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Abstract: A state-of-health (SOH) estimation method for electric vehicles (EVs) is 

presented with three main advantages: (1) it provides joint estimation of cell’s aging states 

in terms of power and energy (i.e., SOHP and SOHE)—because the determination of SOHP 

and SOHE can be reduced to the estimation of the ohmic resistance increase and capacity 

loss, respectively, the ohmic resistance at nominal temperature will be taken as a health 

indicator, and the capacity loss is estimated based on a mechanistic model that is developed 

to describe the correlation between resistance increase and capacity loss; (2) it has wide 

applicability to various ambient temperatures—to eliminate the effects of temperature on 

the resistance, another mechanistic model about the resistance against temperature is 

presented, which can normalize the resistance at various temperatures to its standard value 

at the nominal temperature; and (3) it needs low computational efforts for on-board 

application—based on a linear equation of cell’s dynamic behaviors, the recursive  

least-squares (RLS) algorithm is used for the resistance estimation. Based on the designed 

performance and validation experiments, respectively, the coefficients of the models are 

determined and the accuracy of the proposed method is verified. The results at different 

aging states and temperatures show good accuracy and reliability. 

Keywords: lithium-ion batteries; state-of-health (SOH); wide temperature range; 

resistance increase; capacity loss 
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1. Introduction 

The usage of lithium-ion batteries as a storage system is currently the best choice for portable 

applications, such as electric vehicles (EVs) and mobile electronics, based on comprehensive 

consideration of its energy and power density and cycle-life [1]. Unfortunately, with battery aging,  

its maximum available energy and instantaneous power will gradually fade. In this paper, we will 

focus on developing an effective estimation technology of the state-of-health (SOH) for lithium-ion 

batteries in EVs such as battery electric vehicles (BEVs) and hybrid electric vehicles (HEVs). 

For EVs, battery SOH is always defined with two specific forms, and they are SOHE and SOHP to 

indicate the degradation of energy and power, respectively. Based on the simplification processes 

shown in Equations (1) and (2), respectively, the determination of the battery SOHE and SOHP can be 

reduced to the estimation of the capacity and ohmic resistance [2]. Wherein, Ubat and Ibat indicate the 

terminal voltage and the load current, respectively; Cbat, open-circuit voltage (OCV), and Ro indicate 

the capacity, open-circuit voltage, and ohmic resistance, respectively; subscripts “a” and “0” indicate 

the aging value and initial value of the marked variables, respectively: 
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For internal resistance identification, the most basic methods are performed by fitting the measured 

data of the hybrid pulse power characteristic (HPPC) tests or the electrochemical impedance 

spectroscopy (EIS) tests in least-squares sense under off-line operation conditions [3,4]. In addition, 

the results of these off-line identifications are always taken as reference values for on-line methods or 

training data for battery modelling. For the on-line methods, the resistances are always estimated on 

the basis of equivalent circuit models (ECMs) [5–10] or electrochemical models [11–13] with the 

utilization of the recursive optimal estimation algorithms, such as the Kalman-filter-based algorithms 

and the least-squares-based algorithms. 

Compared with the resistance identification, the battery capacity cannot be directly identified and 

will always be calculated by some specific health indicators. In [14–16], the OCV of LiCO2 is selected 

as the health indicator, and the battery capacity is estimated by a ratio between the changes of coulomb 

counting and the corresponding changes of state-of-charge (SOC), which is determined by the 

predefined OCV-SOC relation. However, in most cases, the OCV-SOC relations are not steep enough 

and always change with aging. For example, the OCV of LiFePO4 cell shows a flat plateau over a large 

SOC range due to the two-phase reaction process and the shape of the OCV profile changes obviously 

at the deep aging stage caused by active material loss. In [17–20], based on the analysis of OCV curve 

changes, the capacity of LiFePO4 is calculated by an incremental capacity analysis (ICA) to the 

quasi-OCV curve that is obtained by a discharge process with a tiny current. Besides the OCV, some 

other parameters can also be used as the indicators. As introduced in [21], the diffusion capacitance of 

an ECM is taken as the indicator and a correlation between the diffusion capacitance and battery 

capacity is established. 
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For a joint estimation for SOHP and SOHE, the internal resistance can be taken as the health 

indicator, and the SOHE will be estimated by establishing a correlation between the capacity loss and 

resistance increase [2]. However, the resistance values are very sensitive to temperature changes and 

the effects of temperature on the resistances are not sufficiently discussed in the existing methods.  

