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Abstract: Torsional systems with gear pairs such as the gearbox of wind turbines or vehicle 

driveline systems inherently show impact phenomena due to clearance-type nonlinearities when 

the system experiences sinusoidal excitation. This research investigates the vibro-impact energy 

of unloaded gears in geared systems using the harmonic balance method (HBM) in both the 

frequency and time domains. To achieve accurate simulations, nonlinear models with 

piecewise and clearance-type nonlinearities and drag torques are defined and implemented 

in the HBM. Next, the nonlinear frequency responses are examined by focusing on the 

resonance areas where the impact phenomena occur, along with variations in key parameters 

such as clutch stiffness, drag torque, and inertias of the flywheel and the unloaded gear. 

Finally, the effects of the parameters on the vibro-impacts at a specific excitation frequency 

are explained using bifurcation diagrams. The results are correlated with prior research by 

defining the gear rattle criteria with key parameters. This article suggests a method to 

simulate the impact phenomena in torsional systems using the HBM and successfully 

assesses vibro-impact energy using bifurcation diagrams. 

Keywords: vibro-impact energy; wind turbines; multi-staged clutch damper; harmonic 

balance method; drag torque; firing frequency; gear backlash; clearance 
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1. Introduction 

A practical gearbox system for wind turbines or vehicle manual transmissions under excitation 

conditions shows severe vibro-impacts due to clearance-type nonlinearities [1–9]. In general,  

clearance-type nonlinearties mean the nonlinear characteristics caused by the clearance such as a 

distance between two sub-systems. For example, a gear backlash is a representative clearance located 

between two gear teeth where repetitive separation and contact motions are caused by various engine 

input conditions, which produce severe vibro-impacts due to the alternating engine input torque flow. 

Regarding these vibro-impacts, various methods have been suggested to understand the impact 

phenomena caused by clearances such as gear backlash. For example, Padmanabhan and Singh [1] 

employed the harmonic balance method (HBM) to simulate neutral gear rattle in an automotive 

transmission. Kim et al. [3] examined impact damping with clearance-type nonlinearities with focus on 

gear backlash. Yoon and Lee [8] used two smoothening factors to investigate practical nonlinear 

dynamic behaviors due to piecewise-type nonlinearities. Yoon and Yoon [9] employed the HBM to 

investigate the dynamic characteristics of a single-degree-of-freedom (DOF) torsional system 

accompanied by a multi-stage clutch damper model. Other studies have examined various vibration 

problems using the HBM [10–22]. For instance, nonlinear problems using a Duffing oscillator or cubic 

stiffness have been settled by utilizing the nonlinear output frequency response functions (NOFRFs) and 

incremental harmonic balance (IHB) method [10,11]. Also, chaotic behaviors of physical systems have 

been examined [12,13]. Additionally, the response of a system with a hysteretic restoring force has been 

studied by applying two degree of freedom chain systems with sinusoidal inputs [14]. Incremental or 

multi-component HBMs have been employed as well to investigate the nonlinear system responses [15–18]. 

The time domain responses for the ith sub-system have been extended based upon the Galerkin  

scheme [19–22]. Although many studies have investigated clearance-type nonlinearities, difficulties still 

remain in implementing these methods on practical systems. 

As an example of geared systems, a manual transmission driveline is introduced for this research and 

the dynamic behaviors of such systems can be generally observed in other geared systems such as wind 

turbines. As the theoretical background of this study contains the concepts of gear contact/separation as 

well as transmission errors describing the relationship of gear mesh forces vs. relative displacement of 

the gear pair, the scope of this research can be adapted to macro scale geared system such as wind 

turbine system drivelines. Figure 1 shows a reduced-order model of a manual transmission driveline, 

which is an example of a physical system, with pertinent nonlinear elements [7,8]. It is a 5-speed 

manual transmission model with parallel type gears. The transmission is assumed to be under the third gear 

engaged and the fifth gear unloaded status. The order of the original system has been reduced so that 

most of the speed gears are unloaded and rotating except for one engaged through the synchronizer 

and gear-shifting mechanism. The key components such as the gear pairs, the clutch hub, the flywheel, 

the input shaft, the axles and the tire-vehicle system are characterized by the lumped torsional inertia I 

or stiffness k. The fixed gears and the synchronizer assembly are considered as the input and output 

shafts. The reduced model with six DOF is the minimum level of system that can accommodate all the 

key parameters, such as the multi-stage clutch dampers, drag torques, and gear backlash on both engaged 

and unloaded gear pairs. These nonlinearities are illustrated in the schematic diagram shown in  

Figure 1. Definitions of the key parameters are listed in Table 1. 
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Figure 1. A nonlinear torsional system model with six degrees of freedom with  

multiple nonlinearites. 

