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Abstract: This paper considers the problem of distributed frequency regulation based on 

the consensus control protocol in smart grids. In this problem, each system component is 

coordinated to collectively provide active power for the provision of ancillary frequency 

regulation service. Firstly, an approximate model is proposed for the frequency dynamic 

process. A distributed control algorithm is investigated, while each agent exchanges 

information with neighboring agents and performs behaviors based on communication 

interactions. The objective of each agent is to converge to a common state considering 

different dynamic load characteristics, and distributed frequency control strategy is 

developed to enable the agents to provide active power support. Then, the distributed 

proportional integral controllers with the state feedback are designed considering the 

consensus protocol with topology ࣡. The theory of distributed consensus protocol isfurther 

developed to prove the stability of the proposed control algorithm. Whenproperly 

controlled, the controllers can provide grid support services in a distributed manner that 

turn out the grid balanced globally. Finally, simulations of the proposed distributed control 

algorithm are tested to validate the availability of the proposed approach and the performance 

in the electrical networks. 

Keywords: distributed control; consensus protocol; multi-agent system; dynamic loads; 

frequency regulation 

 

OPEN ACCESS



Energies 2015, 8 7931 

 

 

1. Introduction 

Inspired by the Smart Grid, electrical power systems are undergoing a global transformation in 

structure and functionality to increase efficiency and reliability. Such transformations are expanded by 

the introduction of new technologies such as advanced communication and control, integration of new 

flexible loads and new electricity generation sources. In smart electrical power networks, proper 

coordination and control of generation and load resources provide flexible frequency regulation services 

to enhance efficiency and reliability in smart grids. The distributed control strategies for coordination 

of distributed energy and load resources are proposed to provide active power for the provision of 

ancillary frequency regulations. 

Traditionally, centralized frequency control is implemented and operated at different timescales in 

dispatching centering [1]. Automatic generation control (AGC) and governor control are adjusted to 

maintain the system frequency tightly around the nominal value when these distributed energy and load 

resources fluctuate uncertainly. The objective of the frequency controller is to keep the system frequency 

and the inter-area power transmission to the scheduled values during normal conditions, and when the 

system is subject to disturbances or sudden changes [2]. The primary frequency control operates at a 

timescale in minutes or so, and adjusts the operating points of governors in a centralized mode to drive 

the frequency back to its reasonable and secure value. Kothari et al. [3] have proposed an optimal PI 

controller by using area control error (ACE) stability control techniques. Malik et al. [4] have developed 

a generalized approach based on dual-mode discontinuous control and variable structure systems.  

Moon et al. [5] have devised a PID frequency controller to realize noise-tolerable differential control 

problems in power systems. Adaptive PI controllers are also proposed to regulate the power supply based 

on the self-tuning regulator. Yamashita et al. [6] have devised a method of designing a multi-variable 

self tuning-regulator for frequency problem on load demand. Khodabakhshian et al. [7] have proposed a 

new designed PID controller for automatic generation control in power systems. 

Furthermore, decentralized control techniques have been used to deal with frequency control 

problems on the generation side. The robust decentralized controllers are designed independently, 

mainly based on the uses of a reduction model observer and a PI/PID controller. Yang et al. [8] have 

transformed the decentralized frequency controller design problem into an equivalent problem of 

controller design for a multi-port control system. Liu et al. [9] have proposed a new nonlinear constraint 

predictive control algorithm to guarantee the frequency dynamic stability. The design and operation of 

each local controller requires only its local states, and the errors between the outputs of two physical 

connected controllers are used to adaptively correct for the interactions from a global approximation 

model. Ilic et al. [10] have investigated a decentralized multi-agent frequency control system based on 

power communication technology. A robust load frequency controller is proposed to use genetic 

algorithms and linear matrix inequalities [11]. Nowadays, model free and data processing techniques 

also have been studied in control power generations to dump oscillations [12]. Some relative works 

are also proposed in literature [13] on the techniques of intelligent frequency control methods. It shows 

that decentralized control methods might provide efficient control with self-healing characters [14]. 

Recently, the distributed cooperative control manner for multi-agent systems has attracted 

increasing attention due to their flexibility and networked computational efficiency in many areas such 

as mobile robots, vehicle and traffic control. One kind of basic and challenging problem in distributed 



Energies 2015, 8 7932 

 

 

cooperative control is the consensus problem for multi-agent systems. The coordination and 

synchronization process necessitates that each agent could exchange information with neighboring 

agents according to some restricted communication protocols and distributed algorithms [15,16].  

