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Abstract: The identification of values of solar cell parameters is of great interest for 

evaluating solar cell performances. The algorithm of an artificial bee colony was used to 

extract model parameters of solar cells from current-voltage characteristics. Firstly,  

the best-so-for mechanism was introduced to the original artificial bee colony. Then,  

a method was proposed to identify parameters for a single diode model and double diode 

model using this improved artificial bee colony. Experimental results clearly demonstrate  

the effectiveness of the proposed method and its superior performance compared to other 

competing methods. 

Keywords: artificial bee colony; solar cell; parameters identification; single diode model; 

double diode model 

 

1. Introduction 

Solar energy is one of the most promising renewable sources that are currently being used 

worldwide to contribute to meeting rising demands of electric power. Photovoltaic (PV) is capable of 
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directly converting solar energy to electricity in a quiet environment without polluting the atmosphere.  

It has been reported that PV is the fastest growing power-generation technology in the world, with  

an annual average increase of 55% between 2008 and 2014 [1]. PV systems comprise of different parts 

centered around a solar panel that typically has arrays of interconnected solar cells. The solar cell 

converts the energy of photons coming from the sunlight directly into electrical energy on the basis of 

photovoltaic effect. Formulating an equation that describes the performance of photovoltaic cells under 

illumination or in dark conditions, one from which the cells’ physical parameters can be restored,  

is of great value in the field of photovoltaic engineering. 

The model of a solar cell is used to predict the behavior of a real solar cells under various 

environmental conditions and thereafter to generate current-voltage (I-V) and power-voltage (P-V) 

characteristic curves. The modeling of PV cells consists of two steps: the mathematical model 

formulation and the identification of their parameter values. There are two widely used nonlinear 

equivalent circuit models for solar cells: single diode model and double diode model [2,3]. The single 

diode model contains five unknown parameters while the double diode model has seven  

unknown parameters. 

Accurate identification of the parameters plays an important role in solar cell simulation, 

performance evaluation, design, optimization and control. Therefore, parameter determination with  

the help of a capable optimization technique is necessary. During the last decade, several identification 

methods have been reported to approximate different parameters of solar cells. Generally,  

the identification methods can be categorized into analytical methods, linear system identification 

methods and metaheuristic search methods. Dependency on the accuracy of these key points is a major 

deficiency of the analytical approach [4]; the measured data usually contains noise due to device 

inaccuracy and other electrical disturbances. By utilizing the mapping of transfer function in [5],  

the diode model is converted as an equivalent output of a dynamic system. Correspondingly,  

the dimension of the parameter space is reduced from five to one. The one parameter is then identified 

by a simple integral-based linear square. By performing a separation of the independent variables from 

the dependent ones among the five parameters of one diode model, a reduced form of the five 

parameter model has been obtained in [6]. Compared with other methods, the methods in [5,6]  

have simpler operation requirements and higher accuracy. Unfortunately, [6] only discussed about  

the parameters identification of one diode model. The disadvantage of method in [5] that it requires  

the knowledge of the full I-V curve data. In addition, many metaheuristic methods were introduced in 

related literatures, such as the particle swarm optimization (PSO) [7], the genetic algorithm (GA) [8], 

the differential evolution (DE) algorithm [9] and etc. Although heuristic methods present a higher 

probability of obtaining a global solution in comparison with analytical ones, they have important 

limits. In case of GA and PSO, they maintain a trend that concentrates toward local optima, since their 

elitist mechanism forces premature convergence [10,11]. Such a behavior becomes worse when  

the optimization algorithm faces multi-modal functions. The results depend on the control parameters 

of the DE algorithm and an inappropriate choice of these parameters may result in the DE failing to 

converge or in a very slow convergence to the global optimal point [12]. Parameter identification of 

PV solar cells and modules is still a challenging problem which requires that the the obtained physical 

parameters match well with reality. The non-linearity and multi-modal nature of the solar cells require 

a high performance optimization method. 
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Artificial bee colony (ABC) is a new optimization algorithm developed by Karaboga in 2005 [13]. 