Table 1. Definitions of key parameters. 

Key parameters Definition Key parameters Definition 

Fgu Gear mesh force of unloaded gear θh Absolute motion of clutch hub 

Fge Gear mesh force of engaged gear θi Absolute motion of input shaft 

TE Input (engine) torque θou Absolute motion of unloaded gear 

TC Overall clutch torque θo Absolute motion of output shaft 

TDi Drag torque on input shaft θv Absolute motion of vehicle 

TDo Drag torque on output shaft ch Damping of clutch hub 

TDu Drag torque on unloaded gear ci Damping of input shaft 

TDVE2 Drag torque on vehicle cg Damping of gear mesh 

If Inertia of flywheel cVE2 Damping of vehicle 

Ih Inertia of clutch hub ki Stiffness of input shaft 

Iie Inertia of input shaft kVE2 Stiffness of vehicle 

Iou Inertia of unloaded gear Riu Radius of unloaded gear on input shaft 

IOG Inertia of output shaft Rie Radius of engaged gear on input shaft 

IVE2 Inertia of vehicle Rou Radius of unloaded gear on output shaft 

θf Absolute motion of flywheel Roe Radius of engaged gear on output shaft 

Figure 2 illustrates the piecewise-type nonlinearity between the flywheel and clutch hub and 

clearance-type nonlinearity between engaged and unloaded gear pairs [7–9]. In this figure, clutch torque 

profiles are expressed including hysteresis levels and transition angles. A nonlinear function TC has been 

depicted by the relationship of clutch torque vs. relative displacement δ1Pr. This profile is measured under 

the static load conditions when the torque levels of multi-staged linear torsional spring are determined 

by both δ1Pr and 1Pr, which is defined as the relative velocity between clutch and flywheel. TC, δ1pr, and 

kCn indicate overall clutch torque, relative displacement between the flywheel and the clutch hub, and 

torsional stiffness of nth stage clutch damper, respectively. Figure 2b indicates the expected gear mesh 

force with the relationship of the relative displacement of the gear pair δ vs. the gear mesh force F.  

Here, kg and b indicate the gear mesh stiffness and the gear backlash, respectively. Observing this figure, 
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the dynamic conditions of the forces are abruptly changed at b/2 or −b/2. To simulate strong 

nonlinearities at multiple points in the torsional system, the HBM will be used by extending the 

previously proposed basic formulations [9,22]. In addition, this study examines the nonlinear behaviors 

of an impact pair from the geared systems, in the frequency domain, by extending prior impact pair 

analysis [23]. 

 
(a) 

 
(b) 

Figure 2. Nonlinear characteristics of multi-stage clutch dampers and gear backlash:  
(a) Nonlinear function 1 1( , )C pr prT    for multi-stage clutch dampers; (b) Gear mesh force. 

The specific objectives of this study are as follows: (1) the dynamic behaviors of impact pairs in a 

geared system were investigated by implementing piecewise-type nonlinearities at multiple points;  

(2) the effects of key parameters on the vibro-impacts were examined using the HBM to improve the 

vibratory conditions; and (3) the impact phenomena were numerically mapped in the bifurcation 

diagrams for the key parameters, which provides insight into the gear rattle criteria. Overall, within the 

scope described above, this research could help readers understand the basic concepts of the geared 

systems so that they can develop specific simulation methods of highly nonlinear systems such as  

wind turbines. 
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2. Problem Formulation with 6-DOF Nonlinear System Model 

Based on the nonlinear system shown in Figure 1, the basic equations are derived as follows [7–9].  