Ilic et al. [17] have proposed a fully distributed frequency control algorithm for electrical power systems. 

A push-sum algorithm is used to adapt to the demand [18], and a modified consensus algorithm 

including weights in the network is proposed in distributed control [19]. Andreasson et al. [20] have 

studied the consensus algorithm for frequency control considering agents with system dynamics.  

Zhao et al. [21] have designed continuous distributed load control for primary frequency regulation 

and the Lyapunov function method is used to prove the convergence of the analytic model. It shows 

that distributed control methods might provide efficient control with self-healing characters. If all the 

agents on a network converge to a common state, we could make a decision that the consensus 

problem has been solved and the common state is called the consensus state of the agents. 

In smart grids, new hierarchical model of frequency adjustment and the distributed control techniques 

are proposed considering distributed communication protocols [2]. The cooperative frequency control 

strategy is executed to achieve a primary and secondary frequency recovery using the optimized average 

consensus algorithm. Furthermore, utilizing load side control is an appealing alternative to control the 

system frequency on the demand side, which can reduce the dependency of grids on the expensive 

generation side controllers. Remarkably, it emphasizes that such frequency adaptive loads would allow 

the system to accept more readily a stochastically fluctuating energy source. It can be seen that the 

proposed distributed control has possible benefits over centralized frequency control [22]. 

Compared with the traditional centralized power regulation strategies, the distributed controllers 

have the following features: (i) The pressure of communication becomes more distributed between 

various distributed controller devices; (ii) The distributed resources can take decisions collectively 

from the network to achieve better quality and efficiency. While there are many studies and 

discussions in frequency control, there is not much analytic study that relates the behavior of the 

distributed frequency controllers with the dynamic behavior of the loads in smart grids. 

In this paper, we further focuses on the distributed primary frequency control on these energy 

resources and demand responses in smart grids. Considering the model of the power system dynamics 

by the swing equations, we apply and further develop the theory of distributed consensus to realize the 

stability of the proposed algorithm. The agents can reach an agreement on certain frequency deviations 

by sharing information locally with their neighbors. The analytic model and simulations exhibit that 

the proposed consensus protocol can attenuate the time-varying oscillations and lead the agents to 

steady state values for frequencies after disturbances. 

The main structure and the content of this paper are organized as follows. In Section 2 (Consensus 

for Agents by Distributed Integral Action), we introduce the mathematical notation about the 

consensus protocol for the agents. In Section 3 (Network Model with Load Dynamics), we analyze the 

formulation of the frequency dynamic model and the consensus for agents. In Section 4 (Distributed 

Frequency Control Algorithm), based on the developed consensus protocol, we propose a distributed 

control algorithm for frequency control of electrical power systems, and compare the performance with 

traditional control algorithms. Simulation results of a two-area four-machine system using the 

proposed distributed control scheme are presented and discussed in Section 5 (Simulations). Finally, 

the conclusion of the distributed frequency control regulation is given in Section 6 (Conclusions). 
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2. Consensus for Agents by Distributed Integral Action 

One basic and challenging problem in cooperative control is the consensus problem. It is assumed 

that there are multiple agents on a network. This network is usually modeled by a graph consisting of 

nodes (representing the agents) and edges (representing the interactions between agents). If all the 

agents on a network converge to a common state, we say that the multi-agent system solves a consensus 

problem or has a consensus property, and the common state is called group decision value or consensus 

state. This network is usually modeled by a graph consisting of nodes (representing the agents) and 

edges (representing the interactions between agents). 

The proposed control architecture is illustrated including the distributed coordination frequency controller 

and the meshed electrical network describing the exchange of information among the multi-agents. For 

the application of frequency control in the electrical network, a connected and undirected graph ࣡ of 

order nis considered with the set of nodes ࣰ  = {1, ..., n}, set of edges ࣟ⊆ࣰ ൈ ࣰ , and a weighted 
adjacency matrix ܣ ൌ ሾܽ௜௝ሿ with nonnegative adjacency elements ܽ௜௝. In the undirected graph ࣡, the 

Laplacian matrix ࣦ holds that ࣦ ൌ ࣜሺ࣡ሻ்ࣜሺ࣡ሻ, where ࣜሺ࣡ሻ means the vertex-edge adjacency matrix 

of ࣡.ܫ௡	denotes the identity matrix of dimension n. 