It has been used to find an optimal solution in numerical optimization problems. This algorithm is 

inspired by the behavior of honey bees when seeking a quality food source. The performance of ABC 

algorithm has been compared with other optimization methods. The comparison results showed that 

ABC can produce a more optimal solution and, thus, it is more effective than the other methods in 

several optimization problems [14–16]. However, these ABC algorithms converge slowly, especially 

at the middle and last stages of the search process. The main reason is that ABC is good at exploration 

but poor at exploitation. An ideal optimization algorithm should properly balance exploration and 

exploitation during the search process. In order to balance the exploration and exploitation of ABC 

during the search process, we propose to make major changes by introducing the best-so-far 

mechanism to generate a new solution with better quality and control the diversity of generations.  

In this paper, the improved ABC is applied to identify the optimal parameters of solar cells. 

The paper is organized as follows. Section 2 describes the mathematical formulations of the problem. 

Section 3.1 provides the description of the employed artificial bee colony algorithm. Section 3.2 presents 

the ABC algorithm in solving the parameters’ identification process of solar cell models. Finally,  

the performance of the proposed method is numerically evaluated in Section 4 while Section 5 is devoted 

to the concluding remarks. 

2. Problem Formulation 

2.1. Single Diode Model 

Figure 1 shows the equivalent circuit for single diode model, the cell output current I is computed by 

s s
ph L

sh

[ ]
{exp 1}

q V R I V R I
I I I

akT R

       
 (1)

where k, T and q are the Boltzmann constant, temperature, and magnitude of charge on an electron, 

respectively. V and IL are the output voltage of cell and reverse saturation current of the diode, 

respectively. The resistance Rsh in parallel with the diode represents the shunt resistance that can occur in 

real solar cells across the surfaces, at pin holes in the p-n junctions, or at grain boundaries. Ish is the Rsh 

current. The series resistance Rs accounts for all voltage drops across the transport resistances of the solar 

cell and its connections to a load. The current source Iph is the photocurrent from the illumination for  

the sun. a is the non-physical diode ideality factor. We denote θ1 by θ1 = [Rsh, Rs, IL, Iph, a] in this article. 

It is clear that for such a model there is θ1 to be estimated. 

 

Figure 1. Single diode model of solar cells. 
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2.2. Double Diode Model 

Figure 2 shows the equivalent circuit for double diode model, the cell output current I is computed by 

s s s
ph L1 L2

1 2 sh

( ) ( )
{exp 1} {exp 1}t tq V R I q V R I V R I

I I I I
a kT a kT R

     
        

   
 (2)

where IL1 and IL2 are the diffusion and saturation current, respectively. a1 and a2 are the diffusion and 

recombination diode ideality factors, respectively. In single diode model, the diffusion and 

recombination currents are linearly independent, both currents are often combined together under  

the introduction of a non-physical diode ideality factor a. Equation (2) has seven unknown parameters  

(Rsh, Rs, IL1, IL2, Iph, a1, a2), and denote θ2 as θ2 = [Rsh, Rs, IL1, IL2, Iph, a1, a2]. 

 

Figure 2. Double diode model of solar cells. 

Consequently, the objective of parameter identification of PV solar cells is to identify the θ1 in  

a single diode model or θ2 in a double diode model from the I-V data measurements. 

3. Parameter Identification of Solar Cells Using ABC 

3.1. Artificial Bee Colony Algorithm 

The ABC algorithm is inspired by the behavior of honey bees when seeking a quality food source.  

The bees are categorized into three groups: employed bees, onlooker bees, and scout bees. Employed 

bees are responsible from exploiting the nectar sources already explored, and they give information to 

the other waiting bees in the hive about the quality of the food source which they are exploiting. 

