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Abstract: This paper presents a novel grouping method for lithium iron phosphate 

batteries. In this method, a simplified electrochemical impedance spectroscopy (EIS) model 

is utilized to describe the battery characteristics. Dynamic stress test (DST) and fractional 

joint Kalman filter (FJKF) are used to extract battery model parameters. In order to realize 

equal-number grouping of batteries, a new modified K-means clustering algorithm is 

proposed. Two rules are designed to equalize the numbers of elements in each group and 

exchange samples among groups. In this paper, the principles of battery model selection, 

physical meaning and identification method of model parameters, data preprocessing and 

equal-number clustering method for battery grouping are comprehensively described. 

Additionally, experiments for battery grouping and method validation are designed. This 

method is meaningful to application involving the grouping of fresh batteries for electric 

vehicles (EVs) and screening of aged batteries for recycling. 

Keywords: battery grouping; fractional joint Kalman filter; equal-number; modified  

K-means clustering 
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1. Introduction 

With the development of EVs, battery technology has drawn more and more attention worldwide. 

Battery packs are core components of EVs; they are composed of hundreds or thousands of small cells 

joined by series-parallel connections. Owing to the subtle differences in the battery production process,  

the electric characteristics of the batteries are slightly different. The current flowing through the 

batteries will thus be inconsistent and the temperature inside the battery pack will be uneven when the 

inconsistent batteries are connected in parallel. In this case, battery use will accelerate their decay and 

some safety problems will occur [1]. In series connection, the potential of most batteries in the battery 

pack will not exhaust. Moreover, battery state monitoring and management, such as state of charge 

(SoC), state of health (SoH) estimation [2–4] and state of peak power (SoP) prediction [5,6],  

will become more and more difficult. Therefore, measures are necessary to guarantee the characteristics 

of the grouped batteries are as similar as possible. 

Numerous battery grouping methods have been reported in previous studies. Kim et al. proposed a 

battery voltage and SoC consistency screening method based on matching battery DC resistance [7,8]. 

Schneider et al. used a sorting method for aged batteries [9]. In that paper, the sorting steps for these 

batteries are designed. Fang et al. proposed a method for battery classification based on the thermal 

behavior during the charging process [10]. In the method, differences in battery surface temperature are 

used to evaluate the consistency of batteries. At present, battery capacity, AC resistance, electrochemical 

impedance spectroscopy (EIS), voltage curve, battery model parameter, charge and discharge thermal 

behavior are the commonly used parameters to evaluate consistency. 

In the authors’ previous work [11], the reliability and effectiveness of these evaluation bases are 

comprehensively analyzed. The main arguments are summarized as follows: AC resistance represents 

only a small part of the impedance characteristics of the battery, and this parameter cannot reflect the 

dynamic characteristics of the battery, since the testing frequency (about 1 kHz) is much higher than 

the main frequency component of the driving conditions. Battery charge and discharge voltage curves 

can reflect the voltage consistency under the test conditions, however, the reliability of any 

conformance assessment will be decreased if the working conditions change. Additionally, the voltage 

curve is just an external manifestation of the battery, and the internal characteristics’ consistency 

cannot be guaranteed because of the complex relationship between voltage curve and internal material 

properties. The surface temperature of a battery is determined by the entropy heat, resistance heat and 

surface heat dissipation. The parameters can reflect the battery performance, but they are susceptible to 

the external environment. EIS or battery model parameters can better reflect the dynamic 

characteristics of a battery. Capacity consistence determines that the performance of batteries in the 

battery pack cannot reach their full potential. However, battery capacity is obtained by constant current 

charge and discharge tests, EIS is measured by sweep frequency impedance tests and battery model 

parameters are obtained by intermittent constant current and pulse current tests. Considerable time and 

special testing instruments are required for these three tests. 

The existing battery clustering algorithms include the self-organizing feature map algorithm  

(SOM) [10], fuzzy c-means (FCM) clustering algorithm, etc. [12–14]. These earlier works focus more 

on the similarity of batteries’ characteristics. However, the number of elements in each group after 

grouping is different and not equal to the design number of batteries in each pack. 
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After review of the problems of the battery consistency evaluation parameter extraction methods 

and battery clustering algorithms, this paper presents a novel battery grouping method. This method 

can be divided into two parts: the first part is the battery characteristic parameter extraction, which is 

based on a simplified EIS model, fractional joint Kalman filter algorithm and DST—the details are 

described in Section 2. The second part is a new modified K-means clustering algorithm especially 

proposed for battery equal-number grouping—this part are presented in Section 3. The proposed method 

is established based on a short time charge and discharge experiment. The characteristic parameters 

including open circuit voltage (OCV), simplified EIS model parameters and battery capacity can be 

obtained. All these parameters have relatively clear physical meanings. The clustering algorithm can 

divide the batteries into equal-number groups according to the similarity of consistent evaluation 

parameters and the number of elements designed by engineers in each group. 