A reduced 6-DOF torsional system model is considered in this research, since a larger dimension may 

cause problems for nonlinear analysis. It includes nonlinear terms describing the clutch torque TC, 

unloaded gear force Fgu, and engaged gear force Fge. The governing equations are derived from the 

moment equilibrium of each segment and placed in the matrix form. Assuming that drag torques are 

constant, the governing equations are given as: 

  1 1( ) ( ) ( ) ( , ) ( )f f h f i C pr pr EI t c t t T T t          
 (1a) 

1 1( ) ( ) (c ) ( ) ( ) ( ) ( ) ( , )h h h f h i h i i i h i i C pr prI t c t c t c t k t k t T                   (1b) 
2 2( ) ( ) ( ) ( ) ( ) ( )ie i i h i ge ie gu iu i gu iu ou ou ge ie oe oI t c t c c R c R t c R R t c R R t             

( ) ( ) ( ) ( ) Ti h i i iu gu u ie ge e Dik t k t R F R F         (1c) 

2( ) c ( ) ( ) ( )ou ou gu iu ou i gu iu ou ou gu u DuI t R R t c R t R F T         
 (1d) 

2
2 2 2( ) ( ) ( ) ( ) c ( )OG o ge ie oe i ge oe VE o VE VEI t c R R t c R c t t         

2 2 2( ) ( ) ( )VE o VE VE oe ge e Dok t k t R F T      
 

(1e) 

2 2 2 2 2 2( ) ( ) ( ) ( ) ( )VE v VE o VE v VE o VE v DVEI t c t c t k t k t T          
 (1f) 

Here, θk(t) (k = f, h, i, ou, o, v) is the absolute motions of sub-systems such as the flywheel, clutch 

hub, input shaft, unloaded gear, output shaft, and vehicle. Equations (1a)–(1f) can be expressed in the 

matrix formulation by defining a state vector ( )
T

f h i ou o vt         θ  as follows. 

( ) ( ) ( ) ( ) ( )t t t t   n EMθ Cθ Kθ f θ,θ T  
 (2a)

2, , , , ,f h ie ou OG VEdiag I I I I I I   M  (2b)
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Here, M, C, and K are inertia, damping, and stiffness matrices, respectively, and ( )nf θ,θ  and ( )tET  

are a nonlinear function and input torque vectors respectively. The other parameter designations and the 

values used in the simulation are summarized in Tables 2 and 3 [7–9,22]. The employed nonlinear 

models can be derived as follows [7,8]. The nonlinear function describing the overall clutch torque TC 

is defined as the summation of the preload torque TSPr, stiffness torque TS, and hysteresis torque TH: 

1 1 1 1 1 1( , ) ( ) ( ) ( , )C pr pr SPr pr S pr H pr prT T T T           (3)

The torque caused by the preload TSPr is determined by the function of relative displacement δ1pr: 

1 1 1 2 1

1 1
( ) tanh( ) 1 tanh( ) 1

2 2SPr pr Pr C pr Pr C prT T T               , 1 1pr Pr     (4a,b)

Here, TPr1 and TPr2 indicate the positive and negative preload, σC is a smoothening factor, and φPr is 

the phase at the preload when δ1 is zero, respectively. The clutch torque resulted by the stiffness TS(δ1) 

is defined as follows: 

  1 1 1 ( ) ( 1) ( 1) ( 1)
2

1
( )

2

N

S pr C pr C i C i sp i sn i
i

T k k k D D    


     (5a)

    ( ) 1 ( ) 1 ( )tanh 1sp i pr p i C pr p iD           (5b)

    ( ) 1 ( ) 1 ( )tanh 1sn i pr n i C pr n iD           (5c)

In these equations, kC(i) is the clutch stiffness, Dsp(i) and Dsn(i) are the positive and negative sides of 

the clutch displacements induced by stiffness at the ith stage, and φp(i) and −φn(i) are the ith transition 

angles of the positive and negative sides. The torque due to hysteresis TH for the multi-staged clutch 

under asymmetric transition angles is determined as follows: 

 ( ) ( ) ( 1)
1 1 1 ( 1) ( 1)

2

( , ) tanh
2 4 4

N
N i i

H pr pr H pr Hp i Hn i
i

H H H
T D D    

 


 
       

 
 

  (6a)

  ( ) 1 ( ) 1tanh 1 tanh( )Hp i C pr p i H prD         


 (6b)

  ( ) 1 ( ) 1tanh 1 tanh( )Hn i C pr n i H prD         


 (6c)

where H(i) indicates the ith stage of hysteresis and DHp(i) and DHn(i) stand for the positive and negative 

sides of relative motions resulted by hysteresis at the ith stage, respectively. 
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Table 2. Employed values of the torsional system parameters [7,8]. 

