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Abstract: Wave energy is one of the most promising alternatives to fossil fuels due to the 

enormous available resource; however, its development may be slowed as it is often 

regarded as uneconomical. The largest cost reductions are expected to be obtained through 

economies of scale and technological progress. In this sense, the incorporation of wave 

energy systems into offshore wind energy farms is an opportunity to foster the 

development of wave energy. The synergies between both renewables can be realised 

through these co-located energy farms and, thus, some challenges of offshore wind energy 

can be met. Among them, this paper focuses on the longer non-operational periods of 

offshore wind turbines—relative to their onshore counterparts—typically caused by delays 

in maintenance due to the harsh marine conditions. Co-located wave energy converters 

would act as a barrier extracting energy from the waves and resulting in a shielding effect 

over the wind farm. On this basis, the aim of this paper is to analyse wave energy 

economics in a holistic way, as well as the synergies between wave and offshore wind 

energy, focusing on the shadow effect and the associated increase in the accessibility to the 

wind turbines. 

Keywords: wave energy; offshore wind energy; co-located wind-wave farm; synergies;  

cost reductions; weather windows for O & M 
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1. Introduction 

Ocean energy has emerged with force in the search for alternatives to conventional energy 

resources. Nevertheless, there are some barriers that may hinder the development of marine energies, 

such as the early stage of development of the technologies [1–11], high costs involved [12–16] or 

uncertainties regarding the environmental impacts [17–27]. Among the different alternatives of ocean 

energy, this work focuses on two of them: Offshore wind and wave energy. As for the former, 

investment in offshore wind systems has been growing rapidly throughout Europe in order to achieve 

EU targets for renewable energy in 2020 [28], due to the powerful available resource [29–32] and its 

similarities to its onshore counterpart. However, there exist some limitations that could hinder its 

introduction into the energy mix, such as the higher investment implied, more demanding maintenance 

tasks or power variability. For its part, wave energy presents extensive possibilities for the future 

thanks to its enormous potential for electricity production [12,15,33–39]. In fact, the global wave energy 

potential resource has been estimated at 10 TW [22], and depending on what is considered to be 

exploitable, this covers from 15% to 66% of the total world energy consumption [40,41].  

Its technology is in its infancy, despite recent research on Wave Energy Converters (WECs) [42–45] 

and its structural response [46–48], and it presents higher levelised costs than any non-renewable energy 

and also than most renewables [49]. Therefore, at present, wave energy is only economically viable if 

subsidized. However, over time important cost reductions can be expected to occur through economies 

of scale and technological effects, such as technological advances and improvements by practice. 

In this sense, combining wave energy systems with offshore wind farms has been regarded as a 

good solution to promote and accelerate the development of wave energy technology [50–52]; at the 

same time a better use of the marine resource would be achieved [53] and the installation and operation  

costs would be reduced by sharing common installations [53]. Besides, other synergies arise when this 

combination is considered, such as a better predictability of the energetic resource [49], smoothed 

power output [54] or enlarged weather windows for operation and maintenance tasks [55]. The latter is 

of special interest for this paper: The energy extraction of an array of WECs creates a wake  

that modifies the local wave climate by reducing the mean wave height, which is known as the  

shadow effect [56]. 

On this basis, the first aim of this study is to offer a review of wave energy economics, comparing 

this renewable with other conventional energy sources and assessing the influence on the conclusions 

about wave energy profitability of including other factors like the learning curve or externalities. 

Second, combined wave and wind systems are proposed as a way to reduce costs and boost the joint 

development of both renewables taking advantage of the mutual benefits of their combination.  

In this line, the existing synergies between wave and offshore wind energy systems are analysed in this 

paper, paying special attention to the shielding effect of co-located WECs, which leads to enlarged 

weather windows for Operation and Maintenance (O & M) tasks, thereby reducing the non-operational 

periods of wind turbines due to delays in maintenance tasks—one of the challenges of this renewable, 

not least when it is compared with onshore wind. The analysis of the so-called shadow effect is based 

on the results of previous studies, which allow the assessment of the influence of the wind farm 

characteristics and the co-located WECs layout on the benefit achieved—which are translated into 

monetary terms. 
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2. Economics of Wave Energy 

Among the different options of wave energy farms (onshore, nearshore and offshore), this paper focuses 

on offshore wave energy farms since this is closer than any other to commercial development [40,57]. 