2. Battery Parameter Extraction 

2.1. Battery Model Selection 

2.1.1. Comparison of Battery Models 

It is essential to select a suitable model for quantifying battery characteristics. Recent battery 

models mainly involve equivalent circuit models based on the external electric characteristics of 

battery charge and discharge (ECMs for short in this paper) or electrochemical impedance spectroscopy 

tests (EIS models), electrochemical reaction mechanism models (ERM models), etc. In ECMs, 

resistance, capacitor and diodes are commonly used. Their structures are simple and easy to calculate. 

These models are widely used in battery state monitoring and management applications [5,15–19].  

The typical equivalent circuit models include the Rint model, first order RC model, PNGV model, etc. 

Among them, the first order RC model is the most widely used because of its simple structure and high 

accuracy. This model is shown in Figure 1a. 
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Figure 1. (a) First-order RC model; (b) a simple EIS model; (c) single particle model. 
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EIS is usually used to study the electrochemical process of the battery electrode/electrolyte interface 

and in the analysis of the insertion and extraction process of the battery electrode active material. 

Recently, the EIS technique has had a wide range of applications in battery charging and discharging 

dynamic modeling. Yoon et al. [20] have used impedance data to evaluate the power capacity of  

batteries. Xu et al. [21] have used a lithium-ion battery EIS model and fractional order Kalman 

filtering algorithm to achieve accurate battery SoC estimation. Waag et al. [22] have used an EIS 

model to analyze the aging state of batteries. Compared with ECMs, EIS models not only reflect the 

dynamic characteristics of battery more accurately, but also the structure elements have clear physical 

meanings, therefore these models have attracted more and more attention. Traditional EIS tests are 

conducted in a laboratory environment. During the process, a small current or voltage is loaded onto 

the battery and the response is measured. A simple EIS model is shown in Figure 1b. 

The behavior inside a battery, including the electrochemical kinetics and charge transfer processes 

are described in ERM models [23]. The relationship between material properties and a battery’s 

electrical performance are established in these models. In these models, the pseudo two-dimensional 

model (P2D model) created by Fuller et al. [24] and single particle model (SP model) [25] are the most 

representative ones. Among these, the, SP model is most the simple ERM. The structure of a SP model 

is shown in Figure 1c. 

For battery grouping applications, too many characteristic parameters will lead to an increase in the 

dimensionality of the battery characteristic vector and battery clustering will be more difficult. If the 

weight setting of parameters is unreasonable, the accuracy of the clustering results will be reduced. 

Hence, the battery model structure used for battery grouping should be simple and better reflect the 

battery dynamics. In the examples described above, EIS models are more suitable for battery grouping 

due to their fewer parameters and clear physical meaning. 

2.1.2. Simplified EIS Model 

The EIS test result of a lithium iron phosphate (LiFePO4/graphite) battery and its fitting result based 

on the simple EIS model are presented in Figure 2.  

 

Figure 2. EIS test result and fitting result of the simple EIS model. 

The values of Rct and Cdl are 0.46 mΩ and 28.59 F, and the time constant τ is 0.01315 s. The time 

constant of Rct and Cdl is very small and barely manifested on the terminal voltage in the case of 
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electric vehicle applications. Hence, the simple EIS model can be further simplified for a 

LiFePO4/graphite battery. 

The impact of double layer capacitance on battery’s external characteristics can be ignored. 

Moreover, Rct is assumed to be constant with current at the room temperature. Thereby, the simplified 

EIS model shown in Figure 3 is obtained. 
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Figure 3. The simplified EIS model. 

The model consists of three elements: voltage source UOC, ohmic resistance RO and Warburg impedance 

ZW. UT and IL denote the terminal voltage and the total current flowing through the battery, respectively. 

Voltage source is used to describe the open-circuit voltage characteristics of the battery. Due to the 

simplification of the battery model, many chemical reaction kinetics processes and the chemical 

reaction boundary conditions are ignored. UOC represents the value of the open circuit voltage (OCV), 

and can be expressed by Equation (1) [26]: 

   , ,OC OC p p OC n nU E SoC E SoC   (1)

where EOC,p and EOC,n are open circuit potentials of positive and negative electrodes. They are 

functions of the SoC which is determined by the average concentration of ions of each electrode. UOC 

is mainly decided by three parameters: the SoC’s start points of positive and negative electrodes and 

the cycle range of SoC. 

RO is a pure resistance element, which mainly reflects the medium-high frequency (typically <1 Hz) 

impedance characteristic of EIS; the value of this parameter is approximate the sum of the battery bulk 

resistance Rbulk, SEI film resistance Rset and electric charge transfer resistance Rct [27], as is shown in 

Equation (2): 
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 (2)

where Rext is the connecting resistance, ,electrolyte
eff
OR  and ,

eff
O solidR  stand for the effective part of the 

electrolyte ohm impedance and solid ohm impedance affecting on the terminal voltage. Rsei is mainly 

determined by the SEI film produced on the surface of negative electrode particles. Rct is decided by 

Butler-Volmer kinetics. 
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ZW is the Warburg impedance, which is usually used to describe the diffusion characteristics. It is a 

0.5 order fractional element. UW is the terminal voltage of this element. Fleischer et al. [28] presented 

the physical meaning of the parameters in ZW; without considering the boundary conditions, ZW can be 

expressed by Equation (3): 

2 2

R 1
W

T
Z

cn F A jwD
   (3)

where, R is the gas constant, T is the temperature, c represents the molar concentration of active 

particles, F is Faraday’s constant, A is the active surface area, D is the diffusion coefficient of the 

materials. Let 
2 2 0.5W

RT
X

cn F AD
 , then Equation (4) can be obtained: 

 0.5
W

W
X

Z
jw

  (4)

The characteristics of the battery from different aspects are described by the three model 

parameters. Meanwhile, in the simplified EIS model, charge capacity (Q) is also a crucial parameter 

for the batteries, and it is meaningful to battery grouping. Four battery performance parameters,  

Q, UOC, RO, XW are used for battery grouping. 