Inertia 
Value  

(kg·m2) 
Stiffness 

Value  
(Nm·rad−1) 

Radius 
Value
(mm)

If  

(Flywheel) 
1.38 × 10−1 

kC  

(Clutch for the linear model)
1838.0 

Rie  

(Engaged gear  
on the input shaft) 

35.5 

Ih  

(Clutch hub) 
5.76 × 10−3 

ki  

(Input shaft) 
10000 

Roe  

(Engaged gear  
on the output shaft) 

46.0 

Iie  

(Input shaft) 
4.53 × 10−3 

kVE2  

(Drive shaft) 
6.63 × 102 

Riu  

(Unloaded gear  
on the input shaft) 

45.9 

IOG  

(Output shaft) 
7.80 × 10−3 

kg  

(Gear mesh) 
2.7 × 108 (Nm−1)

Rou  

(Unloaded gear  
on the output shaft) 

35.6 

Iou  

(Unloaded gear) 
5.23 × 10−4     

IVE2  

(Vehicle) 
3.27     

The nonlinear function for the gear mesh force Fg is defined as the following equation. 

tanh tanh
2 2 2 2

( )
2

k g k k g k

gk k g k g

b b b b

F k k

     
 

                        
           

  

(7a)

k ik i ok oR R     (k = e or u)
 (7b)

Here, b is defined as the gear backlash and the subscripts e and u are “engaged’ and ‘unloaded”.  

σg is the smoothening factor in the calculation of the gear mesh force. 

In Equations (3)–(7b), the nonlinear function for the overall clutch torque TC is the summation of the 

pre-load torque TSPr, stiffness torque TS, and hysteresis torque TH. All of the clutch torques are expressed 
as a function of relative displacement δ1pr given by Equation (4b), where Pr  is the phase at the pre-load 

when the relative motion δ1 between the flywheel and clutch hub is zero [7–9]. TPr1 and TPr2 are the 
positive and negative pre-loads, and C , H , and G  are smoothening factors for the clutch stiffness, 

hysteresis, and gear backlash, respectively. Values of 1 × 102, 0.1, and 1 × 1010 are employed for C , 

H , and G  to calculate the clutch torques induced by the stiffness, hysteresis, and gear mesh forces, 

respectively [7–9]. These smoothening factors are used for numerical convergence, especially for the 

stiff problem, and they are determined to minimize the difference between the physical discontinuities 

and smoothened simulation functions [7–9]. 
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Table 3. Property values of the real-life multi-stage clutch damper [7,8]. 

Property Stage Value 

Torsional stiffness, kCi  

(linearized in a piecewise manner)  
(Nm/rad) 

1 10.1 

2 61.8 

3 595.8 

4 1838.0 

Hysteresis, Hi (Nm) 

1 0.98 

2 1.96 

3 19.6 

4 26.5 

Transition angle at positive side  
(δi > 0), (rad) 

1 0.05 

2 0.16 

3 0.30 

4 0.39 

Transition angle at negative side  
(δi < 0), (rad) 

1 −0.04 

2 −0.05 

3 −0.09 

4 −0.15 

kC(i) is the clutch stiffness, Dsp(i) and Dsn(i) are the switching functions at positive and negative sides 
of clutch relative velocities at the ith stage [9], and ( )p i  and ( )n i  are the ith transition angles of the 

positive and negative sides, respectively. H(i) is the ith stage of hysteresis, and DHp(i) and DHn(i) are the 

positive and negative sides of the relative motions induced by hysteresis at the ith stage, respectively. 

The nonlinear function for the gear mesh force Fg is expressed by the gear backlash b, and subscripts e 

and u indicate engaged and unloaded states. The transitional relative displacements between gear pairs 

are denominated by ρe and ρu. The properties employed for the multi-stage clutch damper are 

summarized in Table 3. A value of 0.1 mm is given for b [7,8]. 

To determine the dynamic characteristics in terms of natural frequencies and mode shapes based on 

the linear time-invariant (LTI) assumption, a clutch stiffness value of kC = 1838.0 Nm·rad−1 is employed 

in Equation (5a) from Table 3, since the 4th stage of torsional spring is operating under the given 

excitation condition. The natural frequencies based on the eigensolutions are f1 = 7.5 Hz,  

f2 = 60.6 Hz, and f3 = 273 Hz [7,8]. To focus on impact phenomena such as gear rattle, the main resonance 

regime centers on f2 = 60.6 Hz, because the physical driveline with a 4-cylinder engine is normally 

excited by gear impacts between 700 RPM (23.3 Hz) and 3000 RPM (100 Hz) [7,8]. Thus, the frequency 

will be normalized with f2 = 60.6 Hz in further calculations. The driveline shown in Figure 1 is assumed 

to be in steady state given the sinusoidal excitations. 