Consider the agents with second-order dynamics: 

ە
ۖ
۔

ۖ
ۓ ሶ௜ݎ ൌ ௜ݒ

ሶ௜ݒ ൌ ௜ݑ

௜ݑ ൌ െ ෍ሺβሺݎ௜ െ ௝ሻݎ ൅ αሺݒ௜ െ ௝ሻሻݒ
௝ఢࣨ೔

൅ ݀௜
 (1)

where ݎ௜ ∈ Թ୬ and ݒ௜ ∈ Թ୬ are the position and velocity states of the ith agent(node), ݑ௜ is the system 

input,α ∈ Թା	and	β ∈ Թାare fixed parameters, and ݀௜ ∈ Թ is a disturbance. ௜ࣨ denotes the set formed 

by all agent nodes connected to the node i. 

Consider the linear coordinate change ݖ ൌ መ்ܵݓ,ݒ ൌ መ்ܵݎ, where መܵ ൌ ቂ ଵ
√୬
1୬ൈଵ	Sቃ, S is a matrix such 

that መܵ is an orthonormal matrix. Thus the system dynamic (1) can be rewritten as: 

ሶݓ ൌ ݖ

ሶݖ ൌ ቈ
0 0ଵൈሺ௡ିଵሻ

0ሺ௡ିଵሻൈଵ െβ்ܵܵܮ
቉ݓ ൅ ቈ

0 0ଵൈሺ௡ିଵሻ
0ሺ௡ିଵሻൈଵ െα்ܵܵܮ

቉ ݖ ൅ ൥
1
݊
1ଵൈሺ௡ሻ

்ܵ
൩ ݀ (2)

We can eliminate the uncontrollable state w1 and z1, thus obtaining the realization of the dynamic 

system by defining the new coordinates ݓᇱ ൌ ሾݓଶ, … , ᇱݖ ௡ሿ் andݓ ൌ ሾݖଶ, … ,  :௡ሿ்ݖ

ቂݓሶ ′
′ሶݖ
ቃ ൌ ൤

0ሺ௡ିଵሻൈሺ௡ିଵሻ ሺ௡ିଵሻܫ
െβ்ܵܵܮ െα்ܵܵܮ

൨ ቂݓ′
′ݖ
ቃ ൅ ൤

0ሺ௡ିଵሻൈଵ
்ܵ݀

൨ (3)

Since ்ܵܵܮ	is invertible, the states ݓᇱᇱ and ݖ′′ can be defined to consider the disturbance matrix transform. 

ቂݓ′′
′′ݖ
ቃ ൌ ቂݓ′

′ݖ
ቃ െ ቎

0ሺ௡ିଵሻൈଵ
1
α
ሺ்ܵܵܮሻିଵ்ܵ݀

቏ (4)

so in the new coordinates the system dynamics become: 
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ቂݓሶ ′′
′′ሶݖ
ቃ ൌ ൤

0ሺ௡ିଵሻൈሺ௡ିଵሻ ሺ௡ିଵሻܫ
െβ்ܵܵܮ െα்ܵܵܮ

൨
ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ

≜஺ᇲᇲ

ቂݓ′′
′′ݖ
ቃ 

(5)

The characteristic polynomial of A'' is given by det(ρଶIሺ௡ିଵሻ ൅ ሺαρ ൅ βሻ்ܵܵܮ).Compared with the 

characteristic polynomial det(sܫ ൅ ௜ݏwe note that the eigenvalues satisfy with solutions െ ,(ܵܮ்ܵ ൏ 0 

by lemma 10 in [23]. Since ்ܵܵܮ is full-rank, we obtain that the eigenvalues of A'' could satisfy 

det(ρଶ ൅ αρݏ௜ ൅ βݏ௜ ) = 0 with solutions ρ ∈ ԧି by the Routh-Hurwitz stability criterion. Using the 

coordinates’ shifts, it shows that the agents can converge to a common state and the consensus is 

reached for any α,β ∈ Թା. 

3. Network Model with Load Dynamics 

In the smart grid, the power system can be modeled by a graph ࣡ ൌ ሺࣰ, Ԫሻ. There are two typical 

kinds of buses in the network: generator buses and load buses. The generator buses can convert the 

mechanical power into electric power and transmit them along the network. Then, the frequency 

dynamics on an ith synchronous generator can be modeled as follows: 

ቊ
δሶ ௜ ൌ ω௜ െ ω௥௘௙

௜ܶωሶ ௜ ൌ ௠ܲ௜ െ ௘ܲ௜ െ ௗܲ௜ െ ௜ω௜ܦ ൅ ௜ݑ
∀݅ ∈ ࣰ (6)

where δ௜ is the phase angle of bus i, ω௜ is the angular velocity of bus i, ௜ܶ and ܦ௜ are the inertia and 

damping coefficient, ௠ܲ௜ is the power injection at bus i, ௘ܲ௜ is the outputactive power of the generator i, 