2.2. Model Parameter Identification 

The simplified EIS model parameter online identification method for EVs is proposed in the 

authors’ previous work [29]. In the method, a model discrete state equation should be established first, 

and then, model parameters are identified based on the fractional joint Kalman filter algorithm.  

The details of the two parts are described as follows. 

2.2.1. Model State Equation Establishment 

The simplified EIS model has been established in Section 2.1. In this section, the state and 

observation equations are constructed as follows, taking the discharge current value IL,dis as the positive 

value and data sampling period Ts is one second. In Equation (5), Δr is used as a differential operator: 

,  0
r

r
r

d
r

dt
    (5)

where, r is the differential order. When r = 1, Δ1 represents a one order differential operator. As the 

commonly used capacitor element, if its capacitance is C, the relationship of terminal voltage UC and 

the current IC flowing through this element can be expressed by Equation (6): 

1 1
C CU I

C
   (6)

When r is a fractional value, Δr represents a fractional differential operator. Similar to the capacitor, 

the relationship of terminal voltage UW and the current IL flowing through the element can be 

expressed as follows: 
0.5

W W LU X I   (7)



Energies 2015, 8 7709 

 

 

The battery model parameters XW, UOC, RO change slightly with SoC. Then, the differential 

equations of state and parameters can be written in the following matrix form: 

0.5
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 (8)

TU  is treated as the measurement observation parameter. The observation equation is written as below: 

T OC L O WU U I R U    (9)

Equation (8) can be discretized using a bilinear transformation method. Additionally, the system 

state noise ω and observation noise υ are considered in these equations, where these noises are 

assumed independent with each other. The discrete form of the state and observation equations is 

expressed by Equation (10): 
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 (10)

Based on the definition of the Grünwald-Letnikov fractional differential [21,30], the discrete 

differential form of a fractional state variable can be written as:  

 
0

1
k

jr
k k j

j
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 (11)

In this paper, the following definitions are made: 

0.5 1 1 1
γ diagj j j j j

        
         
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 (12)

 0.5 1 1 1
T

N  (13)

where x in Equation (11) is [UW XW UOC RO]T, then, the discrete differential form of the state and 

parameters of the simplified EIS model can be obtained: 

 
1

1 γ
k

jN
k k j k j

j

x x x 


     (14)

In Equation (14), the complexity of   1
1

1 γ
k

j
j k j

j

x  


  is increased with the length of time, so this 

feature is not suitable for engineering applications. Additionally, the battery diffusion process does not 

occur infinitely, as it is constrained by the boundary conditions. Thus, k is replaced with variable 
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length L. The value of L is chosen by applying curve fitting to the experimental data. Finally, the state 

and observation equations can be obtained and are shown in Equation (15): 
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(15)

2.2.2. Model Parameter Identification 

In [30], Sierociuk et al. put forward the fractional Kalman filter algorithm. In this method, 

fractional element state estimation, parameter identification and order estimation can be easily 

realized. Fractional model parameter can be estimated jointly with the state estimation. In order to 

distinguish the different applications, this method is called fractional joint Kalman filter (FJKF) in this 

paper. Based on this method, model parameter XW is regarded as an implicit parameter of the state UW, 

the value of XW can be updated based on the state estimation result. Besides, the predication-correction 

feature of Kalman filter is effectively used. The application of this algorithm used in battery simplified 

EIS model parameter identification is described in Algorithm 1. 

Algorithm 1 Model parameter identification based on FJKF.

Definitions: 

1 1
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Step 1: Initialization, Qk is the covariance of ωk, Rk is the covariance of noise υk. Pk is the error 
covariance of the state and parameter estimated values, the initial value for each parameter is give as: 
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Step 2: Time update: 
State and parameter time update:  1 , , 1ˆ ˆ , ,
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Step 3: Measurement update: 

Kalman gain matrix update:    
1T T

k k k k k k kL P C C P C R


      

State and parameter measurement update:  ,ˆ ˆ ˆ ,x
k k k k k L kx x L y g x I        

Error covariance measurement update:  k k k kP I L C P    

Step 4: k = k + 1, repeat Step 2 and Step 3, until all data is processed.

2.3. Parameter Identification Experiment Sequence 

The battery model and model parameter identification method are described in Sections 2.1 and 2.2.  

In order to obtain the battery model parameters and charge capacity, an experimental sequence is 

designed. The sequence is set up mainly based on dynamic stress tests, and there are seven steps.  

The time consumption of this experiment is about eight hours, which is a little longer than the time 

consumption of constant current/voltage charge and discharge recommended by battery manufacturers, 

but shorter than the hybrid pulse power test described in the FreedomCAR battery test manual [31]. 