Onlooker bees wait in the hive and establish a food source to exploit depending on the information 

shared by the employed bees. Scouts search the environment in order to find a new food source 

depending on an internal motivation, external clues, or randomly. In ABC algorithm, the position of  

a food source represents a possible solution to the optimization problem. To enhance the exploitation and 

exploration processes, we propose to make major changes by introducing the best-so-far method.  

The details of the proposed algorithm are described as follows. 

In the first step, randomly distributed initial food source positions are generated. Similarly with 

other optimization algorithms, random values between the lower and the upper boundaries of  
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the parameters are assigned for the parameters of solutions. The process can be represented by 

Equation (3). 

min max min( , ) ( ) (0,1)[ ( ) ( )]l d d rand d d  θ θ θ θ  (3)

where l = 1, 2, …, NF, d = 1, 2, …, D, NF is the number of candidate solution, D is the dimension of 

solution. θmax(d) and θmin(d) are upper and lower bound of candidate solution d-th dimension, respectively. 

After initialization, the population is evaluated and is subjected to repeated cycles of the search 

processes of the employed bees, the onlooker bees and scout bees. 

In employed bee phase, the position of the new food source is calculated by Equation (4). 

EB( , ) ( , ) [ ( , ) ( , )]ldl d l d l d r d  θ θ θ θ  (4)

where θEB is a new solution in employed bee phase. φld is a random number between [−1 1]. r is uniformly 

distributed random integer number in the range [1 NF], r ≠ l. After producing a new solution by Equation 

(4), the algorithm applies the greedy selection rule to memorize the new candidate solution by forgetting 

the old one or keeps the old solution. The old solution in the employed bee’s memory will be replaced by 

the new candidate solution if the new position has a better fitness value. 

In the next step, employed bees will return to their hive and share the fitness value of their new food 

sources with the onlooker bees, and then onlooker bees use the information from all employed bees to 

make a decision on a new solution. This process is simulated by the procedure given in Equation (5). 

best
OB
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where θOB is a new solution in onlooker phase, θbest is the best-so-far solution. r1 and r2 are integer 

number randomly chosen in [1 NF], r1 ≠ r2 ≠ l. 

F
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l
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p
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

, pl is calculated by Equation (6). 
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 


  

(6)

where F(l)is the fitness function of l-th candidate solution. 

In the third step, any food source position that does not improve the fitness value will be abandoned 

and replaced by a new position that is determined by a scout bee. This helps avoid suboptimal 

solutions. The new solution by the scout bee will be calculated by Equation (7). 

SB best( , ) ( ) [ ( , ) ( , )]ldl d d l d r d  θ θ θ θ  (7)

where θSB is a new solution in scout bee phase. If the non-improvement number kcount(l) of the l-th 

solution exceeding the predetermined number klimit, the abandoned solution θ is replaced with θSB. 

For clarity, the optimization mechanism of the improved ABC algorithm in this article and original 

ABC algorithm in [13] are shown as Figure 3, respectively. The line with arrow and dotted line with arrow 

represent single- and multi-iteration. It is obvious that our algorithm has a better convergence speed than  

the original ABC algorithm. The pseudo-code of the improved ABC algorithm is illustrated in Table 1. 
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Figure 3. Optimization mechanism of different ABC algorithms: (a) original ABC algorithm; 

(b) improved ABC algorithm. 

Table 1. Pseudocode of the improved ABC algorithm. 

Initialize Phase: set maximum number of iteration kmax, klimit, NF, D; Generate initial θ(l, d) by (3), l = 1, 2, …, 

NF, d = 1, 2, … , D. 

while (termination criterion is met.) 

Employed Bee Phase 

F

EB

EB EB

EB EB count count count

for =1 to 

       Calculate ( , ) by (4).

       Calculate  fitness function  ( ) of ( ).

       if   ( ) better than ( ), ( )= ( ), ( )= 0; else ( )= ( )+1.

end

l N

l d

J l l

J l J l l l k l k l k l








θ

θ

θ θ



 

Selecting the best-so-far solution bestθ from θ , and calculate pl by (6); 

Onlooker Bee Phase 

F

OB

OB OB

OB OB count count count

for =1 to 

       Calculate new ( ) by (5).

