstrated that the Q-Learning algorithm 

converges to the optimal proceeding when the learning state-action pairs Q is represented in a 

table containing the full information of each pair value [53]. The proposed approach includes 

the contextualization of the learning process in order to avoid the over-generalization of the 

learning process, hence adapting the learning to each context. The basic concept behind the 

proposed Q-Learning adaption is that the learning algorithm is able to learn a function of 

optimal evaluation over the whole space of context-scenario pairs c x s. This evaluation thus 

defines the confidence value Q that each scenario is able to represent the actual encountered 

negotiation scenario s in context c. The Q function performs the mapping as in Equation (12). 

ܳ: ܿ ݔ ݏ → ܷ (12)

where U is the expected utility value when selecting scenario s in context c. As long as the context and 

scenario states do not omit relevant information, nor introduce new information, once the optimal 

function Q is learned, the decision method will know precisely which scenario results on the higher 

future reward under each context. The reward r is attributed to each pair scenario-context in each 

iteration, representing the quality of this pair (how well does the scenario represent the real negotiation 

scenario under context c), and allows the confidence value Q to be updated after each observation.  

r is defined as in Equation (13). 

௦,௖,௧ݎ ൌ 	1 െ หܴ݉ݎ݋݊ ௖ܲ,௧,௔,௣ െ ܧ ௦ܲ,௖,௧,௔,௣ห (13)
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where RPc,t,a,p represents the real price that has been established in a contract with an opponent p, in 

context c, in time t, referring to an amount of power a; and EPs,c,t,a,p is the estimation price of scenario 

that corresponds to the same player, amount of power and context in time t. All r values are normalized 

in a scale from 0 to 1, in order to allow the Q(c, s) function to remain under these values, so that the 

confidence values Q can be easily assumed as probabilities of scenario occurrence under a context. Q(c, s) is 

learned through by try an error, being updated every time a new observation (new contract establishment) 

becomes available, following Equation (14). 

 ܳ௧ାଵሺܿ௧, ௧ሻݏ ൌ ܳ௧ሺܿ௧, ௧ሻݏ ൅ ௦,௖,௧ݎൣߙ ൅ ߛ ௧ܷሺܿ௧ାଵሻ െ ܳ௧ሺܿ௧, ௧ሻ൧ (14)ݏ

where α is the learning rate;  is the discount factor; and Ut (15) is the utility resulting from scenario s 

under context c, obtained using the Q function learned so far. 

൅1ሻݐሺܿݐܷ ൌ max
ݏ
ܳሺܿݐ൅1, ሻ (15)ݏ

The Q Learning algorithm is executes as follows: 

 For each c and s, initialize Q(c, s) = 0; 

 Observe new event; 

 Repeat until the stopping criterion is satisfied: 

o Select the scenario that presents the higher Q for the current context; 

o Receive reward rs,c,t; 

o Update Q(c, s); 

o Observe new context c’; 

o ܿ ← ܿ′. 

As the visiting of all scenario-context pairs tends to infinite, the method guarantees a generation of 

an estimative of Qt which converges to the value of Q. In fact, the actions policy converges to the optimal 

policy in a finite time, however slowly. In order to accelerate the convergence process, not only the Q 

value of the chosen scenario is updated, but also that of all scenarios, since the r regarding all alternative 

scenarios can be computed by comparing the estimated prices by each scenario and the actual values 

that have been verified in a new contract agreement. After each updating process, all Q values are 

normalized, as in Equation (16), so that they are always kept in a scale from 0 to 1, thus facilitating the 

interpretation as the probability of each scenario in correctly representing the negotiation reality. 

ܳᇱሺܿ, ሻݏ ൌ
ܳሺܿ, ሻݏ

maxሾܳሺܿ, ሻሿݏ
 (16)

In all three decision methods ties may occur when choosing the action with the higher utility value. 