This sequence is described in Algorithm 2 and Figure 4. 

Algorithm 2 Experimental sequence for battery parameter identification. 
Step 1: Constant current discharge, until battery terminal voltage reaches the lower cut-off voltage. 
Step 2: Rest for one hour. 
Step 3: Charge with the battery manufacturer’s recommended procedures. 
Step 4: Rest for one hour. 
Step 5: Apply Dynamic Stress Test on the battery. The maximum discharge current is 2C in this paper. 
Stop when the battery terminal voltage reaches the lower cut-off voltage. The details of DST are 
described in FreedomCAR battery test manual. 
Step 6: Rest for several minutes. 
Step 7: Discharge with a low constant current, until the battery terminal voltage reaches the lower 
cut-off voltage. This step causes the battery to be fully discharged, this is essential for battery grouping. 

 

Figure 4. Battery parameter identification experimental sequence. 
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3. Battery Feature Clustering 

3.1. Data Preprocess 

3.1.1. Data Down-Sampling 

Battery model parameters UOC, RO, XW can be obtained based on the method proposed in  

Section 2, and they are functions of test time. It is necessary to translate the function into the depth of 

discharge (DoD) of the battery. DoD of a battery i at time k is defined by Equation (16): 

  0 100%

t k

Lt
i

i

I dt
DoD k

Q



 
 (16) 

Here, Qi is the charge capacity of battery i , its value can be calculated by the Ah-counting method, 

and this process is expressed by Equation (17): 

7

5

step

i Lstep
Q I dt   (17)

In order to reduce the amount of calculations, a down-sampling process is executed on the 

parameter identification results. Additionally, model parameter identification results of DoD = 0%–10% 

and 90%–100% are discarded from further analysis. 

3.1.2. Crude Data Exclusion 

Typically, operational errors are unavoidable in the experimental process. For example, test cables 

may connect unreliably, equipment channels fail and so on. Apart from these errors, the failures in the 

battery production process can also lead to the existance of crude values in the model parameter 

identification results. In this paper, the crude values are discarded based on the Laiyite criterion  

(3σ criterion). Additionally, since the number of samples remaining should not larger than the designed 

numbers n0 for battery grouping, another step is added to the crude data discarding process. The details 

of this process are shown in Algorithm 3. 

Algorithm 3 Crude data excluding process. 
Step 1: Calculate the average curve of each model parameters of the samples, additionally, calculate 
the average value of battery capacities.  

   
1

1 n

avg
i

X DoD X DoD
n 

   

Where, X represents UOC, RO or XW. 
Step 2: Calculate the average distance between the parameter curve and the average curve, that is the 
distance between battery capacities and the average capacity. 

    , , 1,...,X i i avgD mean X DoD X DoD i n    

Step 3: Calculate the standard deviation of each distance parameter. 

2
,

1

1 n

X X i
i

D
n




   
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Step 4: Discard the samples that do not meet the requirement of Laiyite criterion. The Laiyite criterion 
is: 3i XDX   

Step 5: Regard the remaining samples as the evolution objects. Reset the number of evolution objects 
n, and repeat Steps 1–4, until all the remaining parameters are eligible with the requirement of Laiyite 
criterion. 
Step 6: If 0n n , randomly discard the samples which have maximum value of iDX  until the number 

of remaining samples is equal to 0n . Ultimately, the samples used for battery grouping are obtained. 

3.2. Consistency Evaluation Parameter Generation 

In Section 3.1, QD , 
OCUD , 

ORD and 
WXD  of each remaining battery are obtaine; these parameters 

have different units and should be normalized for further analysis, the results are represented by *
QD , 

*
OCUD , *

ORD  and *
WXD . The four parameters describe the performance of batteries, but cannot be used 

directly for battery consistency evaluation, because they have different effects on battery consistency.  

It is necessary to weight the parameters according to defined rules. In this paper, the weights are set up 

based on the parameters’ inconsistent influence on the terminal voltage. Battery terminal voltage can 

be expressed as: 

OT OC R WU U U U    (18)

The relationship between Q’s inconsistent value ΔQ and ΔUOC is described in Figure 5. In order to 

simplify the calculation, the OCV curve can be regard as a straight line, and Equation (19) can  

be obtained. 

 

Figure 5. Effect of capacity inconsistency on UOC (UT). 

max min

,

1
2

T Q
avg

OCV Q
U

Q

 
   (19)

where, max minOCV   is about 0.48 V. 
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The relationship between ΔUT and ΔUOC, ΔRO can be easily obtained; this are expressed as: 

, OCT U OCU U    (20)

, OT R L OU I R  
 (21)

However, the influence of ΔXW on ΔUT cannot be obtained directly. Thus, the following analysis is 

carried out. Assuming the initial state of UW is zero, when a step current excitation IL is applied to ZW, 

the voltage response after k  s can be calculated. When k = 1, the voltage response is given as: 

 1,1 ,0

0.5
1

1W W L WU X I U
 

    
 

 (22)

The voltage response of ZW when k  ≥ 2 is given as: 

 , 1 , 1
1

0.5
1

L
j

W k W L W k j
j

U X I U
j  



 
    

 
  (23)

Finally, the voltage response of WZ  at time k  can be given as: 

 ,W T W LU a k X I  (24)

where, a(k) is coefficient variable of XWIL, and is determined by L in the state discrete equations. IL and 

XW are constant, the coefficient a can be expressed in Figure 6. The maximum value of a  

is amax(k) = 14. 