ௗܲ௜ is the load at bus i, ݑ௜ is the mechanical input from frequency controller i. Let ௠ܲ௜
଴ , ௘ܲ௜

଴ , ௗܲ௜
଴  denote 

the initial uncontrolled operating point where ௠ܲ௜
଴ െ ௘ܲ௜

଴ െ ௗܲ௜
଴ െ ௜ω௜ܦ

଴ ൌ 0. 

In general, load dynamics may diverge with the bus voltage magnitude (which is assumed fixed) and 

frequency. We distinguish between three types of loads, static controllable loads, frequency sensitive dynamic 

loads and uncontrollable loads. We assume that the frequency sensitive dynamic loads may increase linearly 

with frequency oscillations, and model these loads by ௗܲ௜ሺݐሻ ൌ ௗܲ௜
଴ ൅ ∆ ௗܲ௜ሺݐሻ ൌ ௗܲ௜

଴ ൅  ௗ௜ܭ ௗ௜∆ω௜, whereܭ
represents the load consumption due to the frequency deviation. Considering ௠ܲ௜ሺݐሻ ൌ ௠ܲ௜

଴ ൅ ∆ ௠ܲ௜ሺݐሻ, 

௘ܲ௜ሺݐሻ ൌ ௘ܲ௜
଴ ൅ ∆ ௘ܲ௜ሺݐሻ, the deviation ∆ ௘ܲ௜ሺtሻ from the adjacent branch flows follows the linearized 

dynamic ∆ ௘ܲ௜ሺݐሻ ൌ ∑ ሺ∆δ௜ݏ݋௜௝ܿܤ
଴ െ ∆δ௝

଴ሻሺ∆δ௜ െ ∆δ௝ሻ௝ఢࣨ೔
, where ܤ௜௝ ൌ

|௏೔||௏ೕ|

௫೔ೕ
 is a constant 

determined by the operating bus voltages and the line reactance. We assume that the frequency 

deviations are small for all the buses ݅ ∈ ࣰ and the differences between phase angle deviations are 

small across all the links in Ԫ. Then, the deviation satisfy: 

൞
∆δሶ ௜ ൌ ∆ω௜

௜ܶ∆ωሶ ௜ ൌ ∆ ௠ܲ௜ െ ෍ ൫∆δ௜ݏ݋௜௝ܿܤ
଴ െ ∆δ௝

଴൯൫∆δ௜ െ ∆δ௝൯
௝ఢࣨ೔

െ ௗ௜∆ω௜ܭ െ ௜∆ω௜ܦ ൅ ݅∀௜ݑ ∈ ࣰ (7)

Let us consider the power system model by a graph ࣡ ൌ ሺࣰ, Ԫሻ. Each energy resource node here is 

denoted by each agent, which is assumed to obey the linearized swing equation. The phased angle and 

the angular velocity of the agent i is δ௜  and ω௜ . By defining the state vectors δ ൌ ሾδଵ, … , δ௡ሿ and  

ω ൌ δሶ ൌ ሾωଵ, … , ω௡ሿ, we may rewrite (7) in state-space form as 
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൤∆δ
ሶ

∆ωሶ
൨ ൌ ൤

0௡ൈ௡ ௡ܫ
െࣦܯ௞ െܭܯௗ െܦܯ൨ ቂ

∆δ
∆ω

ቃ ൅ ൤
0௡ൈଵ
∆ܯ ௠ܲ

൨ ൅ ቂ0௡ൈଵ
ݑܯ

ቃ (8)

where ܯ ൌ ݀݅ܽ݃ ቀ ଵ
భ்
, … , ଵ

೙்
ቁ ൌ ݀݅ܽ݃ሺܯଵ,… ௡ሻܯ, ௗܭ , ൌ ݀݅ܽ݃ሺܭௗଵ, … , ௗ௡ሻܭ ܦ , ൌ ݀݅ܽ݃ሺܦଵ, … , ௡ሻܦ ,  

ࣦ୩  is the weighted Laplacian with agents edge weights ݇௜௝ , ݇௜௝ ൌ ሺ∆δ௜ݏ݋௜௝ܿܤ
଴ െ ∆δ௝

଴ሻ , 	

∆ ௠ܲ ൌ ሾ∆ ௠ܲଵ, … , ∆ ௠ܲ௡ሿ் ݑ , ൌ ሾݑଵ, … , ௡ሿ்ݑ . The model (8) illustrates the power system dynamic 

behaviors. The system operates in an equilibrium point state where all frequency deviations are 

constant over time. 