In order to surpass this problem, the following tie-breaking conditions have been defined:  

 When the supported player’s propensity to risk is ≤0.5, the selected action is the one with the 

higher reputation component from all that present the same utility value; 

 Otherwise, if the propensity to risk is >0.5, the selected action is the one with the higher 

economic gain component; 
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 If after the tie-break some action remain tied, the inverse condition is applied, i.e., from the 

actions with the higher reputation component when the propensity to risk is ≤0.5, the one with 

the higher economic gain component is selected; the opposite is applied to the actions tied in 

economic gain when the propensity to risk is >0.5. 

The decision method to be applied in any case can be selected directly by the supported player as 

input, or it can be defined dynamically depending on the risk aversion value. In this case, the Pessimistic 

decision method is used when the risk is ≤0.3; the Optimistic method is applied when the risk is ≥0.7, 

and the Most probable scenario is used otherwise. 

4. Experimental Findings 

This section presents a case study that demonstrates the advantages of using the proposed 

methodology. For this purpose, real data from the Iberian electricity market—MIBEL [54] has been used 

to assemble a historic database concerning the past log of established contracts of 37 electricity market 

participating players. This database is used to apply the proposed methodology and assess its 

performance, namely by comparing the achieved results (assignment of the negotiation amount among 

the set of potential competitor players) to the outcomes of allocating the total negotiation amount to a 

single player, which is the common approach in the pre-negotiation stage of bilateral contract negotiations.  

All the simulations presented in this case study have been executed in a machine with one Intel® 

Xeon® E5-2620v2-2.10 GHz processor, with 12 cores, 16GB of Random-Access-Memory (RAM) and 

Windows 8.1 Professional. 

The first part of this case study considers a set of 5 electricity market players as potential opponents, 

in order to facilitate the demonstration of the proposed methodology’s decision support process and to 

allow a detailed description of results. The total negotiation amount to be allocated to be sold to the 

competitor players is of 10 MW. Figure 4 presents the price estimation error, using the Mean Absolute 

Percentage Error (MAPE) that results from the application of each of the 9 forecasting algorithms that 

have been presented in sub-Section 3.1.1. 

 

Figure 4. Mean Absolute Percentage Error (MAPE) estimation error using each of the 

considered forecasting algorithms. 
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From Figure 4 it is visible that algorithm that is able to achieve the best results for this case is the 

SVM, closely followed by the Most repeated pattern search and by the Longer pattern search. The worst 

estimations come from the application of the average and regression of the historic contracted prices.  

In order to determine the Most probable scenario the Q-Learning based algorithm is applied, using  

α = 0.8 and  = 0.2, in order to provide the learning algorithm with a quick learning rate, with the aim at 

facilitating the fast adaptation to the most recent perceived events. The confidence value Q in each of 

the scenarios created using the forecasts resulting from each of the 9 algorithms throughout 25 

observations (newly established contracts) is presented in Table 1.  

Table 1. Q values of each scenario throughout 25 iterations. 

Iteration ANN SVM AVG REG LPT RPP REP HMT RPA 

5 0.23 0.74 1 0.86 0.31 0.3 0.68 0.42 0.93 
10 0.37 0.84 0.97 0.91 0.38 0.52 0.73 0.65 1 
15 0.53 1 0.84 0.85 0.47 0.78 0.88 0.71 0.97 
20 0.78 1 0.79 0.81 0.76 0.85 0.93 0.89 0.91 
25 0.91 1 0.72 0.78 0.97 0.98 0.89 0.93 0.83 

Table 1 shows that after 25 iterations the scenario that presents the higher Q value is the one based on 

the estimation from the forecasting results of the SVM, which corresponds to the strategy that also 

presents best MAPE results. During the first iterations, with very few data to train the most advanced 

algorithms, the approaches that have achieved the best results are the simpler ones, namely the average, 

regression and most repeated player’s action. With the increase of the number of iterations, one can see 

the significant increase of the confidence value in the most complex algorithms, and a relative decrease 

of the Q value of the simpler strategies. Figure 5 presents the price estimation and forecasting results 

that compose the Most probable scenario (based on SVM). 