 

Figure 6. Changes of the coefficient a with time. 

During charge or discharge, the working time is much longer than the length of time presented in 

the figure. amax = 14, the value of a  changes mainly near the maximum value. The relationship 

between ΔUT and ΔXW can be described as: 

maxW L WU a I X    (25)

The median working current 1C (40 A) is used as the reference current ,L refI  in the Equations (24) 

and (25), the weight proportion of each parameter can be described as: 
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max min

max ,,
0

1

2: : : : : :
OC O W L reQ U R X OC L ref f WO

OCV Q
w w w w U I R

Q
a I X

 
    (26)

After the parameters are weighted, the feature vector  * * * *
, , , ,, , ,

OC O WQ w U w R w X wCell D D D D  which consists 

of four consistency evaluation parameters for each cell is obtained. 

3.3. Battery Equal-Number Clustering 

Battery grouping is a special kind of clustering problem. In the traditional clustering method, 

elements are grouped based on the similarity of feature data, and there is no pre-set category features. 

The whole clustering process works without supervision. However, battery grouping is a little different 

from the traditional method, because the amount of elements in each group should meet the 

requirements of the battery pack. Hence, a special equal-number clustering method is needed for 

battery grouping. 

3.3.1. K-Means Clustering Method 

K-means clustering method is a popular partitioning clustering method [32]. In this method, the initial 

cluster centers are randomly selected from the elements to be clustered, and the remaining elements are 

clustered into N groups based on the similarity (distance), and the cluster center of each cluster is 

recalculated after that. The variance function shown in Equation (27) is generally used as the standard 

measurement function in this method. The main steps of K-means are shown in Algorithm 4. 

2

1

μ
n

N

n
n x c

E x
 

    (27)

Algorithm 4 Main steps of K-means clustering method. 
Step 1: Initialize the cluster centers. Select N  cluster centers randomly. 1 2μ ,μ ,...,μk . 

Step 2: Calculate the distance between each sample and each cluster center. Clustering the samples to 
the nearest cluster based on the minimum distance principle. For sample p, it is belong to the cluster 

which is obtained by:     2
arg min μp p

nc x   

Step 3: Recalculate the cluster centers. The mean value of each cluster is used as the new cluster center: 

    

  
1

1

1

μ

1

M
p p

p
n M

p

p

c n x

c n













 

Step 4: Repeat Step 2 and Step 3, until the cluster centers are no longer changing or only changes 
minimal. 

3.3.2. Kd-Tree Cluster Center Initialization 

Unfortunately, K-means clustering method is local optimization strategy, and it is sensitive to the 

initial cluster center and can easily fall into a local optimal solution. A good initial cluster center can 
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avoid the local optima issue. Redmond, et al. proposed a cluster center initial method based on kd-tree. 

kd-tree is established for data density estimation, and the initial cluster centers are selected from  

kd-tree’s leave boxes based on an improved max-min distance method. This cluster center initial 

method is much better than the random cluster center initial method. The calculation is relatively 

simple. Readers can refer to [33] for further details of the algorithm. 

3.3.3. The New Modified K-Means Clustering Method 

Sections 3.3.1 and 3.3.2 describe the K-means clustering method using kd-tree cluster center 

initialization. The battery equal-number clustering method proposed in this paper is based on this 

method and the clustering rules are redesigned. The target of the method is partitioning the samples 

into N clusters and the amount of elements in each cluster is equal to M. The objective function of 

equal-number clustering is the same with the traditional K-means method, as shown in Equation (27). 

An adjusting rule is developed to equalize the numbers as below: 

Rule 1: Element number equalization 

The cluster which has the largest number of elements should be determined first. Then, the elements 

of this cluster are sorted based on the distances between them and their cluster center. The element 

with the farthest distance is assigned to another cluster whose number of elements is less than the  

pre-set value M and the distance of this element to the new cluster should be as near as possible.  

This assigning rule takes distance and element number into account at the same time. We repeat this 

process until the number of elements in each cluster is equal to the pre-set value. Equal-number 

clusters can be accomplished based on Rule 1. However, this process cannot guarantee the accuracy of 

the element’s attribution. Thus, an element exchange criterion between two clusters is set up. 

Rule 2: Element exchange criterion 

This rule is made to regulate the element exchanging process between two selected clusters.  

In order to explain this rule, several definitions are made: 
Master cluster mC : mC  is the cluster who initiates the element exchange process. The cluster center 

and element i  in this cluster is expressed by μm  and ,m ix . 

Slave cluster sC : sC  is the cluster waiting for element exchange with mC . The cluster center and 

element j is expressed μs  and ,s jx . 

Master (Slave) center vector μ μm s


(μ μs m


): The vector’s starting point isμm  (μs ) and ending point 

is μs  (μm ). 