4. Distributed Frequency Control Algorithm 

In this section, we design a distributed frequency controller based on the second-order consensus 

algorithm, where each agent measures its neighbors state information and integrates the relative 

differences. Compared with the traditional central controller, the distributed frequency controller 

solves the frequency control problem by several agents cooperatively, which results in better 

performance when an islanding network occurs or central signals are unavailable. 

To control the agents reaching the consensus states, the controller of agent i from its adjacent agent 

j is assumed to be given by: 

௜௝ݑ ൌ െα൫∆ω௜ െ ∆ω௝൯ െ βሺ∆δ௜ െ ∆δ௝ሻ (9)

We obtain a state feedback ݑ௜ which is designed based on a distributed protocolwith topology ࣡. 

The distributed frequency controller can be designed as follows: 

௜ݑ ൌ െ ෍ ቀα൫∆ω௜ െ ∆ω௝൯ ൅ β൫∆δ௜ െ ∆δ௝൯ቁ∀݅ ∈ ࣰ
௝ఢࣨ೔

 (10)

The protocol asymptotically solves the consensus problem when there exists an asymptotically stable 

equilibrium for all agent nodes. Then Equation (8) under the distributed Equation (10) can be given as: 

൤∆δ
ሶ

∆ωሶ
൨ ൌ ൤

0௡ൈ௡ ௡ܫ
െࣦܯ௞ െܯβܫ௡ࣦ௞ െܭܯௗ െܦܯ െܯαܫ௡ࣦ௞

൨
ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ

≜஺

ቂ∆δ
∆ω

ቃ ൅ ൤
0௡ൈଵ
∆ܯ ௠ܲ

൨ 
(11)

It is easy to see that the characteristic equation of A can be given by 0 = det((ݏଶ ൅ ݏௗܭܯ ൅
௡ܫ(ݏܦܯ ൅	ሺαܯݏ ൅ܯ ൅ βܯሻࣦ௞). Let ഥ݉ ൌ ݉݅݊

௜
௜ܯ , ത݇ ൌ ݉݅݊

௜
ௗ௜ܭ  and ݀̅ ൌ ݉݅݊

௜
௜ܦ . We may rewrite: 

ௗܭܯ ൌ ഥ݉ ത݇ܫ௡ ൅ ᇱܭ , and ܦܯ ൌ ഥ݉݀̅ܫ௡ ൅ ᇱܦ , where ܭᇱ ᇱܦ, are diagonal matrix with positive entries 

respectively. We now define the matrix ܣᇱ ≜ ൤
0௡ൈ௡ ௡ܫ

െ ഥࣦ݉௞ െ ഥ݉βܫ௡ࣦ௞ െ ഥ݉ ത݇ܫ௡ െ ഥ݉݀̅ܫ௡ െ ഥ݉αܫ௡ࣦ௞
൨ .  

The eigenvalues of ܣᇱ are given by det ቀ൫ݏଶ ൅ ݏ ഥ݉ ത݇ ൅ ݏ ഥ݉݀̅൯ܫ௡ ൅ ሺݏ ഥ݉α ൅ ഥ݉ ൅ ഥ݉βሻࣦ௞ቁ. By noticing 

that the characteristic equation of ࣦ௞: 0=det(ࣦ௞ െ ௜ߣ	௡), whereܫ௜ߣ ൒ 0, we can obtain the equationݏଶ ൅
ሺݏ ഥ݉α ൅ ഥ݉ ൅ ഥ݉βሻߣ௜ ൅ ݏ ഥ݉൫ത݇ ൅ ݀̅൯ ൌ 0 . It shows that s must satisfy this equation for each ௜ߣ . 

Considering	α ൐ 0, ߚ ൐ 0, the above equation has all its solutions ݏ ൏ 0. In the translated coordinates, it 

follows that the matrix A is also Hurwitz. By simple calculation under the Routh-Hurwitz stability 

criterion, it can be seen that the aforementioned equation has its solutions ݏ ∈ ԧିif α, β ∈ Թା. 