In addition, the correlation between the capacity loss and resistance increase always lacks of 

reasonable explanations in terms of chemical and physical meanings. 

In this paper, a joint estimation method of SOHP and SOHE for EVs over a wide temperature range 

is proposed with a health indicator of battery ohmic resistance. In Section 2, two mechanistic models 

are established to describe the relationships for the resistance changes against temperatures and 

capacity loss, respectively, and a systematic estimation procedure is proposed. Based on the 

experiments designed in Section 3, the coefficients of the models are determined by fitting the data of 

characteristic experiments, and the accuracy of the new method is verified with the validation 

experiments in Section 4. Finally, conclusions are drawn in Section 5. 

2. Models and Methods 

2.1. The Relationship between Resistance Increase and Capacity Loss 

In the aging stage of batteries used in EVs (i.e., capacity loss <20%), the capacity loss (Qloss) is 

mainly caused by the loss of lithium inventory with the formation and thickening of the solid 

electrolyte interphase (SEI) film [4,22], so the capacity loss will be accompanied by the SEI film 

resistance (RSEI) increase. 

As studied in [23,24], the SEI film mainly consists of two kinds of components: inorganic and 

organic substances. If the proportion of inorganic and organic substances within the new SEI film are 

marked by m and (1 − m), and their resistances are marked as RSEI-M and RSEI-N, respectively, the 

correlation between resistance increase and capacity loss can be described as Equation (3). Herein, 

RSEI-M and RSEI-N are proportional to respective capacity loss by default, respectively; the subscript “a” 

indicates the change caused by aging; and the proportional coefficients of aM and aN are the 

characteristic coefficients dependent on materials: 

 SEI,a SEI-M,a SEI-N,a M loss N loss1dR dR dR a mdQ a m dQ        (3)

With the battery aging, the contents of two kinds of the components will change accordingly.  

On the one hand, with battery aging, SEI film continually grows from the graphite anode surface and 

its thickness accordingly increases [25,26]. On the other hand, for the SEI film, the dense inner layers 

close to the graphite are mainly composed of inorganic substances, and the porous outer layers close to 

the electrolyte mainly consist of organic substances [24,27]. That means, with the capacity loss due to 

SEI growth, the proportion of organic substances in the new forming SEI film gradually decreases and 

that of inorganic substances correspondingly increases. When we suppose m is proportional to Qloss 

(i.e., m = bQloss), as expressed in Equation (4), the correlation between the Qloss and RSEI can be 

obtained by integrating the Equation (3). Wherein, a1, a2 and C are the unknown coefficients in 

derivation process: 
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Because a part of SEI film has formed in prior formation cycles before the cells leave the factories, 

the current SEI film will contain two parts: an initial SEI layer (corresponding to RSEI,0 and Qloss,0) and 

a further growth SEI layer (corresponding to ΔRSEI,a and ΔQloss). Thus, Equation (4) can be 

transformed to Equation (5): 

     2

SEI,a SEI,0 1 loss loss,0 2 loss loss,0R R a Q Q a Q Q C          (5)

Simplifying Equation (5), we can get the function correlation between the resistance increase and 

capacity loss as shown in Equation (6): 
2

SEI,a 1 loss 2 lossR Q Q       (6)

However, the RSEI cannot be independently identified and will be included in the on-line 

identification result of the Ro, which is always estimated using the online measured voltage and current 

data. According to the EIS analysis results presented in [28,29], the Ro mainly corresponds to the 

internal resistances relevant to fast electrochemical processes, containing the resistances of 

electrolyte/electrical transport in bulk phase (Rbulk), SEI film resistance (RSEI), and the resistance of 

faradaic charge transfer at the electrode interphase (Rct), and can be approximately expressed as 

Equation (7): 

o bulk SEI ctR R R R    (7)

Because Rbulk and Rct nearly remain unchanged in this aging stage [28], it can be concluded that the 

increment of Ro is almost equal to that of RSEI, as expressed in Equation (8): 

o,a bulk,a SEI,a ct,a SEI,aR R R R R          (8)

Based on the Equation (8), the function relationship of ΔQloss with respect to ΔRo,a, which is the 

inverse function of Equation (6), can be expressed by Equation (9). Wherein, the coefficients α1 and α2 

will be determined by experimental data: 