Master (Slave) proximal element ,m nsx ( ,s nmx ): The element of mC ( sC ) near μs  ( μm ).  

If ,μ μ μ 0m m i m sx  
 

, element i  is a Master proximal element Similarly, If ,μ μ μ 0s s j s mx  
 

,  

element j is a slave proximal element. 

In these two clusters, the exchange process is only allowed in the proximal elements because the 

exchange possibility between two proximal elements is much higher than between non-proximal 

elements. This limitation is an effective approach to reduce calculation complexity and improve the 

convergence rate of the clustering algorithm. 
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In order to decrease the value of the measurement target of the new modified K-means method, 
exchange process between mC  and sC  occurs when the requirements of Equation (28) is satisfied: 

2 2 2 2

, , , ,μ μ μ μm i m s j s s j m m i sx x x x        (28)

Based on the analysis and two new rules for cluster elements attribution, the new modified K-means 

method is established. This equal-number clustering steps are described in the Algorithm 5 and some 

of the main steps are shown in Figure 7. 

Algorithm 5 Steps of equal-number clustering method. 
Step 1: Cluster centers initialization. Cluster center is calculated using the kd-tree cluster center 
initialization method. 
Step 2: Cluster initialization. The elements are clustered to each cluster according to the minimum 
distance criterion described in K-means clustering method. Step1 and Step 2 are shown in Figure 7a. 
Step 3: Element number equalization. Equalize the number of each cluster according to rule 1.  
This step is shown in Figure 7b. 
Step 4: Distance data storage. Two arrays are set up for each cluster, named main storage array and 
auxiliary storage array. Calculate the distances from each element to all centers. The results are stored 
in the main storage arrays, but auxiliary storage array is not used here. 
Step 5: Elements exchange among the clusters. 

Step 5.1: Set one of the clusters as a master cluster Cm, another one is regard as a slave cluster Cs. 
Find the proximal elements in these two clusters. This step is shown in Figure 7c. 
Step 5.2: Select a proximal element in Cm and a proximal element in Cs as the quasi-exchange 
elements, If the two elements can meet the requirements of Equation (28), take out the two 
elements from their pervious clusters, exchange the belonging of elements and store their feature 
parameters in the auxiliary storage array. If not, select another proximal element in Cs as the 
quasi-exchange element and repeat the calculation of Equation (28) and determine whether to 
exchange elements or not, until all xs,nms are traversed. This step is shown in Figure 7d.  
Step 5.3: Select another proximal element in Cm as the quasi-exchange element, repeat Step 5.2, 
until all ,m nsx s are traversed. 
Step 5.4: Set another cluster as a new Cs, repeat Step 5.2 and Step 5.3, until all clusters apart from 
the master cluster are treated as a slave cluster one time for element exchange.  
Step 5.5: Set another cluster as a new Cm, repeat Step 5.2, Step 5.3 and Step 5.4, until all the 
clusters are treated as a master cluster one time. 

Step 6: Take out the data stored in the auxiliary storage array, and push them onto the main storage 
array of each cluster. Step 6: Recalculate the center of each cluster. This step is shown in Figure 7e. 

    

  
1

1

1

1

M
p p

p
n M

p

p

c n x

c n

 











 

Step 7: Repeat Steps 4–6, until cluster centers do not change or only change a little. 
μ εn   

Where, ε is the threshold value of process stopping, the equal-number clusters are obtained. 
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Figure 7. Main steps of equal-number clustering (a) Cluster initialization; (b) Element number 

equalization; (c) Proximal element determination; (d) Elements exchange; (e) Cluster center 

recalculation; (f) Result of the clustering method. 

4. Experimental Details 

Battery parameter identification and battery grouping verification experiments were implemented at 

CALB Co. Ltd. (Luoyang, China). A series of battery test systems were used for battery testing. Model 

and parameter identification verification experiments were carried out with an Arbin BT2000 battery 

test system in the Harbin Institute of Technology. The devices under test are 95 energy-type 

LiFePO4/graphite batteries produced by CALB. The typical capacity (Q0) is 42 Ah, cut-off voltages are 

3.65 V and 2.5 V, maximum constant discharge current is 2C. The experiments were conducted at 

room temperature and standard atmospheric pressure. 

4.1. Parameter Identification Experimental Details 

The sequence of parameter identification experiment has been described in Section 2.3, this sequence 

is applied to the 95 batteries. The terminal voltage and load current value are recorded in the experiment. 

4.2. Verification Experimental Details 

There are two verification experiments in this paper. One is a model and parameter identification 

validation experiment, the other is a battery grouping verification experiment. 

4.2.1. Model and Parameter Identification Verification Experiments 

In order to validate the accuracy of the simplified EIS model and parameter identification method,  

a load current sequence combining the DST profile with constant current discharge profile is established. 

The change of DoD in each segment is 10%, the interval of every segment is 1 h. This sequence is 

shown in Figure 8. 
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Figure 8. Model and parameter identification verification experimental sequence. 

A1: The segment of the test data in DoD = 50% is selected for model accuracy verification. UOC 

only changes slightly in this segment, and the value of UOC can be regarded as constant. The simulation 

results of the first-order RC model and the simplified EIS model are compared. Genetic algorithm 

(GA) is used for model parameter identification in this process. 