The main costs in a wave energy plant are the following: (i) pre-operating cost; (ii) capital expenditure 

(CAPEX); (iii) operational expenditure (OPEX); and (iv) decommissioning costs. As Figure 1 shows, 

the pre-operating and decommissioning costs are insignificant in the total, whereas O & M (plus the 

replacement) represents 64.99% of the total, and the initial investment 34.68% [58].  

 

Figure 1. Percentage of each individual cost in the levelised cost. 

As for the former, the pre-operating cost involves all the expenses incurred on preliminary studies, 

projects, environmental impact assessment, consenting procedures, etc., as well as direction and 

coordination. It will depend on a number of factors, such as the location, as policies vary from one 

country to other, or the size of the installation. Because of that, there is a wide range of values for this 

cost reported in the bibliography, and it is usually expressed as a percentage of the capital costs  

(Table 1). 

Table 1. Pre-operating and licenses costs. 

Category Cost Source 

Pre-operating cost 
10% CAPEX (€) [14,59] 

500,000–2,000,000 € [60] 

Licenses and permissions 
0.037 × Installed Power in W ($) [61] 

2% WECs cost (€) [14,59] 

For its part, the capital expenditure (CAPEX) includes the costs of the WECs and other elements of 

the wave energy plant, as well as their installation (Table 2). There is little available information about 

the cost of wave energy technology due to its initial stage of development. Table 3 shows the cost of three 

WECs that are close to a commercial stage. If the installation is included, the total cost rises to  

2.5–6.0 M€ per installed MW [62–64]. 
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Table 2. Summary of initial costs. 

Element Cost Source 

WEC and installation 2.5–6.0 M€/MW [62–64] 

Mooring system 
10% WECs cost 

[12,59,65,66] 
0.265 €/N 

Mooring Installation 50,000 €/day [67] 
Underwater cable 10% CAPEX [14,68] 
Cable installation 2.07 €/m [69] 

Electrical substation ≈1.2 M€ [70] 

Table 3. Rated power and estimated cost of WaveDragon, Pelamis and AquabuOY (sources: [71–74]). 

Technology WaveDragon Pelamis AquabuOY 

Rated power (kW) 7000 750 250 
Cost ($/unit) 16,800,000 25,000,000 200,000 

Both with the initial investment, the operation and maintenance cost (OPEX) has an important 

weight in the total cost of the installation throughout its lifetime. Since there is not enough experience 

in wave energy installations, a preliminary estimation of this expenditure can be made on the basis of the 

experience in the oil and gas and offshore wind energy sectors (Table 4). Moreover, the whole plant is 

supposed to be dismantled after 20 years and the decommissioning cost is estimated to be 0.5%–1% of 

the initial investment [60]. 

Table 4. Annual costs of operation and maintenance (source: [49]). 

Cost €/MWh % CAPEX %OPEX 

O & M tasks 20–35 1.5%–5% 57% 
Revision and time off  10  

Spares  90  
Public services 3.5   

Renting  2.5  
Insurance cost 15 0.8%–2% 13%–14% 

All in all, the levelised cost of wave energy—which is the ratio of total lifetime expenses vs. total 

expected outputs expressed in terms of the present value [12]—ranges between 180 €/MWh and  

490 €/MWh [49]. These values are quite higher than those of other traditional non-renewable 

electricity generation methods like pulverized fuel or even more recent methods like combined cycle 

gas turbine with carbon capture and storage, whose costs are respectively 32.57 €/MWh and  

59.78 €/MWh [49]. Moreover, wave energy is also more expensive than consolidated renewables like 

onshore wind energy (67.68 €/MWh) and even than other emerging renewables like offshore wind 

energy (101.43 €/MWh). Therefore, wave energy seems not to be economically competitive in the 

present days. However, cost reductions are expected to be increased through economies of scale and 

technological effects, such as technological advances and improvements by practice, which are reflected 

by the learning curve (Equation (1)). In this line, there are not many studies examining the impact of 

learning curves on the profitability of wave energy plants. Despite that, most of them agree on a 
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learning rate of 85%–90% within the next 10 years [14,75–78]. If this is considered, even in a pessimistic 

scenario characterised by slow development of wave technology, low installed capacity and, consequently, 

small learning factor, a reduction in the levelised cost of wave energy around 22% may be obtained [58]. 

log

log 2

0 0

f

x xC P

C P

 
 
  

  
 

 (1)

where Cx is the costs at time x, C0 is the costs at time 0, Px is the cumulated capacity at time x, P0 is the 

cumulated capacity at time 0 and f is the learning factor. Furthermore, decisions about energetic 

planning are usually based on the generation cost of each source of energy, forgetting the other stages 

in energy production. Nevertheless, as with all human activities, energy production has impacts 

(positive and negative), which must be considered in the total energy cost. This is known as externalities. 