 

Figure 5. Most probable scenario estimation values. 

Figure 5 shows that the forecasted (marked up) expected prices for each competitor player are very 

few. The reduced contract history of each player only enables the forecasting of a very strict amount of 

prices. This requires that the expected prices for the remaining amounts of power are estimated using 
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the fuzzy process introduced in sub-Section 3.1.2. It is important to notice that the estimation of prices 

for amounts that are not available in the historic log have a decreasing tendency towards the value of 0. 

Since no information is available regarding past contract settlements of a player for such amounts of 

power, it cannot be assumed that the player would be willing to negotiate at higher price values, thus the 

expectation is that these prices present a decreasing tendency, e.g., regarding opponent player ID 1,  

only three prices could be forecasting, concerning the amounts of 1 MW, 2 MW and 3 MW. The prices 

that refer to these amounts present a decreasing tendency, therefore this tendency is maintained 

throughout the remaining power amounts. 

Executing the utility function that is necessary for the decision making process requires the use of 

reputation values referent to each competitor player. Since no real information regarding this aspect can 

be found, and using realistic values would require a sociologic study, which is out of the scope of this 

work, default reputation values have been attributed to each competitor player, in order to allow the test 

of the complete model. The reputation values that have been assigned to each competitor player are 

presented in Table 2. 

Table 2. Reputation of the competitor players. 

Player ID 1 2 3 4 5 

Reputation 0.9 0.7 0.5 0.3 0.1 

Table 2 shows that the reputation values assigned to the competitor players are all distinct and ranging 

from 0.1 to 0.9. This enables an easier verification of the influence of the reputation component on the 

proposed decision support model. Table 3 shows the utility values that result from the application of the 

proposed methodology to the present case, for different levels of risk propensity, considering the three 

decision methods, and the allocation of the total 10 MW to each of the 5 players. 

Table 3. Utility function values for different risk propensity values. 

Decision Method 
Risk Propensity 

1 0.8 0.5 0.2 0 

Pessimistic 0.86 0.74 0.70 0.68 0.90 
Optimistic 1.00 0.91 0.83 0.78 0.90 

Most Probable 0.91 0.82 0.77 0.72 0.90 
All Player 1 0.00 0.18 0.45 0.72 0.90 
All Player 2 0.08 0.20 0.39 0.58 0.70 
All Player 3 0.13 0.20 0.32 0.43 0.50 
All Player 4 0.18 0.20 0.24 0.28 0.30 
All Player 5 0.72 0.59 0.41 0.22 0.10 

From Table 3 it is visible that, for a risk value of 1, which means that only the economic component 

is considered by the utility function, the Optimistic decision method is able to achieve the maximum 

utility value of 1. This occurs because the Optimistic method selects the action that presents the best 

possible outcome from all scenarios, thus the selected action-scenario combination is the one that 

achieves the maximum possible income. From Equation (3), the maximum income corresponds to a 

value of 1 in the economic component of the utility function evaluation. On the other hand, negotiating 
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the total amount of 10 MW with Player 1 results in an utility value of 0, since this is the worst possible 

action that can be performed; as can be seen by Figure 5, the expected negotiation price for Player 1 for 

the amount of 10 MW corresponds to the lowest possible price among all that are estimated. In fact, 

negotiating the total 10 MW with a single player, considering only the economic component, always 

leads to very bad incomes, with the exception of Player 5. This player (as presented in Figure 5) presents 

a relatively good expected price for the amount of 10 MW, hence resulting a fairly good utility value for 

a risk value of 1. 