       Calculate  fitness function ( ) of ( ).

       if   ( ) better than ( ), ( )= ( ), ( )= 0; else ( )= ( )+1.

end

l N

l

J l l

J l J l l l k l k l k l






θ

θ

θ θ



 

Scout Bee Phase 

F

count limit

SB

SB SB

SB SB count

for =1 to 

       if ( )

       Calculate new ( ) by (7).

       Calculate fitness function ( ) of ( ).

       if   ( ) better than ( ), ( )= ( ), ( )= 0.

end

l N

k l k

l

J l l

J l J l l l k l


 







θ

θ

θ θ



 

iteration = iteration + 1 

end 
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3.2. Parameter Identification of Solar Cells Using Artificial Bee Colony Algorithm 

We considered the problem of parameter identification as an optimization problem where  

the parameter set is sought that produces the best approximation to the I-V measurements obtained by 

the true solar cell. An objective function in Equation (8) was defined to evaluate the matching quality 

between a candidate parameter set and the experimental data. 

arg min ( )Jθ θ  (8)

where, for single diode modal, θ = θ1 and J(θ) is described as 

2

s t s t
t ph L

sh

( )1
( ) {exp 1}t t

t

q V R I V R I
J I I I

N akT R

           
θ  (9)

here, the subscript t of Vt and It is the discrete time index, N is the numbers of sampling point in  

time-domain. Whereas for the double diode model such function is described as 

2

s t s t s t
t ph L1 L2

1 2 sh

( ) ( )1
( ) {exp 1} {exp 1}t t t

t

q V R I q V R I V R I
J I I I I

N a kT a kT R

      
               

θ  (10)

Here θ = θ2. 

 

Figure 4. Flowchart of the proposed method. 
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In Equations (9) and (10), the values of Vt and It are experimentally collected from the solar cell.  

The parameter identification is a process that minimizes the difference between the measured data and 

the calculated current by adjusting the model parameters θ. It is clear that the smaller the J(θ),  

the more accurate the model is. The proposed approach of parameter identification of PV solar cells 

encodes the parameters of the solar cell as a candidate solution. Therefore, each food source uses θ1 or 

θ2 as decision variables within the optimization algorithm. For clarity, the flowchart in Figure 4 

illustrates the proposed method which is used to identify the optimal parameters of the solar  

cell models. 

4. Experimental Section 

In this section, firstly six commonly used benchmark functions are used to test the performance of  

the proposed improved ABC algorithm. Then, the I-V characteristic of a diameter commercial silicon 

solar cell is used to evaluate the efficiency of the proposed parameter identification method. All the 

experiments in this paper were run on the same hardware (Intel Core i3-2310 Quad with 2.1 GHz CPU 

and 2 GB memory). 

4.1. Numerical Experiments and Results 

Unimodal and multimodal benchmark functions as shown in Equations (11)–(16) were used in this 

experiment. The aim is to minimize fi(β), I = 1, 2, …, 6. We validate the performance of improved ABC 

algorithm (IABC) by comparing it with the origin ABC algorithm in [14], DE in [12], and PSO in [16]. 

The control parameters in these algorithms are given in Table 2. Figure 5 shows the comparison of  

the convergence speed of four different optimization algorithms. Table 3 presents the mean and standard 

deviation of the 20 runs of the four optimization algorithms on the six functions. The “Mean” column is 

the average output values of benchmark functions. The “Std” column shows the standard deviation of  

the results. Moreover, “Best”, “Median” and “Worst” of solutions obtained in the 20 runs by  

each algorithm. 

Sphere function: 





D

d
df

1

2
1 )( β  (11)

where the range of β is [−100 100]D, D = 30. The global minimum of the Sphere function is 0, and its 

characteristic is unimodal and separable. 