Given an initial position ωሺ0ሻ ൌ ω଴ under the dynamics (11), the power system is proved to be 
stable, hence, the consensus of the frequency ݈݅݉௧→ஶ|ω௜ሺݐሻെω௝ሺݐሻ| ൌ 0, ∀݅, ݆ ∈ ࣰ is obtained.  
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With the adjustment of the controllable loads, their frequency regulation functions are distributed to 

each node agent. For the case in which ሺࣰ, Ԫሻ is a undirected and connected network, it guarantees that 

every trajectory converges to a compact set as ݐ → ∞ and ߱ሺݐሻ converges to an optimal point ߱∗ for 

the distributed frequency control. 

So, several important features are illustrated: 

1) Distributed Control. Each agent can make local decisions according to the local frequency and 

distributed coordination of power deviations. It allows a completely distributed solution and 

decreases the communication messages among the agents. A distributed control turns out to be 

gradually optimal with the coordination control of agents. 

2) Equilibrium Frequency Objective. The frequency deviations ߱ሺݐሻ of agents are synchronized to 

߱∗ no matter the transient dynamic difference. The new common frequency may be different 

from the initial frequency point when different disturbances occur. Mechanical power supplies 

and frequency-sensitive dynamic load consumptions are illustrated to drive the new system 

frequency regulation. Thus, an equilibrium frequency objective is proposed to converge to an 

optimal value. 

3) Solution Optimization. The consensus algorithm by distributed integral dynamic action is 

developed to prove the stability of the frequency control problem. In an undirected and connected 

network, the consensus of the agents can be realized with distributed proportional-integral 

controllers. It illustrates that the trajectory of each agent can converge to the optimal frequency 

point ߱∗ to rebalance power flows after a disturbance. 

5. Simulations 

As a test system, a two-area four-machine system is provided to test the distributed frequency 

control algorithm [1]. The single line diagram of this system is given in Figure 1a. It consists of two 

areas and each area has two equivalent generators. The topology of communication network describing 

the exchange of information between generator agents is given in Figure 1b, where agents A1, A2, A3 

and A4 represent generators G1, G2, G3 and G4. In this network, there are three pairs of agents, namely 

A1 and A2, A2 and A4, A4 and A3, and the agents in each pair share information with each other. 

 
(a) 

(b) 

Figure 1. Two-area four-machine system. (a) Single line diagram; (b) The topology of 

communication network. 
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In our proposed method, generators are coordinated to collectively provide active power for the 

provision of ancillary frequency regulation service. We select loads in Bus 11 as controllable dynamic 

loads to perform load characteristic. The proportion of regulating frequency is −3%–3% of the average 

loads in Bus 11. So Kd = 0.2 is defined to these controllable loads. These loads are controlled in 

frequency ancillary regulation and power damping. 

In the simulation, we use the Power System Toolbox in MATLAB/SIMULINK to test closed-loop 

responses of controlled nonlinear systems. The simulation step size is 0.001 s. Unlike the proposed 

analytic model, the simulation model is much more detailed and realistic, including two-axis transient 

generator model, AC nonlinear power flows, and non-zero line resistances. The simulation would show 

whether our analytic model and control algorithm is a suitable approximation of the simulation model. 

Considering multi-agent system with dynamics (8) and the communication topology given in  

Figure 1b, the Laplacian matrix is shown as ࣦ୩ ൌ ൦

െ0.3557 0.3557 0 0
0.3557 െ0.4228 0 0.0671
0 0 െ0.3744 0.3744
0 0.0706 0.3744 െ0.4450

൪ .  

The simulations are conducted for different cases including the small signal disturbances and the short  

circuit faults. In addition, the system with various parameters for each of the cases are simulated. 

These simulations aim to check the robustness of distributed controllers obtained with parameter 

variations. Meanwhile, simulations for the system with different operating conditions are implemented 

for illustrating the effectiveness of the controller. For all simulations, detailed dynamic responses are 

considered. For evaluating the performance of the proposed controller, the integral of absolute 

frequency deviation, J ൌ ଵ

୒
∑ ׬ ∆f୧

ଶሺtሻdt
த
଴

୒
୧ୀଵ , is selected as a performance index. Nis the total bus node 

number. The total time internal of τ for all simulations are taken as 20 s. 

5.1. A Small Signal Disturbance and Stability Analysis 

In this case, a small disturbance has occurred in the load demand. The system operates stability 

before the time of t = 0 s. At t = 0 s, there is a 1% step increase of the total demand. The frequency 

curve of the system for the case of without control is given in Figure 2. It shows that after the instant of 

load increase, the frequency of the system oscillates and the amplitude increases. Therefore, the system 

is prone to lose stability when small disturbance happens. In order to guarantee the system’s stability, 

proper control schemes are required. 