3. HBM and Numerical Simulation (NS) with Jumping Phenomena 

By employing the HBM from prior studies [9,22], the nonlinear system responses with multiple 

locations of nonlinearities such as multi-stage clutch damper and gear backlash can be simulated based 

on the Galerkin scheme. Figure 3 shows a comparison of the HBM and numerical simulation (NS) results 

with focus on the maximum, mean, and minimum values in the time history of the relative displacement 



Energies 2015, 8 8932 

 

 

of the unloaded gear pair δ4(t), which can be calculated with the following equation. In this simulation, 
the normalized frequency ( / )n    is used: 

4 ( ) ( ) (t)iu i ou out R t R   
 (8) 

To simulate the time responses using NS, the modified Runge-Kutta method has been  

employed [7,8]. Since the gear impact phenomenon consists of many super-harmonics, the simulation 

becomes more reliable as the number of harmonics Nmax is increased [8]. However, this study is mainly 

limited to Nmax  6 due to calculation time and convergence problems, which occur when the number of 

harmonics is increased beyond 6, such as Nmax = 8 or 12. Here, η indicates the sub-harmonic index. 

The input torque TE(t) with Nmax is calculated using the mean value of the input torque Tm and the 

alternating part of the engine torque Tpi as follows: 

max

1

( ) cos( )
N

E m pi p pi
i

T t T T i t 


     (9)

In this equation, ωp and Pi  are the firing frequency and phase, respectively. Directly measured values 

from an engine dynamometer test of Tm = 168.9 Nm, Tpi = 251.5 Nm, and Pi  = −1.93 rad are employed 

for the HBM analysis [7,8]. 

 

Figure 3. Comparison of the HBM (Nmax = 6 and η = 2) results with the NS results in the 

frequency domain. Key: ───, HBM; , NS by frequency up-sweeping; , NS by frequency 

down-sweeping. 

To estimate the dynamic behaviors of the impact pair, the damping matrix is constructed using the 

assumed modal damping ratio ζ = 0.02, since it is much difficult to physically measure [7]. In addition, 

drag torques of Case IV in Table 4 are used for the baseline for this study since there is no impact with 

Case IV which will be explained more in detail. The drag torque values are given by assuming 4 different 

cases: Case I, vehicle normal driving condition; Case II, severe dynamic conditions of gearbox system; 

Case III, severe gear impact condition; Case IV, the most stable condition. 
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Table 4. Employed properties for the drag torques for various conditions [7,8]. 

Drag torque (Nm) 
Value 

Case I Case II Case III Case IV 

Drag torque on the input shaft, TDi 75.0 11.9 48.4 30.8 
Drag torque on the output shaft, TDo 57.9 9.2 37.4 23.8 

Drag torque on the unloaded gear, TDu 3.9 3.1 2.5 7.2 
Drag torque on the vehicle, TDVE2 57.3 189.0 114.6 143.2 

As shown in Figure 3, the HBM and NS results in the frequency domain match well with each other. 

However, there is a large difference in the calculation times. For example, the HBM takes only  

1 minute and 29 seconds, but the NS requires 3 hours. Nmax = 6 and η = 2 are employed for the HBM. 

Here, η is limited to 2 by assuming that only period-doubling effect can be marginally observed in a practical 

system. Figure 4 compares the results in the time domain under frequency up- and down-sweeping 

conditions. By focusing on the normalized frequency   = 0.93 (= 56.5 Hz), where the jumping phenomenon 

is observed in Figure 3, the system responses differ considerably depending on the initial conditions and 

frequency sweeping directions. For example, as shown in Figure 4b, the dynamic behavior of δ4(t) under the 

frequency down-sweeping condition includes more super-harmonic terms than δ4(t) under the frequency 

up-sweeping condition given in Figure 4a. This is clearly shown at the peaks of the time history δ4(t). 

  

(a) (b) 

Figure 4. Comparison of the HBM (Nmax = 6 and η = 2) results with the NS results in the 

time domain at 56.5 Hz: (a) time histories of δ4(t) under frequency up-sweeping;  

(b) time histories of δ4(t) under frequency down-sweeping. Key: , HBM; ───, NS. 