Griewank function: 

1)cos(
4000

1
)(

11

2
2 






















d
f d

D

d

D

d
d

β  (12)

where the range of β is [−600 600]D, D = 30. The global minimum of the Griewank function is 0, and 

its characteristic is multimodal and non-separable. 

Ragstrigin function: 

 



D

d
ddf

1

2
3 10)2cos(10)( β  (13)
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where the range of β is [−5.12 5.12]D, D = 4. The global minimum of the Ragstrigin function is 0, and 

its characteristic is multimodal and separable. 

 

Figure 5. Convergence curve of difference optimization algorithms: (a) Sphere function;  

(b) Griewank function; (c) Ragstrigin function; (d) Rosenbrock function; (e) Ackley function; 

(f) Schaffer function. 

Table 2. Control parameters of optimization algorithm. 

Algorithm Parameters 

IABC  
ABC 

Population size = 30  
klimit = 5 

DE 
Population size = 30  
Mutation factor = 2  

Crossover constant = 0.5 

PSO 
Population size = 30 

Learning factors c1 = c2 = 2  
Inertia weight taken from 0.9 to 0.4 
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Table 3. Comparison of testing result of different optimization algorithms. 

Benchmark Function IABC Algorithm ABC Algorithm DE Algorithm PSO Algorithm 

Sphere function 

Best 0 5.8688 × 10−40 0 2.3404 × 10−63 

Median 0 2.5194 × 10−39 4.7858 × 10−103 3.4396 × 10−60 

Worst 0 1.9346 × 10−38 9.8389 × 10−102 5.0652 × 10−58 

Mean 0 4.8372 × 10−39 1.6817 × 10−102 5.4403 × 10−59 

Std 0 5.8316 × 10−39 3.0304 × 10−102 1.5894 × 10−58 

Griewank 

function 

Best 0 0 0 0 

Median 0 0 0 0.0148 

Worst 0 0 0.0123 0.0319 

Mean 0 0 0.0020 0.0130 

Std 0 0 0.0043 0.0123 

Ragstrigin 

function 

Best 0 0 4.9748 0 

Median 0 0 8.4572 0 

Worst 0 0 9.9496 0 

Mean 0 0 8.0592 0 

Std 0 0 1.7829 0 

Rosenbrock 

function 

Best 3.0402 21.4035 5.0174 × 103 5.2015 × 103 

Median 3.0402 23.0599 6.0455 × 103 7.7961 × 103 

Worst 3.0402 23.9106 7.0165 × 103 9.0812 × 103 

Best 3.0402 22.9217 6.0143 × 103 7.6646 × 103 

Median 1.5736 × 10−15 0.6897 738.2365 1.0434 × 103 

Ackley function 

Best 0 0 0 0 

Median 0 2.8194 × 10−9 0 2.2204 × 10−16 

Worst 0 1.3155 × 10−4 0.0074 1.7764 × 10−15 

Best 0 1.3264 × 10−5 7.3960 × 10−4 6.6613 × 10−16 

Median 0 4.1560 × 10−5 0.0023 8.1752 × 10−16 

Schaffer 

function 

Best 0 0 1.9800 0 

Median 0 0 1.9800 0 

Worst 0 0 1.9800 0 

Mean 0 0 1.9800 0 

Std 0 0 1.4803 × 10−16 0 

Rosenbrock function: 

2

1

22
4 )]1()(100[)(

1



 ddd

D

d

f β  (14)

where the range of β is [−30 30]D, D = 30. The global minimum of the Rosenbrock function is 0, and 

its characteristic is unimodal and non-separable. 