The proposed distributed frequency controllers are tested in the system operation. The power 

transmitted from area1 to area 2 through the tie-line for the cases of with and without the distributed 

frequency controller (DFC) are given in Figure 3. Without the DFC, the power oscillates and the 

amplitude increases largely. If frequency-sensitive load shedding control strategy is used in Bus 11, the 

curtailment of the loads is varied according to the frequency drop, which is fluctuated nearly from  

16 MW to 10 MW around. The curve shows that the trajectories of the tie-line power continue 

oscillating at a long time. With the distributed frequency control and no dynamic loads, thepower 

deviations converge to zero in less than 3 s. Considering DFC and dynamic load characteristics, the 

power oscillations could be damped faster. It can been seen that the performance of DFCs is more 

beneficial than load shedding control strategy. It also shows that considering dynamic loads’ characters 
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for frequency regulations, the power transportation and frequency values can increase more than 

distributed frequency regulations without dynamic loads. 

 

Figure 2. The frequency deviations without control in a small disturbance. 

 

Figure 3. The tie-line active power (MW) versus time (s) with a small disturbance for 

cases (i) no controller; (ii) load shedding control; (iii) DFC without dynamic loads; (iv) 

DFC considering dynamic loads. 

5.2. The Effects of Control Parameters of DFC on Frequency Stability 

Previous simulation results indicate that the proposed method is capable to reduce the oscillation.  

In this section, we will discuss the effects of the control parameters, α  and β , on power system 

frequency stability. 

We first set β as zero to observe the effects of parameters α with various values. In fact, β = 0 

means that the DFC cannot regulate the agents’ angular acceleration. Figure 4a gives the frequency 

curves of system with different controller parameter α. From the figure, we found that the increase of 

parameter α brings a positive effect on damping frequency oscillations. Obviously, the control with the 

ability to regulate agents’ angular acceleration would be more effective to damping frequency 

oscillations. Here we set α  = 20 to observe the effects of parameters βwith various values. The 

simulation results are given in Figure 4b. It shows that the system frequency oscillation is suppressed. 

In addition, a smaller value of β indicates a better control performance. 
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(a) (b) 

Figure 4. Comparisons of the frequency deviations under different controller parameters in 

a small disturbance (a) different α (β = 0); (b) different β (α = 20). 

The performance index of the system with different controller parameter α and β = 0 are calculated. 

The values of the performance index J and ݉ܽݔሼ∆ ଵ݂ሺݐሻሽ  are given in Table 1. In addition, the 

performance index of the system with different controller parameter β and α  = 20 are calculated.  

In Table 2, the values of J gradually increase with the increase of β. This is consistent with the 

observation that the largerβ has a larger ݉ܽݔሼ∆ ଵ݂ሺݐሻሽ. 

Table 1. The performance index under different controller parameters with the small 

disturbance (β = 0). 

Different Controllers ࡶ  1m ax ( )f t

NoDFC 0.0145 0.0492 

DFC,α = 1 0.0144 0.0491 

DFC, α = 5 0.0143 0.0485 

DFC, α = 10 0.0143 0.0481 

DFC,α = 20 0.0143 0.0477 

Table 2. Different performances using different controller parameters with the small 

disturbance (α = 20). 

Different Controllers ۸  1m ax ( )f t

NoDFC 0.0145 0.0492 

DFC,	β = 0.001 0.0144 0.0477 

DFC, β = 0.03 0.0157 0.0497 

DFC, β = 0.15 0.0215 0.0577 

DFC, β = 0.3 0.0287 0.0673 

It can be seen that frequency-sensitive loads have shown their frequency regulations in power 

networks. We also present simulation results below with different kinds of frequency-sensitive loads. 

Let Kd denote different kinds of frequency-sensitive loads, different consumption of the  
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frequency-sensitive loads are add on Bus 11. Thus, different kinds of frequency-sensitive load control 

performance are shown in Figure 5. In Figure 5a, the system has no controller, so that the different 

values of the parameter Kd cause different undamped oscillations. In Figure 5b, when the distributed 

frequency controllers are added, different values of the parameter Kd can contribute in the power 

balance and frequency regulation. It shows that these linear frequency-sensitive dynamic loads can 

rebalance power and resynchronize frequency after a disturbance. If Kd is larger, the load-side control 

time is often faster because of little time constants and evident load regulation solutions. 