Looking at the other extreme, considering a risk value of 0 means that only the reputation component 

is considered by the utility function. When negotiating the total amount with a single player, by Equation (2), 

the reputation component is equal to the reputation of that player, therefore the utility value when 

negotiating the total amount with each player, for a risk value of 0, is equal to the reputation value 

presented in Table 2. All three decision methods have reached a utility value equal to the negotiation of 

the total amount with player 1. This occurs due to the exclusion of the economic component when risk 

is equal to 0, which means that the chosen scenario is irrelevant in this case, and only the choice of the 

opponent player(s), considering their reputation, is important. For this reason, regardless of the chosen 

scenario, the best action is always to negotiate the full amount with the player that presents the higher 

reputation, in this case Player 1.  

For all intermediate risk values, the same tendency is always observed: the higher utility value is 

achieved by the Optimistic method, followed by the Most probable method, and with the Pessimistic 

method in third place. The negotiation of the whole amount with each player individually results in lower 

utility function values, for all players and for all intermediate risk propensity values. 

Figure 6 presents the allocation results (amount to be negotiated with each competitor player) of the 

Most probable decision method, for the 5 considered risk propensity values. 

 

Figure 6. Actions resulting from the Most probable decision method for different risks. 

By matching the results presented in Figure 6 to the estimation results of the Most probable scenario, 

depicted in Figure 5, it is possible to interpret the reasons why these actions have been chosen by the 

Most probable decision method. Considering a risk value of 1, where only the economic component is 

assessed, from the 10 MW, 6 MW are allocated to the negotiation with Player 3, 2 MW to Player 2, and 

1 MW to Player 1. From Figure 5 one can see that these amounts correspond to the peak expected prices 
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from these 3 players, thus representing the higher possible economic gain considering the expected prices 

in the scope of this scenario (the most probable scenario). With a risk value of 0.8, the reputation 

component is already taken into account, even if just slightly. This is, however, enough to make the 

amount allocated to Player 3 decrease by 1 MW, which is now allocated to Player 1, which presents a 

much higher reputation value, and whose expected price for the negotiation of 2 MW is just slightly 

lower than the expected price for the negotiation of 1 MW. The gain in the reputation component 

compensates the slight decrease in the economic component. A risk value of 0.5 represents an equal 

consideration of both the economic and the reputation component. In this case, the negotiation with 

Player 3 no longer pays off due to the relatively poor reputation value of this player, and the 10 MW are 

negotiated between Player 1 and Player 2, which are the players with the higher reputation, and whose 

expected prices for the negotiation of respectively, 6 MW and 4 MW are still very reasonable. The cases 

where the risk value is set to 0.2 and to 0, which represent a prominence of the reputation component, 

result in the allocation of the total 10 MW to the negotiation with Player 1—the player with the  

higher reputation. 

Figure 7 presents the execution time of the proposed methodology for different amounts of 

negotiation power, and for different numbers of potential competitor players. 

 

Figure 7. Execution time of the proposed methodology. 

From Figure 7 it is visible that the execution of the proposed methodology for a relatively small 

amount of power (up to 25 MW) and for a reduced number of players takes only a few seconds to run. 

However, when both the negotiation amount and the number of alternative players increase, the required 

execution time also increases significantly. This increase is verified to the enlarged number of alternative 

actions that result from the negotiation of a large amount of power among a large number of players, 

which require an extensive number of alternative action-scenario evaluations. Moreover, the increase of 

the number of players also has a large implication of the time required to perform the forecast and 

estimation process for each player, for each distinct amount.  

Table 4 presents the utility function results for the application of the proposed methodology to the 

negotiation of 10 MW among the complete set of 37 considered potential competitor players,  

for different values of risk propensity, and comparing the different decision methods with the negotiation 

of the total amount with a single player (the best one for each risk value). The reputation values for all 

players have been assigned randomly, and all parameterizations are kept equal to those of the previous case. 
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Table 4. Utility function values for different risk propensity values, considering 37 competitor players. 