A new tendency has emerged to assess the energy cost which consists on internalizing these 

externalities [58]. For that purpose, the first step is to determine the impacts (positive and negative) 

which have to be considered in the energy production process taking into account entire the life cycle. 

One of the procedures followed to evaluate physical impacts is the Impact Pathway Approach of 

ExternE [79,80], which identifies: (i) emission sources; (ii) dispersion (increase in ambient concentration); 

(iii) impacts; and (iv) associated cost. For example, it is estimated that carbon emissions in wave 

energy are 6 gCO2/kWh [81], whereas the average value for conventional energy sources is around  

250 gCO2/kWh [82]. Therefore, a reduction of 244 gCO2/kWh would be achieved by wave energy 

production, and this should be included in the energy price. Additionally, the environmental 

externalities there are others that should be considered, such as the creation of new jobs or the increase 

of the supply security, reducing the risk of supply cuts of conventional fuels, and therefore avoiding 

important economic losses; e.g., a cut of one day in the gas supply in Spain would produce a loss of 

0.03% of the GDP [83]. All in all, oil and coal technologies for electricity production have associated 

high external costs (60 and 58 €/MWh, respectively) in comparison with other non-renewables like 

natural gas (15 €/MWh), and the difference is still greater in the case of wind energy, with an external 

cost of a mere 1.75 €/MWh [84–86]. In fact, a study [58] concluded that if the externalities were 

included in the economic studies analysing which technology is most viable, the conclusions would 

change substantially (Figure 2). 

 

Figure 2. Levelised cost (€/MWh) of different technologies including external costs. 

(Reprinted with permission from [58]. Copyright 2015 Taylor & Francis) 
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3. Co-Located Wind and Wave Energy Farms 

Taking advantage of various renewable resources simultaneity is being regarded as an opportunity 

to turn renewables into a more cost-competitive option. In the case of wave energy, the combination 

with offshore wind energy is emerging with force due to the existing synergies between both 

renewables. According to the global distribution of the wind and wave energy resources (Figure 3),  

it is apparent that there are some areas with large possibilities to these combined options. 

 

Figure 3. Global distribution of offshore wind and wave energy resources. The former is 

reflected through the colour scale and the latter by means of the energy density (kWm−1):  

10 kWm−1 is the minimum needed for a commercial scale wave energy project. 

There are different possibilities for a combined wave and wind array [53]: (i) co-located wind-wave 

energy; (ii) hybrid converters; and (iii) energy islands (Figure 4). This work focuses on the former,  

co-located systems [87,88], since they are the simplest option at the present stage of development of 

wave and offshore wind technologies [30,89,90]. These systems combine an offshore wind farm with a 

WEC array with independent foundation systems but sharing: The same marine area, grid connection,  

O & M equipment and personnel, port structures, etc. [51]. 

 

Figure 4. Classification of combined wave-wind technologies. 
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There are many synergies that could be exploitable to overcome some of the barriers that marine 

energies could present to entry into the market. First of all, important cost savings could be achieved 

during the setup of the energy farms because of common elements and coordinated strategies [54,91–93]. 

The largest savings would be achieved in the electrical connection, since the offshore station and the 

export cable can be the same for both installations. When hybrid technology was developed, important 

cost reductions in the substructure foundation system would be achieved as hybrid wave converter 

systems share the same substructure or foundation with the offshore wind turbine [89,91]. Moreover, 

the cost of O & M tasks can be reduced in co-located farms since the scheduled maintenance of wave 

and wind energy can be organised to be done at the same time or in continuous length of time [53].  

A recent study [94] achieved cost savings around 25% in the capital costs and up to 14% in the 

maintenance costs of combined wave and wind energy farms. Moreover, offshore developers pay for 

leases according to the area occupied, so covering the same area with two sources of electricity 

generation reduces these costs. 