2 2
2 2 1 SEI,a 2 2 1 o,a

loss
1 1

4 4

2 2

R R
Q

     
 

       
    (9)

2.2. The Effects of Temperature on Internal Resistances 

The effects of temperature on different kinds of internal resistances are different, so different 

internal resistances may have different changing trends. For the bulk and SEI resistance (i.e., Rbulk and 

RSEI), the resistance increment is a near linear function of temperature change; however, for the charge 

transfer resistance (i.e., Rct), the resistance value is inversely proportional to the electrochemical 

reaction rate and the reaction rate follows an Arrhenius dependence with temperature (T) [30]. 

Therefore, the correlation between the ohmic resistance change (ΔRo,t) and T can be deduced as 

Equation (10). Wherein, the subscript “t” indicates the change caused by ambient temperatures;  
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the coefficients κ1–κ4 will be determined by experimental data; and Tstd indicates the nominal 

temperature which is set to 30 °C in this paper: 
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This new mechanistic model can be used to eliminate the effects of temperatures on the ohmic 

resistance, which ensures that the SOH estimation can be used over a wide temperature range in 

practical operations. 

2.3. The Parameter Identification Method 

As shown in Figure 1, an ECM employing a resistance in series with a parallel resistance and 

capacitance (R-RC), which is proved to be the best choice for pursuing the balance between the fitting 

effects and the computational efforts and most widely applied for battery state estimations [31,32],  

is chosen for on-line resistance identification in this study. Wherein, the OCV is used to express the 

internal voltage source of the battery model; Ro and Rp denote the ohmic resistance and polarization 

resistance, respectively; and Cp is the polarization capacitance. 

 

Figure 1. A resistance in series with a parallel resistance and capacitance (R-RC) model. 

The on-line internal resistance identification method requires determination with two steps: 

First, based on the chosen ECM, the terminal voltage of a cell can be expressed as Equation (11) [33]. 

Herein, the subscript “k” represents kth time step, and τp = RpCp: 
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t t
 

 

 
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 
 (11)

Separating the known and unknown variables of Equation (11) and rearrangement yield a linear 

expression about the parameter vector, as shown in Equation (12). Wherein, zk and φk are obtained by 

the measured data of the current and voltage at the sample points; and θk = [OCV, Ro,k + Rp,k, Ro,kτp,k, τp,k]T 

is the target vector to be determined: 
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Second, to identify the parameters in real time, a discrete-time filter is always needed. The recursive 

least-squares (RLS) algorithm with a forgetting factor is adopted in this study, which is very suitable 

for on-board applications due to its low computational efforts and memory consumptions.  

Refer to [34,35] for details of the RLS method and its generalization. The implementation of RLS 

algorithm with a forgetting factor is detailed in Table 1. Herein, Pk represents an estimation error 

covariance matrix; Kk indicates a gain matrix; and ^ represents an estimation value. 

Following the procedure in Table 1, the target vector θk can be easily determined, and the 

identification results of the parameters can be calculated as follows: 

(1) Initial the target vector θ0 and the covariance matrix P0; 

(2) For k = 1, 2, 3, …, after new measurements, zk and φk are available; 

(3) Update θk and Pk with the equations in Table 1; 

(4) Calculate the parameter values with Equation (13). 
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Table 1. Procedures of the recursive least-squares (RLS) for parameter identification. 

Initializations a Updates b 

0θ̂ 0 , 1
0 δP  

 1 1φ λ φ φk k k k k kK P P    

 1 1
ˆ ˆ ˆθ θ θ φk k k k k kK z 

     
  1φ λk k k kP K P

  
a δ is set to 10−3; b λ is a forgetting factor. 

2.4. State of Health (SOH) Estimation Procedure 

Based on the new models and parameter identification method presented above, a new SOH 

estimation procedure is shown in Figure 2. 
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Figure 2. The procedure of the State of Health (SOH) estimation method. 

The procedure is listed as follows: (1) on-line ohmic resistance identification: through the 

measurements of battery voltage and current, the ohmic resistance values can be identified on line 

using the RLS algorithm; (2) SOHP estimation: according to the measured ambient temperature, the 

ohmic resistance increment caused by various temperatures can be calculated by Equation (10), and 

then this increment is subtracted from the identified resistance, which is a resistance normalization 

process, so the normalized resistance can be used to reflect battery aging levels and estimate SOHP by 

Equation (2); (3) SOHE estimation: the capacity loss can be obtained by substitution of the normalized 

Ro increment into Equation (9), and then the SOHE can be calculated according to Equation (1). 