Ackley function: 

2
5

1 1

( ) 20 exp(1) 20exp[ 0.2 (1/ ) ] exp[(1/ ) cos(2 )]
D D

d d
d d

f D D 
 

     β  (15)

where the range of β is [−32 32]D, D = 2. The global minimum of the Ackley function is 0, and its 

characteristic is multimodal and non-separable. 
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Schaffer function: 

2

1

2

1

22

6

)](001.01[

5.0)(sin

5.0)(












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d
d

D

d
d

f



β  (16)

where the range of β is [−100 100]D, D = 2. The global minimum of the Schaffer function is 0, and its 

characteristic is multimodal and non-separable. 

In Table 3, we compare the results using the same number of iterations. The Mean is relatively low, 

which implies faster convergence speed among experimental runs. The Std is relatively low, which 

implies higher consistency among experimental runs. The Best, Median and Worst are relatively low, 

which implies a better quality solution than other algorithms among experimental runs. The results in 

Figure 1 and Table 3 that indicates that the IABC can converge to the optimal solution more quickly 

on almost all benchmark functions when it is compared with the other algorithms. The results show the 

proposed algorithm gives better solutions than other algorithms in all cases of benchmark functions. 

4.2. Parameter Identifications and Results 

In order to prove the performance of the proposed method, it has been tested using the I-V 

characteristic of a 57 mm diameter commercial silicon solar cell [17,18]. The experimental data has 

been collected from the system under one sun (1000 W/m2) in standard test conditions. Table 4 reports 

experimental values of voltage and current. The experiment presents the results of five different 

algorithms when they are employed to identify the cell parameters considering the single and double 

diode models. For parameter identification, the control parameters for IABC, ABC, DE and PSO are 

the same as those in Table 2. In addition, the control parameters artificial bee swarm optimization 

(ABSO) in [19] is the same with those in [19] as given by Equation (17). During the optimization 

process, the objective function is minimized with respect to the parameters’ range. The upper and 

lower bounds of the parameters are shown in Table 5. The identified parameters are employed to 

reconstruct the I-V characteristic. The relative error e(t) in Equation (17) is used to further confirm the 

accuracy of the identified model. Figures 6 and 7 illustrate the results comparison of four methods for 

both the single and the double diode models. 

1max 2max

1min 2min

max

min

2.5

1.25

α 0.023

α 0.02

5e

c c

c c

n

 
   
 
 

 (17)

t c( ) ( )e t I I t   (18)

where Ic(t) is a current calculated by the respective model. The smaller e(t) is, the higher accuracy  

the identified model demonstrates. 
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Table 4. Terminal I-V measurements. 

Measurement Measured V Measured I 

1 −0.2057 0.7640  
2 −0.1291 0.7620 
3 −0.0588 0.7605 
4 0.0057  0.7605 
5 0.0646 0.7600 
6 0.1185 0.7590 
7 0.1678 0.7590 
8 0.2132 0.7570 
9 0.2545 0.7555 

10 0.2924 0.7540 
11 0.3269  0.7505  
12 0.3585 0.7465 
13 0.3873 0.7385 
14 0.4137 0.7280 
15 0.4373 0.7065 
16 0.4590 0.6755 
17 0.4784 0.6320 
18 0.4960 0.5730 
19 0.5119 0.4990 
20 0.5265 0.4130 
21 0.5398  0.3165  
22 0.5521 0.2120 
23 0.5633 0.1035 
24 0.5736 −0.0100 
25 0.5833 −0.1230 
26 0.5900 −0.2100 

Table 5. Upper and lower range of the solar cell parameters. 

Parameters Lower Upper 

Rs/Ω 0 0.5 
Rsh/Ω 0 100 
Iph/A 0 1 

IL, IL1, IL2/A 0 1 
a, a1, a2 1 2 

Figures 6 and 7 are the average of 20 independent experiments. Figures 6a and 7a indicate that the I-V 

characteristic found by IABC is in good agreement with the experimental data. The smaller e(t) value in 

Figures 6 and 7 mean that our proposed method provides better accuracy. Comparing the proposed 

method outcomes with other methods results in the above experiments, the proposed method clearly 

outperformed other competing methods. 
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Figure 6. The comparison of the results of four methods for the single diode model:  

(a) comparison between the I-V characteristics generated using our proposed method and  

the measured data; (b) relative error for each measured value based on the identified 

parameters using IABC algorithm; (c) relative error for each measured value based on  

the identified parameters using ABC algorithm; (d) relative error for each measured value 

based on the identified parameters using DE algorithm; (e) relative error for each measured 

value based on the identified parameters using PSO algorithm; (f) relative error for each 

measured value based on the identified parameters using ABSO algorithm. 