Besides, the combination of two different technologies harnessing different sources of energy at a 

single array site will increase the global energy yield per array unit and thereby contribute to a more 

sustainable use of the natural resources [53]. In this sense, combined energy farms would reduce the 

feasible environmental impact of these offshore energy installations since the affected area will be 

smaller than in the case of wave and wind farms as separate installations. Furthermore, recent studies 

have concluded that introducing WECs in offshore wind energy parks compensates the power 

variability and, thus, smoothes the power output [87,95–97]. This way, balancing cost could be 

reduced up to 35% [98]. Moreover, a recent work [99] found that waves and the power output of 

WECs are 23% and 35%, respectively, more predictable than winds and the wind turbine power 

output. Finally, wave energy developers can eliminate part of the financial risk in this unproven 

technology by coordinating with wind projects. As a consequence, the learning curve effect would lead 

to faster reductions in the cost of wave energy, enhancing its competitiveness. 

Enlarged Weather Windows 

In addition to the above benefits, other technological synergies would be realised through combined 

wave and wind energy farms, such as the so-called shadow effect. The operational limit of workboats 

for O & M tasks—the most cost-effective access system—is a significant wave height of  

1.5 m [100,101]. When this threshold is exceeded delays in maintenance and repairs ensue, and the 

resulting downtime causes earnings to be missed. Co-located WECs deployed at the periphery of the 

wind farm could produce a shielding effect over the offshore wind farm that enlarges the weather 

windows for O & M. This increase in the accessibility to the wind turbines brings in reduced downtime 

and, thus, in considerable cost savings—around 25% of the O & M costs that would lead to an 

reduction in the overall project cost of energy of 2.3 percent [102]. The analysis of the shadow effect 

provided by co-located WECs at the periphery of a wind farm was investigated in previous  

studies [55,103,104] through four real wind farms currently in operation, whose locations and 

characteristics are presented in Figure 5 and Table 5, respectively. Comparing this information, it can 

be stated that these four wind farms encompass a wide variety of characteristics on which to establish a 

comparative analysis. The third-generation numerical wave model SWAN (Simulating WAves 
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Nearshore) was used to simulate wave propagation. In all simulations, high-resolution results were 

obtained as the model was implemented by grids with resolution higher than 40 m. Both WECs  

and wind turbines were represented in the model by a transmission coefficient, whose value can vary 

from 0% (i.e., 100% of incident wave energy absorbed) to 100% [17,18,20,27,30,105–108]. 

 

Figure 5. Location of the four wind farms: Alpha Ventus, Bard 1, Horns Rev 1 and Lincs. 

(Reprinted with permission from [103]. Copyright 2015 Elsevier Science Ltd.). 

Table 5. Characteristics of the offshore wind farms. (Reprinted with permission from [103]. 

Copyright 2015 Elsevier Science Ltd.) 

Wind Farm Depth (m) 
Distance from 

Shore (km) 
Installed 

Capacity (MW) 
Number 
Turbines 

Area (km2) 

Alpha Ventus 33–45 56 60 12 4 
Bard 1 39–41 90–101 400 80 59 

Horns Rev 1 6–14 14–20 160 80 21 
Lincs 8–16 8 270 75 41 

With regard to the wind farm layout (Figure 6), the Alpha Ventus wind farm is composed by  

12 turbines: six AREVA turbines with a tripod substructure and six Repower 5 M turbines with a  

jacket-frame substructure [109]. For their part, Bard 1 has 80 wind turbines of 5 MW (Bard 5.0) and a 

tripod substructure [110–112], Horns Rev 1 has 80 turbines (Vestas V80-2MW) with a monopile 

substructure erected on a grid of 10 rows [113] and Lincs is composed of 75 wind turbines Siemens  

3.6 MW with monopile substructure [114,115]. At Alpha Ventus and Horns Rev 1 the wind turbines 

are ordered on a Cartesian grid, whereas in Bard 1 and Lincs they are not organised in clearly defined 

rows, and the distance between turbines varies in each case. 