3. Experiment Design 

To determine the coefficients of the mechanistic models and verify the accuracy of the estimation 

method, the experiments are designed as follows. 

3.1. Experiment Object 

In this research, 32650-type LiFePO4/graphite cells (OptimumNano Energy Co. Ltd., Shenzhen, China) 

with the nominal capacity of 5 Ah were chosen as the research objects, and the upper and lower limit 

voltages of the chosen cells are 3.65 V and 2.5 V, respectively. 

3.2. Experiment Procedure 

In this study, the experiments consist of two main parts: the aging cycles and the performance tests. 

In addition, the performance tests can be subdivided into the characteristic tests and the validation 

tests, as shown in Figure 3. 
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Figure 3. The procedure of experiments. 

To shorten the period of the aging experiments, the aging cycles were performed at the ambient 

temperature of 60 °C with the current of 1 C-rate. The performance tests were performed every 100 

aging cycles, which contain three parts: a static capacity test, an internal resistance test, and a 

validation test. Herein, the capacity test was performed with a CC-CV (constant current-constant 

voltage) charge and a constant discharge with the current of 1 C-rate at a normal temperature of 30 °C; 

the HPPC tests, as the resistance tests, were conducted at four different temperatures (in the order of  

50 °C, 30 °C, 10 °C, and −10 °C); and Federal Urban Driving Schedule (FUDS) tests taken as 

validation experiments were performed at set temperatures of 50 °C, 30 °C, 10 °C, and −10 °C, 

respectively. 

3.3. Experiment Equipment 

All the tests were performed with a channel of the Arbin instruments’ BT2000 test bench (Arbin 

Instruments Co. Ltd., College Station, TX, USA), which has a voltage measurement accuracy of ±0.01% 

and a current measurement accuracy of ±0.02% on the full-scale value of both ranges (18 V, ±10 A for the 

medium current range and ±100 A for the high current range). Moreover, the cell ambient temperatures 

were controlled within ±2 °C by incubators in all tests. 

4. Results and Discussion 

4.1. Performance Test Results 

The capacity values of the battery obtained by the static capacity tests are shown as follows in  

Table 2. 
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Table 2. Cell capacity and capacity loss at different aging states. 

Aging state Capacity (Ah) Qloss (Ah) 

Fresh 4.992 0 
100 cycles 4.762 0.23 
200 cycles 4.378 0.614 
300 cycles 3.754  1.238 

The reference values of ohmic resistance are identified with the least-squares method applied to the 

voltage and current data from the pulse current experiments of HPPC tests, and the results at different 

aging levels and temperatures are shown in Figure 4. For brevity, the application process of the 

least-squares fit is omitted here. 

From Figure 4, it can be observed that the Ro values increase with the battery aging and are nearly 

identical in the SOC range from 0.4 to 0.6. Thus, the Ro values at around SOC = 0.5 are taken as the 

indicators. This selection not only ensures the resistance values are hardly affected by the SOC 

estimation errors at an acceptable level (e.g., less than ±5%) but also makes it possible to implement 

the algorithm in different types of EVs (e.g., general SOC ranges of 0.2–1 for BEVs and 0.3–0.7 

for HEVs). 

 

Figure 4. Ro values of different aging cycles at various temperatures: (a) 50 °C; (b) 30 °C; 

(c) 10 °C; (d) −10 °C. 

The values of Ro at around SOC = 0.5 are plotted against different temperatures and aging states in 

Figure 5. From this figure, it can be observed that Ro increases with battery ages and temperature 

decreases. To verify the reliability of the mechanistic models and determine the coefficients of the 
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proposed models, the specific correlations of Ro increment with respect to capacity loss (ΔRo,a vs. Qloss) 

and temperature (ΔRo,t vs. T) will be further investigated in the next subsection. 

 

Figure 5. Ro values with different temperatures at different aging levels. 