Energies 2015, 8 7576 

 

 

 

 

Figure 7. The comparison of the results of four methods for the double diode model:  

(a) comparison between the I-V characteristics generated using our proposed method and  

the measured data; (b) relative error for each measured value based on the identified 

parameters using IABC algorithm; (c) relative error for each measured value based on  

the identified parameters using ABC algorithm; (d) relative error for each measured value 

based on the identified parameters using DE algorithm; (e) relative error for each measured 

value based on the identified parameters using PSO algorithm; (f) relative error for each 

measured value based on the identified parameters using ABSO algorithm. 
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To further investigate the quality of the identified parameters, we put them into the power vs. voltage 

(P-V) characteristic which is reconstructed. The P-V characteristic resulted from the identified model 

along experimental data is shown in Figures 8 and 9, respectively. The similarity between the model 

results and the performance of the real system proves the superiority of the proposed method. 

 

Figure 8. Comparison between the P-V characteristics resulting from the experimental data 

and the single diode model. 

 

Figure 9. Comparison between the P-V characteristics resulting from the experimental data 

and the double diode model. 

Recently, a deterministic approach was used to solve the problem of parameter identification for solar 

cells, such as [5,6,20], etc. Firstly, the comparison between the proposed method, the method in [20] (see 

2.D) and the method in [5] is made in terms of computational cost. The computational cost of the proposed 
method is as follows: step F s F[5 (2 )(15 8)]n N N N N     times additional and/or subtraction operation for 

single diode model, step F s F[7 (2 )(20 12)]n N N N N     times additional and/or subtraction operation 

for double diode model, and step F s[(2 )(20 7)]n N N N   times multiplication and/or division operation 

for single diode model, step F s[(2 )(20 9)]n N N N   times multiplication and/or division operation for 

double diode model, note that nstep is the number of function evaluations. The computational cost of  
the method in [20] (see 2.D) is as follows: Guess step8 31( )n n   times additional and/or subtraction 
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operation, and Guess step20 44( )n n   times multiplication and/or division operation. Here Guessn is  

the evaluation number which determines the initial value of Rs and a. The computational cost of  
the method in [5] is as follows: step20 (8 18)n N   times additional and/or subtraction operation, and 

step40 (2 29)n N   times multiplication and/or division operation, and step10 9n  times integration 

operation. In the standard condition, the optimal parameter value of three different methods is 

summarized in Table 6. The nstep of the proposed method are 603 and 932 for the single and double 

diode models, respectively. The nstep of the proposed in [5] is 23 while the nGuess and nstep of the method 

in [20] are 147 and 178. Note that the value of nGuess and nstep are different from [20] because we  

and [20] chose different initial values for the independent parameters Rs and a. 

Table 6. Identified parameters after applying different methods. 

Parameters 
The Proposed Method 

The Method in [20] The Method in [5] 
Single Diode Model Double Diode Model 

Rs/Ω 0.0363 0.0364 0.0365 0.0364 
Rsh/Ω 54.4610 55.2307 52.8591 53.7804 
Iph/A 0.7599 0.7609 0.7609 0.7608 

IL (or IL1)/A 3.3243 × 10−7 2.6900 × 10−7 0.3102 0.0407 
IL2/A - 2.8198 × 10−7 - 0.2874 

a (or a1) 1.4842 1.4670 0.0390 1.4495 
a2 - 1.8722 - 1.4885 

J(θ) 0.0010 0.0010 9.8126 × 10−4 0.0011 

In the subsequence, we made a comparison between the proposed method, the method in [20]  

(see 2.D) and the method in [5] by conducting an experiment under nonstandard test conditions.  