The wind farms selected as baseline scenarios presented levels of accessibility to the wind  

turbines—percentage of time when the significant weight height within the wind farm is under the 

workboat limit, 1.5 m—between 57% and 74% during the study period (Table 6), whereas a level of 

accessibility around 82% is required to ensure an availability—the percentage of time that the farm is 

able to produce electricity—of 90% [116]. This is in well concordance with the general panorama, 
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since while modern onshore wind turbines show availability levels of 98% [117], this level is 

significantly reduced in offshore installations [117–120]. 

 

Figure 6. Layout and bathymetry of Alpha Ventus, Bard 1, Horns Rev 1 and Lincs (water 

depths in m). (Reprinted with permission from [103]. Copyright 2015 Elsevier Science Ltd.) 

Table 6. Accessibility to the wind turbines in the baseline scenario for the annual period 

analysed. (Reprinted with permission from [103]. Copyright 2015 Elsevier Science Ltd.) 

Wind Farm Accessibility (%)

Alpha Ventus 67.53 
Bard 1 56.99 

Horns Rev 1 59.86 
Lincs 74.11 

In the light of this situation, a wide variety of co-located wave farm layouts were analysed in  

Alpha Ventus (Table 7, Figure 7) in order to identify the configurations that maximise the wave height 

reduction. They are characterised by different spacing between WECs, disposition and number of 

devices, with the aim of providing shelter not only from NW waves (the prevailing wave direction) but 

also from W and SW waves, which are relatively frequent in the area. In all cases, WaveCat, a floating 

offshore WEC, whose principle of operation is wave overtopping with a hull length of 90 m [121],  

was the WEC employed. The simulations were carried out considering the predominant sea state in the 

Alpha Ventus site: Hs = 1.5 m, Tp = 6.5 m and θ = 330°. 
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Table 7. Characteristics of the WEC layouts, with nWECs the total number of WECs. 

(Reprinted with permission from [55]. Copyright 2015 Elsevier Science Ltd.) 

No. Spacing (m) Configuration nWECs Short Description 

1 

750 

Ai 9 2 rows to the NW. 

2 Aii 12 2 rows to the NW and 2 more rows to the W, at an angle of 45°. 

3 Aiii 12 Arch to the NW. 

4 

450 

Bi 12 2 rows to the NW. 

5 Bii 17 2 rows to the NW and 2 more rows to the W, at an angle of 45°. 

6 Biii 17 Arch to the NW. 

7 

198 

Ci 22 2 rows to the NW 

8 Cii 30 2 rows to the NW and 2 more rows to the W. 

9 Ciii 28 Arch to the NW. 

10 

198 

Cib 27 
2 rows to the NW and 1 row to the SW of the farm constituted 

by 5 additional WECs. 

11 Cic 31 
2 rows to the NW and 2 more rows to the SW of the farm 

constituted by 9 additional WECs. 

12 Ciib 32 
2 rows to the NW and 2 more rows to the W, at an angle of 45°. 

(2 additional WECs) 

13 Ciic 34 
2 rows to the NW and 2 more rows to the W, at an angle of 45°. 

(4 additional WECs) 

14 Ciiib 30 Arch to the NW with 2 additional WECs. 

15 Ciiic 32 Arch to the NW with 4 additional WECs. 

 

Figure 7. Co-located wave-wind farm layouts (configurations Ai to Ciiic). (Reprinted with 

permission from [55]. Copyright 2015 Elsevier Science Ltd.) 
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In view of the results, the highest wave height reductions were obtained in the configurations with 

low spacing between devices, not only due to the larger number of WECs but also by the aggregation 

of the shadow effect provided by each devices, reaching average wave height reductions up to 24.91% 

in the whole farm. Among these layouts, Ci, Cib and Cic should be rejected since they leave part of the 

wind farm unprotected (Figure 8). Therefore, the best WECs layouts were Ciic and Ciiic which 

corresponds with: Two main rows of WECs with a spacing of 198 m orientated towards the prevailing 

wave direction and other two rows of devices to face secondary waves deployed in an angular 

configuration in the first case and forming an arch in the latter. 

 

Figure 8. Wave height reduction within the Alpha Ventus wind farm for the predominant 

sea state in this site: Hs = 1.5 m, Tp = 6.5 m and θ = 330° and configurations Ci to Ciiic. 

(Reprinted with permission from [55]. Copyright 2015 Elsevier Science Ltd.) 