Decision Method 
Risk Propensity 

1 0.8 0.5 0.2 0 

Pessimistic 0.89 0.83 0.80 0.84 0.98 
Optimistic 1.00 0.98 0.92 0.93 0.98 

Most Probable 0.96 0.92 0.87 0.89 0.98 
Best Player  0.82 0.73 0.78 0.84 0.98 

Table 4 shows that, as before, for a risk value of 0, all decision method reach the same utility value 

as the best player, since the total amount of negotiation is allocated to the player with the higher 

reputation (in this case the player with the higher reputation has a value of 0.98). For a risk value of 1, 

the Optimistic method is once again able to reach a utility function value of 1, by allocating the 

negotiation of the required 10 MW among the players that present the best possible economic gain in 

the scenario that presents the most advantageous price expectations. The negotiation of the total amount 

with a single player (the best player for each value of risk) always results in smaller utility function 

values than all three decision methods of the proposed methodology. From the three decision methods, 

the Optimistic is always the one that achieves the best expected outcomes, the Pessimistic is the method 

that presents the worst expected outcomes from the three (although assuming the safer option is still 

above the negotiation with a single player), and the Most probable decision method reaches intermediary 

utility function results, while representing the best action to take in the Most probable case scenario. 

5. Conclusions 

This paper proposed a methodology to provide decision support to electricity market negotiating 

players when participating in bilateral contract negotiations. The proposed methodology allows the 

supported player to decide the amounts of power that should be negotiated with its competitors in order 

to optimize its expected outcomes. For this, a game theoretic decision method is used and refined with 

a reinforcement learning approach that enables identifying the Most probable scenarios to occur in each 

context. The decision methods make use of a utility function that considers the reputation of the 

competitors in addition to the expected economic gain, to evaluate the outcomes of each combination 

action-scenario. Alternative scenarios are built from the expected price forecasts, using the competitor 

players’ historic contract settlements, complemented by the estimative of missing expected price values.  

Results show that the proposed methodology is able to achieve higher utility function values, using 

any of the three decision methods, than the utility that results from negotiating the total amount of desired 

price with any single player. As previously identified in the introductory section, the pre-negotiation 

stage of negotiations as been largely neglected, as well as the proper use of historic data to model opponents’ 

behaviors and act accordingly, which is recognized by the authors themselves [24]. For this reason, there 

are no significant pieces of work to which the proposed methodology can be compared; therefore the 

only way to assess its advantage is by comparing the results of the proposed methodology with the 

expected outcome of negotiating the total amount with a single (the best) competitor player rather than 

distributing the negotiation amount among the possible opponents taking into account their expected 

performance. The outcomes of all three decision methods are always superior to those of negotiating the 

total amount with a single player, even for the Pessimistic decision method, which considers only the 



Energies 2015, 8 9839 

 

 

best actions to perform under the worst possible negotiation scenario that may occur. Thus, in this case, 

even if everything goes as bad as possible, the proposed method is always able to provide a suggested 

action that is most advantageous for the supported player then the negotiation with a single player.  

Regarding the execution time of the proposed method, the conclusion to be taken is that the proposed 

methodology is perfectly suitable to deal with a moderate negotiation amount of power and number of 

competitor players; but its application to larger problems is only possible as planning decision support 

(which is its main objective) to be taken some hours before the actual negotiations, or even during the 

previous days. The execution time can also be adapted by changing the 2E balance requirements of the 

AiD-EM decision support system, resulting in the use of less forecasting methods (using only the faster 

ones), and thus considering a reduced number of alternative scenarios. The result is the possible decrease 

of the achieved utility values, as result of the limited alternatives, but an important increase in execution 

time performance.  

As future work, the improvement of the contract price forecasting process is an important aspect, 

namely by considering different feature selection approaches in order to test and compare their influence 

on the forecasting results. Additionally, the experimentation of different alternatives for the utility 

function definition is also suggested, by considering the different utility functions for loss and gain 

domains proposed by the prospect theory. In specific, the problem of drawdowns and drawups in 

electricity prices should be addressed. 
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