(a) (b) 

Figure 5. Comparisons of the frequency deviations under different dynamic load 

characteristics in a small disturbance. (a) No DFC; (b) with DFC. 

5.3. A Short-Circuit Fault and Stability Analysis 

In order to obtain more information to investigate the distributed controller performance in 

improving the system stability, transient stability simulations are tested to evaluate the results.  

A three-phase short-circuit fault is applied at bus8 at t = 1 s, which is cleared after t = 200 ms. 

The power transmitted from area1 and area 2 after the fault is observed. As shown in Figure 6,  

with the distributed control, less fluctuation appears in the active power from area1 to area 2, and after 

a relatively short time (around 6 s) the power oscillation disappeared. It also shows that considering 

frequency-sensitive load regulation in a short circuit fault, the power transportation value could 

increase more than controllers without dynamic loads to improve system stability. 

We also observed the frequency oscillation after the short circuit fault cleared. The curves of 

frequency oscillation of the system for the case with various α and β = 0 are given in Figure 7a.  

From the figure, it can be found that the system could keep stable when α is larger than 5. This means 

that the proposed DFC improves the transient stability if proper α is selected. 

In Figure 7b, the curves of frequency oscillation after the short-circuit fault cleared for case with 

various β and α = 20 are provided. Observing these curves, we saw that the systems keep stable for all 

combination patterns of α and β. For different combination patterns of α and β, the performance of the 

system are quitesimilar, which indicate that parameter β  plays a less important role compared to 

parameter α. If α is larger, the damping control effect is more significant. In addition, a smaller value 

of β performs a better control effect in the long time. 
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Figure 6. The tie-line active power (MW) from area1 to area2 when a three-phase  

short-circuit fault occurs (i) no DFC; (ii) load shedding control; (iii) DFC without dynamic 

loads; (iv) DFC considering dynamic loads. 

(a) (b) 

Figure 7. Comparisons of the frequency deviations under different controller parameters 

with a short-circuit fault (a) different α; (b) different β (α = 20). 

Tables 3 and 4 provide the values of the performance indices for the cases of various combination 

patterns of parameters. These performance indices give the quantitative control evaluation values 

under different controller parameters. 

Table 3. The performance index under different controller parameters with a short-circuit 

fault (β = 0). 

Different Controllers ࡶ  1max ( )f t

NoDFC 0.3875 0.4230 

DFC,	α = 1 0.1132 0.2591 

DFC, α = 5 0.0771 0.2600 

DFC, α = 10 0.0765 0.2607 

DFC,α = 20 0.0799 0.2616 
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Table 4. Theperformance index using different controller parameters with a short-circuit 

fault disturbance (α = 20). 

Different Controllers ۸  1max ( )f t

NoDFC 0.3875 0.4230 

DFC, β = 0.001 0.0866 0.2645 

DFC, β = 0.03 0.0829 0.2602 

DFC, β = 0.15 0.0949 0.2558 

DFC, β = 0.3 0.1096 0.2730 

Figure 8a shows the phase plane diagram of frequency oscillation for the case without DFC.  

The agents’ frequencies oscillate and finally the system turns into being in an unstable state. Then,  

we install DFC to each of these agents. The phase plane diagram of frequency oscillation is given in 

Figure 8b. In the figure, the state of each agent deviates from its original state, and after a certain time, 

goes back to the original state. This means that the DFC can keep the frequencies stable in the case of 

short-circuit fault occurred. 

(a) (b) 

Figure 8. The phase plane diagram under (a) no DFC; (b) DFC with a short-circuit 

fault disturbance. 

In summary, it can be concluded that the distributed frequency control can provide a guarantee of 

more reliable and stable power supply in the power system. The controller improves both the  

steady-state and transient performance of frequency. Compared with the central frequency control,  

the distributed frequency control method is more secure and efficient. 

6. Conclusions 

This paper develops a distributed control method to decide the active injection of the frequency 

regulation in the electrical network. Each distributed resource in the network computes the amount of 

active power that it needs to provide. A distributed frequency controller is designed considering the 

dynamic load charateristics, where each bus controls its own frequency based on local measurements 

and information from neighbouring places. For the purpose of designing the coordination controller, 
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some dynamic assumptions are made, i.e., the difference between phase angles of buses are small, and 

the frequency sensitivities with respect to changes in the operating point do not change much for 

different operating points. The proposed consensus protocol can provide grid support services in a 

distributed manner and achieve the frequency regulation consensus. The simulations illustrate the 

availability to regulate frequency oscillations during the power dynamic process. 
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