The Rmse index defined by Equation (19) is used to measure accuracy of different methods.  

The experiment results of one diode model was summarized in Table 7, while the experiment results of 

two diode models was summarized in Table 8. 

2
t c

1
[ ( )]

t

Rmse I I t
N

   (19)

Table 7. Results obtained by different methods for the single diode model in nonstandard 

test conditions. 

Testing Temperature 
Methods 

The Method in [20] The Proposed Method 

25 °C 9.8126 × 10−4 0.0010 
50 °C 9.8126 × 10−4 0.0010 
75 °C 9.8126 × 10−4 0.0010 

100 °C 5.8605 × 10−3 0.0010 
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Table 8. Results obtained by different methods for the double diode model in nonstandard 

test conditions. 

Testing Temperature 
Methods 

The Method in [5] The Proposed Method 

25 °C 9.9191 × 10−4 0.0010 
50 °C 2.7984 × 10−3 0.0010 
75 °C 4.6523 × 10−3 0.0010 

100 °C 3.5554 × 10−3 0.0010 

The result comparison for single diode model is shown in Table 7. The Rmse is relatively low, which 

also implies higher accuracy among experiments. The Rmse of the proposed method is slightly bigger 

than the result of the method in [20] at T = 25 °C, T = 50 °C and T = 75 °C, and only smaller than  

the result of the method in [20] at T = 100 °C. From the results comparison shown in Table 7, the method 

in [20] yields the better result in terms of Rmse than the proposed method in some cases. In general, [20] 

has benefit in that they utilize reduced forms to decrease the dimension of the parameter space. The method 

in [5] further reduces the dimension of the parameter space to one. However, the method in [5] usually 

returns precise results only when a high number of points on the I-V curve are available. It may be why  

the Rmse of the proposed method is smaller than the result of the method in [5] shown in Table 8.  

The method in [20] has deficiencies: (1) a different solution can be achieved if different reduced forms 

are used; (2) not directly applicable to multi-diode model parameter identification due to the limitation 

of Lambert W function formalism. The ABC algorithm is very suitable for the search for a global 

optimal solution, such as model parameter identification of solar cells in this paper. Unique solutions 

are achieved if the algorithm converges to the same value, so the first drawback of [20] can be 

avoided. It can also be used for the multiple-diode model. 

To examine the noise impacts for the distinct performance of the proposed method, in the last 

experiment, the measured data V is added with varied white Gaussian noise of varying SNR (signal to 

noise ratio, SNR) from 10 to 35 dB. Moreover, we compared the single diode model with the double 

diode model. The estimate performance is evaluated by Equation (19). Figure 10 shows the 

comparison of results of two models. 

 

Figure 10. Robustness of the two different models against noise. 
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According to the result in Figure 10, the single diode model demonstrates a better performance for 

noise robustness than the double diode model when SNR is below 15 dB. However, the double diode 

model displays better performance for noise robustness than the single diode model when SNR  

exceeds 15 dB. 

5. Conclusions 

In this paper, an improved artificial bee colony algorithm had been proposed to identify the 

parameters in the complex nonlinear solar cell models. We propose to make major changes by 

introducing the best-so-far mechanism to generate a new solution with better quality and control the 

diversity of generations. In the numerical benchmark experiments, it is shown that improved ABC can 

effectively find better solutions than the original ABC and the other two commonly used algorithms. 

After the validation of the algorithm, improved ABC had been employed to identify the unknown 

values of solar cell parameters from the experimentally measured I-V characteristics. For solar cell 

models, the experiment results of double and single models show that the proposed method gives 

comparable performance to other conventional methods. As a result, the proposed method can be a good 

candidate to solve the identified problems with parameters of complex nonlinear solar cell models. 
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