Figure 5 explains the variation in the max, mean, and min values of δ4(t) from the HBM in the 

frequency domain when the number of harmonics is increased. To clearly observe the nonlinear 

behaviors of gear impact, a damping ratio of 1.3% is used, with which severe impact phenomena such 

as double-sided impact can be observed [7,8]. As shown in Figure 5, the maxima and minima at 

resonance and the shape of the backbone are significantly affected by Nmax. For example, the maximum 

and minimum values for Nmax = 1 or Nmax = 3 along with sub-harmonic index η = 1 [9,22] are considerably 

smaller than those with Nmax = 6 and η = 1 or Nmax = 6 and η = 2. 

When the jumping phenomena for the gear impact occur, the system response shows considerably 

different tracks depending on the frequency sweeping directions with Nmax = 6 and η = 2, as shown in 
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Figure 5. When the system is under frequency up-sweeping, the value of the system response δ4(max) 
increases following the black dotted line until ( / )n   reaches a value slightly larger than 0.92. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Max, mean, and min values of δ4(t) from the HBM for 4 cases with different 

numbers of harmonics: (a) δ4(t)(max); (b) δ4(t)(mean); (c) δ4(t)(min). Key: ───, Nmax = 1 and  

η = 1; ─ ─ ─, Nmax = 3 and η = 1; ··········, Nmax = 6 and η = 1; ─   ̵  ─, Nmax = 6 and η = 2. 

However, under frequency down-sweeping, the system responses have two jumping regimes, where 

jumping up occurs around   = 0.91 and jumping down occurs around   = 0.885. This dynamic 

characteristic reflects behavior similar to that observed in a prior study with a single gear pair [23]. Thus, 

the simulation results shown in Figure 5 prove that the gear impact analysis with an individual 

component can be reasonably extended to the simulation conditions in situ. In addition, the key factors 

to reduce the vibro-impacts can be determined easily based on the practical model with six DOF 

compared with a previously suggested component model [23]. In the next sections, the criteria with 

respect to the vibro-impacts will be investigated and discussed based on the simulation results. 

4. Impact Pair Analysis with Key Parameters 

Gear impacts in a geared system occur under various driving conditions corresponding to the drag 

torque properties listed in Table 4 [7]. The drag torques are estimated based on the results of a prior 

study [7,8] by assuming that the gearbox is operated under different loading conditions, which have 



Energies 2015, 8 8935 

 

 

significant effects on the drag torque for the vehicle TDVE2. The other drag torques TDi, TDo, and TDu can 

be evaluated as suggested previously [7]. 

The simulated results for different drag torque conditions are compared in Figure 6. The results from 

Case I, II and III show the clear nonlinear impacts compared with Case IV where there is no impact. 

Case I is estimated by assuming that the vehicle system is operated under normal conditions. Case II 

involves the gearbox system being affected by double-sided impact. Case III shows the most severe gear 

impacts compared to the other cases since it shows double-sided impact as well as wider gear impact 

range. For example, even though Case II shows the same maxima of δ4(max) and minima of δ4(min) as Case 

III, the gear impact range for Case III is wider than for Case II. 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Max, mean, and min values of δ4(t) from the HBM for various drag torque 

conditions: (a) δ4(t)(max); (b) δ4(t)(mean); (c) δ4(t)(min). Key: ───, Case I; ─ ─ ─, Case II; ··········, 

Case III; ─   ̵  ─, Case IV. 

With focus on the gear impact, these vibro-impacts are significantly affected by the drag torque values 

on the unloaded gear TDu, as shown in Table 4. Thus, only Case IV overcomes the gear impacts, as shown 

in Figure 6. Based on the results, the gear impacts are related to the drag torque of the vehicle and the 

unloaded gear itself, which extends the gear rattle criteria concepts by including TDVE2. Thus, it will be 

clearly shown in the bifurcation diagram in the later section. 