A2: The terminal voltage of each segment’s first point is regarded as the value of UOC at the initial 

time. The value of UOC at the end point of this segment is determined by the terminal voltage of the 

next segment’s first point. The change of UOC is considered to be linear with the change of DoD in the 

center of this segment. GA and FJKF are used to get the impedance parameters in the model.  

The accuracy of FJKF is verified by comparing the parameter identification results of the two methods. 

4.2.2. Battery Grouping Verification Experiments 

In order to verify the accuracy of the battery grouping method, typically, batteries should be 

connected in parallel or series and experiments performed. In this paper, the batteries are not connected 

in parallel or in series because the analysis is too complex and meaningful results may not be obtained. 

Instead of that, five simple experiments are implemented on each battery respectively. Battery 

grouping accuracy is evaluated by the aggregation degree of the voltage curves in each group.  

The experiments include: 0.5 C-rate charge and 0.5 C-rate discharge, 1 C-rate charge and 1 C-rate 

discharge and dynamic stress test. 

5. Results and Discussion 

5.1. Battery Grouping Result Analysis 

5.1.1. Battery Parameter Identification Result Analysis 

Battery model parameters are extracted from the experiment using the FJKF algorithm described in 

Section 2.3, and battery capacity is obtained using Ah-counting. Battery capacity and its distribution 

are shown in Figure 9, where the capacity values are located between 40 Ah and 44 Ah, and the 
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distribution is approximately normal. Battery model parameters and terminal voltage estimation errors 

are shown in Figure 10.  

 

Figure 9. Battery capacities and distribution. 

 

Figure 10. Model parameter identification result (a) UOC; (b) RO; (c) XW; (d) UT error. 

In Figure 10a,b, there exist apparent crude values in the parameter curves. In Figure 10d,  

the terminal voltage estimation errors in most regions (DoD = 10%–90%) are smaller than 5 mV.  

This phenomenon can partly verify the accuracy of the simplified EIS model and FJKF algorithm.  

The parameters in the regions of DoD = 0%–10% and DoD = 90%–100% is unreliable because of the 

large simulation error existing in these regions. The data are discarded. 
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5.1.2. Battery Clustering Result Analysis 

Model parameters are down sampled and the crude data is discarded according to the data 

preprocessing process described in Section 3.1. The result is shown in Figure 11. Then, the weights of 

the battery performance parameters are calculated based on Equation (26). The values of OCVmax − min, 

IL,ref and amax are obtained in Section 3.2 and the other coefficients in this equation can be obtained 

from the preprocess result shown in Figure 11: 

3
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3.5 Ah

8.0 10  V

5.0 10  Ω

1.2 10  Ω
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




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
  

  
  

 (29)

Then, the weights can be obtained. After normalizing the minimum weight and rounding the value 

of each weight, Equation (30) can be obtained: 

: : : 3 :1 3 :1:
OC O WQ U R Xw w w w   (30)

Battery clustering result are shown in Figure 12. The samples are clustered into four groups. In each 

group, the consistency evolution parameters are very similar with each other. 

 

Figure 11. The characteristic parameters after preprocess (a) Q; (b) UOC; (c) RO; (d) XW. 
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Figure 12. Battery feature vector clustering result (a) Clustering result from the view of 
*

,Q wD , *
,OR wD  and *

,OCU wD ; (b) Clustering result from the view of *
,Q wD , *

,OR wD  and *
,OCU wD . 

5.2. Verification of the Battery Grouping Method 

5.2.1. Model Accuracy Verification 

In this section, the first order RC model is compared with the simplified EIS model. In order to 

obtain the model parameters, a genetic algorithm (GA) is used to find the optimal value of the 

parameters except for UOC. Equation (31) is used as the objective function of GA. 

   2, ,
1

1 N

T k T k
k

f X U U
N 

   (31)

The measured terminal voltages of DST in DoD = 50% are used as the true values. The 

optimization results of model parameters are used for terminal voltage estimation and predication. 

Results are shown in Figure 13.  

 

Figure 13. Comparison of battery model simulation results (a) simulation results and 

measured values of terminal voltage; (b) simulation errors. 
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In the test results, the root mean square (RMS) voltage error of simulation results of the first-order 

RC model and the simplified EIS model are 6.9 mV and 2.8 mV. The estimation errors in DST region 

are 2.7 mV and 2.8 mV, and prediction errors are 8.7 mV and 2.7 mV. The simulation accuracy of the 

simplified EIS model is higher than the accuracy of the first-order RC model. Compared to the first-order 

RC model, the simplified EIS model can represent the impedance characteristics of the battery much 

better. Furthermore, the number of parameters is less than that of the first-order RC model. 

5.2.2. Model Parameter Identification Accuracy Verification 

The RMS error of terminal voltage is 1.03 mV in the result which is shown in Figure 9. In this section, 

FJKF and GA are applied to the same experimental data for model parameter identification.  

The identification results of UOC, RO and XW are shown in Figure 14. The results of the two methods 

are very similar. The accuracy and effectiveness of FJKF can be verified from the results. 