4.2. Model Coefficient Determining 

First, as a part of Figure 5, the capacity loss is plotted against resistance increase at the nominal 

temperature by discrete points in Figure 6. Based on these discrete data, the coefficients of Equation (9) 

are fitted with the least-squares method and the fitting results are given as Equation (14): 

2 3
2 2 1 o,a 1

loss 4
1 2

4 4.154 10
, where

2 2.623 10

R
Q

   
 





        
 

 (14)

Additionally, the fitted curve is also plotted in Figure 6. From the fitting results, it can be observed 

that the experiment results are highly consistent with the predictions of the mechanistic model for the 

relation between capacity loss and resistance increase (i.e., Equation (9)). Wherein, the small fitting 

errors are probably caused by the simplification to the complex components of SEI film. 

 

Figure 6. The relationship between ΔRo,a and Qloss. 
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Second, the relationship between the ohmic resistance increment (relative to the nominal value at  

30 °C) and temperature is plotted in Figure 7 with discrete points. 

 

Figure 7. The relationship of ΔRo,t with temperature. 

The unknown coefficients of Equation (10) are determined by a least-squares fit of these discrete 

data, and the results are shown as Equation (15). The fitted curve is also plotted in Figure 7 and shows 

that the incremental changes in ohmic resistance along temperatures follow an exponential 

relationship, which agrees well with the predictions of the mechanistic model reflecting the 

temperature effects. 

 3

12
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3
2κ 273

o, 1 2 4 2
3

5
4

κ 7.602 10

κ 5.818 10
κ κ κ , where

κ 2.236 10

κ 7.928 10
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tR T e
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

  


     
 

   

 (15)

4.3. Validating Results 

In consideration of the effects of ambient temperatures on the estimation algorithm, the FUDS 

working condition experiments, which were performed on the cells under four different conditions of 

fresh state/50 °C, 100 aging cycles/30 °C, 200 aging cycles/10 °C, and 300 aging cycles/−10 °C, are 

chosen to verify the estimation accuracy of the algorithm. Based on the collected data of terminal 

voltage and load current, the ohmic resistance is identified by applying the RLS algorithm with a forgetting 

factor to Equation (12) with the initial values of θ0 = [0 0 0 0]T and the forgetting factor λ = 0.999.  

The identified results are shown by solid curves in Figure 8, and compared with the reference values 

obtained from off-line HPPC tests. 
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Figure 8. The comparison of the identification and reference values of Ro: (a) fresh values 

at 50 °C; (b) the values after 100 cycles at 30 °C; (c) the values after 200 cycles at 10 °C; 

(d) the values after 300 cycles at −10 °C. 

From Figure 8, it can be found that there are only small differences between the identified results and 

the reference values in all four tests, suggesting a good robustness of the identification method at different 

temperatures and aging levels. Wherein, the estimated Ro values are always slightly less than the reference 

values of the HPPC tests, probably because the cell’s inner temperature will be slightly higher than the 

ambient temperature under continuous operation conditions, especially for a lower ambient temperature. 

Based on the ohmic resistance identification results, the SOHP and SOHE estimation results are 

obtained by following the procedure presented in Section 2.4, and are shown in Table 3. Table 3 shows 

that the on-line SOHP and SOHE estimation errors of the new method are less than ±5% at various 

ambient temperatures and aging states, which indicates that the proposed approach has good accuracy 

and reliability for on-board application. 

Table 3. Validation results for state-of-health (SOHP and SOHE). 

Aging 
cycles 

Temperature 
(°C) 

Measured 
SOHP (%) 

Estimated 
SOHP (%) 

Measured 
SOHE (%) 

Estimated 
SOHE (%) 

0 50 100.0 100.6 100.0 100.6  
100 30 98.4 99.8 95.4 98.7 
200 10 92.2 94.7 87.7 91.8 
300 −10 71.3 70.9 75.2 76.7 

5. Conclusions 

This paper proposes an on-line SOH estimation method for lithium-ion batteries applied in EVs. 

The presented SOH estimation method has three characteristics: (1) joint estimation of SOHP and 
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SOHE; (2) eliminating ambient temperature effects; and (3) low computational efforts for on-board 

application. In this study, the establishment of two mechanistic models is confirmed to be reliable and 

accurate by the battery characteristic tests, and the coefficients of the models are determined by a curve 

fit. Additionally, the proposed method has been verified by the validation experiments, and the results 

show good accuracy and wide applicability at various ambient temperatures. 
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R-RC a resistance in series with a parallel resistance and capacitance 
SEI solid electrolyte interphase 
SOC state-of-charge 
SOH state-of-health 
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