Figures 7–10 show the results of parametric studies with key property values such as the damping 

ratio ζ, clutch stiffness kC4, and inertias of the flywheel If and unloaded gear Iou, given the drag torques 
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of Case IV listed in Table 4. Figure 7 compares the HBM results for three modal damping ratios of 1.3%, 

1.5%, and 2%. As the damping value increases, the gear impacts are improved from double-sided impact to 

no-impact conditions [7–9]. In addition, the backbone curve can be anticipated with the resonance regimes 

easily. Figure 8 shows the effects of the clutch stiffness kC4 on the gear impacts given the modal damping 

ratio of 1.3%. When kC4 is reduced, the gear impacts are improved from double-sided to single-sided 

impacts. However, changing the stiffness values affects the resonance regimes, because kC4 is 

significantly related to the natural frequencies of the torsional system [7,8,22]. 

Figures 9 and 10 compare the gear impact conditions for the various inertias of the flywheel and 

unloaded gear. As clearly shown, increasing the inertia of the flywheel or decreasing the inertia values 

of the unloaded gear improves the gear impact conditions. Moreover, there are distinct differences in the 

HBM results in relation to these values. For example, the increase in If changes the resonance area of 

δ4(max), δ4(mean), and δ4(min), while the gear impact conditions are improved. However, the reduction in Iou 

does not affect the resonance area of δ4(max), δ4(mean), and δ4(min). 

 

Figure 7. Max, mean, and min values of δ4(t) from the HBM (Nmax = 6 and η = 2) for 3 values 

of damping ratio. Key: ───, ζ = 0.013; ─ ─ ─, ζ = 0.015; ··········, ζ = 0.02. 
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Figure 8. Max, mean, and min values of δ4(t) from the HBM (Nmax = 6 and η = 2) for 3 

values of clutch stiffness. Key: ───, kC4 = 1838 Nm/rad; ─ ─ ─, kC4 = 1562.3 Nm/rad; ··········, 

kC4 = 1279.2 Nm/rad. 

 

Figure 9. Max, mean, and min values of δ4(t) from the HBM (Nmax = 6 and η = 2) for 3 values 

of inertia of flywheel If. Key: ───, If = 0.1376 kg·m; ─ ─ ─, If = 0.1433 kg·m; ··········,  

If = 0.1434 kg·m. 
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Figure 10. Max, mean, and min values of δ4(t) from the HBM (Nmax = 6 and η = 2) for 3 values 

of inertia of unloaded gear Iou. Key: ───, Iou = 5.23×10‒4 kg·m; ─ ─ ─, Iou = 4.97×10‒4 kg·m; 

··········, Iou = 4.61×10‒4 kg·m. 

Overall, based on the HBM results shown in Figures 7–10, the gear impact conditions still follow the 

previously suggested gear rattle criteria [7,8]. The vibro-impact conditions are improved with changes 

of the resonance regimes and key parameters such as kC4 and If based on the HBM, which was not 

discussed in prior studies. Thus, these parametric studies can give design concepts to avoid gear impacts 

and system-level vibration problems. 

5. Investigation of Bifurcation Diagrams with Focus on Vibro-impacts 

Based on the case studies in Section 4, bifurcation diagrams can be drawn by fixing the specific 

excitation frequency to   = 0.9 where the double-sided impact occurs. The gear impact conditions can 

be mapped efficiently by comparing the bifurcation phenomena with gear rattle areas using the values 

of δ4(max), δ4(mean), and δ4(min). When the gear rattle criteria are determined, “No rattle” indicates frequency 

areas without any vibro-impacts at any initial conditions. “Rattle” indicates that at least one vibro-impact 

exists in any condition, either single- or double-sided impact. Figure 11 includes useful information such 

as the bifurcation and gear rattle regimes for given drag torques on the unloaded gear TDun, where the 

subscript n indicates the given value of 7.2 Nm for Case IV, as listed in Table 4. 

Here, the unstable values marked by a red cross in Figure 11 are estimated by employing Hill’s 

method and the jumping phenomena occur at these areas as shown in Figure 2 [2]. Based on the simulated 

results, when TDu is increased, the gear impacts decrease and reach the no-impact condition in the region of  

TDu / TDun > 1.35. And this is correlated well with the prior studies [7,8]. However, the bifurcation still remains 

for the entire range of TDu / TDun. This means that δ4(t) shows considerably different dynamic behaviors 
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depending on the values of TDu / TDun and the initial conditions. The red lines in Figure 11 indicate the 

marginal area of gear backlash with a value of 0.05 mm at b/2 or −0.05 mm at −b/2. Figures 12–14 show the 

bifurcation diagrams for the key parameters considered in Section 4. 