 

Figure 14. Comparison of the model parameter identification methods: (a) terminal voltage; 

(b) UOC; (c) RO; (d) XW. 

5.2.3. Battery Grouping Accuracy Verification 

In order to verify the validity of the proposed method for battery grouping, three other battery 
grouping methods—capacity matching, OR  matching and the voltage curve matching method—are 

used to compare with this method. The first two methods are easy to implement. The voltage curve 

matching method, proposed in [34], is based on the similarity of average distance, Euclidean distance 

and correlation coefficient, but the clustering method for three parameters was not described. In this 
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paper, the voltage curve matching method is based on the average distance between the voltage curves and 

the mean curve. Additionally, 1C-rate discharge curves are used for battery grouping in this method. The 

clustering effective evaluation criterion is dominated based on the average Euclidean distance of the 

battery voltage curves of each cluster. The evaluation equation is shown as: 

      2, ,
1 1

1 1
group

n

N K
avg

i T i T g
n k

E U k U k
N K 

    (32)

The battery grouping evaluation results of these methods are shown in Table 1. As is seen from the 

results, the voltage dispersion in each group after adopting the proposed clustering method is much 

smaller than the other ones under most working conditions, so the new grouping method has relatively 

higher accuracy when compared with the other methods. 

Table 1. Comparison of battery grouping results. 

Method 
Capacity Matching  

(×10−3 V) 

RO Matching  

(×10−3 V) 

Curve Matching  

(×10−3 V) 

Proposed Method  

(×10−3 V) 

Dispersion Max Min Avg. Max Min Avg. Max Min Avg. Max Min Avg. 

DST 21.56 9.483 15.40 38.43 19.18 25.94 16.50 6.910 13.41 15.80 5.682 10.78 

0.5 C charge 26.02 9.406 17.00 43.61 27.31 32.71 22.78 7.803 18.22 19.60 6.425 13.98 

0.5 C discharge 21.53 9.391 15.31 41.90 26.13 31.23 19.40 7.776 15.82 19.17 7.548 14.21 

1 C charge 30.35 15.88 24.40 42.65 28.98 33.67 22.74 17.89 20.32 22.93 16.85 19.64 

1 C discharge 24.40 16.13 20.46 42.92 27.97 32.32 23.32 9.052 17.03 21.80 9.939 16.71 

6. Conclusions 

A grouping method for LiFePO4/graphite batteries is proposed. The method is mainly based on the 

fractional joint Kalman filter and a new modified K-means algorithm. Batteries can be divided into 

groups with same number of elements and similar battery characteristics in each group.  

The innovations and contributions of the proposed method are as follows: 

1. A simplified EIS battery model is adopted for battery characteristic description. The accuracy of 

this model is relatively higher and the number of parameters is less than in the first order RC 

model under the tested conditions. The model is suitable for battery grouping. 

2. A fractional joint Kalman filter is used for parameter identification. Fractional parameters XW 

can be estimated jointly with the state UW of the fractional element ZW. This algorithm is 

appropriate and effective for fractional model parameter identification. 

3. A new modified K-means clustering method is proposed for battery equal-number grouping.  

In this method, a feature vector with four parameters is used to describe the performance of the 

battery from different angles. Two rules are designed to equalize the numbers of elements in 

each group and exchange samples among groups. The rules are added to the K-means clustering 

method and replace the criterion of element attribution calculation. 

This battery grouping method is effective for LiFePO4/graphite battery grouping. Furthermore, this 

method has the potential to be utilized in battery reuse applications. The simplified EIS model and 

FJKF algorithm can also be used for battery online state estimation or prediction. The equal-number 
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clustering method can be applied to other clustering applications which require not only similarity,  

but also equal-numbers in each cluster. Future works will include evaluating the algorithm for the 

abovementioned applications. 
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Nomenclature 

Symbols 

UT terminal voltage of a battery, V 

IL load current, A 

OCV open circuit voltage, V 

UOC open circuit voltage, V 

EOC open circuit potential of electrode, V 

RO ohmic resistance, Ω 

Rbulk bulk resistance, Ω 

Rext connect resistance, Ω 

Rsei SEI resistance, Ω 

Rct charge transfer resistance, Ω 

Cdl double layer capacitance, F 

ZW Warburg impedance, Ωs−0.5 

XW Warburg resistance, Ω 

UW terminal voltage of ZW, V 

Q nominal capacity, Ah 

Q0 typical capacity of the battery, Ah 

w weight of a parameter, 1 

σ standard deviation, V or Ω 
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D distance, V or Ω 

E evaluation parameter, V or Ω 

C cluster 

N total number of clusters 

n cluster n 

M total number of samples 

p sample p 

μ cluster center 

Subscripts, superscript 

eff effective value 

avg average value 

k time step index 

m master 

s slave 

(p) sample p 
  estimation value 
  prior estimation value 
  posteriori estimation value 
 vector 

  normalized value 

Abbreviations 

EV electric vehicle 

EIS electrochemical impedance spectroscopy 

FJKF fractional joint Kalman filter 

DST dynamic stress test 

SoC state of charge 

DoD depth of discharge 

SEI solid electrolyte interface 

RMS root mean square 
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