 
(a) 

 
(b) 

 
(c) 

Figure 11. Bifurcation diagrams of max, mean, and min values of δ4(t) for drag torque on the 

unloaded gear: (a) δ4(t)(max); (b) δ4(t)(mean); (c) δ4(t)(min). Key: , stable value; , unstable 

value; ───, marginal area of gear backlash. 

In general, the gear impact phenomena are closely related to the bifurcation regimes, along with the 

initial or frequency sweeping conditions. Figure 12 shows the bifurcation results for damping ratios. The 

employed modal damping ζn is 0.013, and the bifurcation disappears when ζ / ζn is greater than 1.18, 

where the gear impact is also resolved. 

Figure 13 shows bifurcation diagrams for kC4 / kC4n, where kC4n is 1838.0 Nm/rad. The bifurcation 

disappears when kC4 / kC4n is lower than 0.9, and the vibratory problems due to gear impacts are resolved 

when kC4 / kC4n is less than 0.8. Figure 14 shows bifurcation diagrams for If / Ifn, where Ifn = 1.38×10−1 kg·m2. 

The bifurcation and gear impacts do not occur when If / Ifn > 1.05. In contrast, Figure 15 shows 

bifurcation diagrams for Iou / Ioun with the reverse tendency compared to the bifurcation for If / Ifn. For 

example, the bifurcation and gear impacts disappear when Iou / Ioun < 0.66. 
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Figure 12. Bifurcation diagrams of max, mean, and min values of δ4(t) for damping ratio. 

Key: , stable value; , unstable value; ───, marginal area of gear backlash. 

 

Figure 13. Bifurcation diagrams of max, mean, and min values of δ4(t) for clutch stiffness. 

Key: , stable value; , unstable value; ───, marginal area of gear backlash. 
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Figure 14. Bifurcation diagrams of max, mean, and min values of δ4(t) for inertia of 

flywheel. Key: , stable value; , unstable value; ───, marginal area of gear backlash. 

 

Figure 15. Bifurcation diagrams of max, mean, and min values of δ4(t) for the inertia of the 

unloaded gear. Key: , stable value; , unstable value; ───, marginal area of gear backlash. 
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Overall, based on the examination of the bifurcation diagrams for the key parameters, the gear impacts 

can be resolved by adapting relevant parameters, as suggested in prior studies [7–9]. Thus, the vibration 

problems caused by the gear impacts can be resolved by increasing TDU, If, and ζ or decreasing kC4 and 

Iou. Moreover, the bifurcation sometimes does not disappear where the gear impacts are resolved, as 

shown in Figure 11, where the bifurcation can be observed for the entire range of TDu/TDun, including the 

non-impact region. On the other hand, the bifurcation is directly correlated with the impact phenomena 

in some cases. For example, as shown in Figure 15, the bifurcation and gear impact occur (or disappear) 

at the same Iou/Ioun. 

6. Conclusions 

This article investigated the gear impact phenomena in both the frequency and time domains with a  

6-DOF nonlinear torsional system model using the HBM. In addition, the dynamic characteristics of the 

gear impacts have been examined and explained using bifurcation diagrams based on parametric studies 

with respect to key parameters such as the clutch stiffness, drag torque, and inertias of the flywheel and 

unloaded gear. The specific contributions of this research are summarized as follows. 

First, the dynamic behaviors of impact pairs in a physical system have been investigated by 

implementing piecewise-type nonlinearities at multiple points. This study advanced a prior study [23] 

by extending the study scope from focusing on impact pairs only to the vibro-impacts in a gearbox 

system such as vehicle driveline or wind turbines under sinusoidal excitation. Second, the effects of key 

parameters on the vibro-impacts have been examined using the HBM. This study provides understanding 

of the relationships between the impact phenomena of gear pairs and their relevant parameters, and they 

can be applied to improve the vibratory conditions. Also, this concept can be employed to the design 

issues when the wind turbine system is constructed since this macro-system always contains the 

durability problems under the severe input conditions related to the vibration problems. Third, the 

impact phenomena have been mapped using bifurcation diagrams focused on key parameters. Thus, 

the vibro-impact has been clearly assessed, and the effects of the key parameters have been examined 

with bifurcation diagrams. Using bifurcation diagram also will lead to increasing the efficiency of 

designing the wind turbine system by assessing the properties of key parameters. However, this method 

needs to be correlated with experiments based on time-domain data, which is a subject for future study, 

including the development of adapted simulation method for the wind turbine. 
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