On this basis, these both configurations (Figures 9 and 10) were analysed in depth in the four wind 

farms—Alpha Ventus, Bard 1, Horns Rev 1 and Lincs—by considering annual measured wave data 

during 2012 and 2013 by buoys located in the vicinities of the wind farms [103]. The number of WECs 

and the rate with the number of wind turbines is shown in Table 8. 
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Figure 9. Co-located wind farm layouts with WECs at an angle. (Reprinted with 

permission from [103]. Copyright 2015 Elsevier Science Ltd.) 

 

Figure 10. Co-located wind farms with an arched WEC layout. (Reprinted with permission 

from [103]. Copyright 2015 Elsevier Science Ltd.) 
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Table 8. Total number of co-located WECs, number of devices in each i-th Vertical Row 

(VRi) of co-located WECs and rate between the total number of WECs and wind turbines (r). 

Wind Farm 
Layout in Angle Layout in Arch 

VR1 VR2 Total r VR1 VR2 Total r 

Alpha Ventus 19 15 34 2.83 17 15 32 2.67 
Bard 1 40 39 79 0.99 40 39 79 0.99 

Horns Rev 1 28 27 55 0.69 27 26 53 0.66 
Lincs 41 40 81 1.01 40 40 80 1 

In all cases, important wave height reductions were obtained, especially in Bard 1 with an average 

wave reduction between 17% and 19%, thanks to the good interception of the incoming waves  

(Figure 11). These results were followed very closely by those obtained in Alpha Ventus (around 17%) 

and Horns Rev 1 (between 15% and 17%), whereas the wave height reduction achieved at Lincs was 

smaller (around 13%) since part of the farm remained unprotected against incoming waves from 

secondary directions due to its elongated shape (Figure 12). This fact was supported when the spatial 

variation in the wave height reduction was analysed, since in the case of Lincs the wave height 

reduction decreased from 40% in the wind turbines just behind the co-located WECs to 5% in the 

further turbines [103]. In fact, the most homogeneous reduction throughout the wind farm was 

achieved in the case of wind farms with geometry similar to a square and smaller spacing between 

wind turbines, such as Horns Rev 1. Moreover, this kind of farms would require fewer WECs to 

protect the whole farm from incoming waves. Another important factor in the results is the distance 

from the coast: Being closer to land is not a positive factor to implement co-located WECs, since it 

normally implies lower water depths and a milder sea climate, and consequently there is less available 

wave energy to be extracted by the WECs [103]. 

 

Figure 11. Wave height reduction due to co-located WECs at Bard 1 under a sea state 

with: Hs = 1.71 m, Tp = 6.09 s and θ: 229.6°. The colour scale represents the significant 

wave weight, Hs (m). 
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Figure 12. Wave height reduction obtained with co-located WECs at Lincs under a sea 

state with: Hs = 1.18 m, Tp = 6.03 s and θ = 60.16°. The colour scale represents the 

significant wave weight, Hs (m). 

Although the combination of wave and wind energy farms presents better results in some cases than 

in others, the wave height reductions achieved bring in important improvements of the accessibility to 

the wind turbines for all the cases analysed (Table 9). In fact, the accessibility raised over 82% for two 

of the farms, which is the reference value to maintain a farm availability of above 90% [116]. In order 

to translate this increase of time accessibility into monetary terms, it could be considered an estimated 

cost (or lost earnings) of delayed repairs about 300 €/h [122,123]. 

Table 9. Accessibility of the co-located farms and the increase (∆) in comparison with the 

baseline scenarios. (Reprinted with permission from [103]. Copyright 2015 Elsevier 

Science Ltd.) 

Wind Farm Layout Accessibility (%) Δ (%) 

Alpha Ventus 
in angle 82.33 17.97 
in arch 82.19 17.83 

Bard 1 
in angle 69.66 18.19 
in arch 69.04 17.46 

Horns Rev 1 
in angle 70.89 15.56 
in arch 69.52 13.89 

Lincs 
in angle 81.30 8.85 
in arch 81.10 8.61 

Further, given that the wave height reduction within the wind farm decreases with the distance from 

the WECs barrier towards the periphery, it is interesting to analyse the accessibility to each individual 

wind turbine apart from the accessibility in the entire farm. The most remarkable thing is that a quite 

homogeneous level of accessibility is achieved within the entire farm, since around 50% of the wind 

turbines experienced an increase in the accessible timeframe of 20%, and the remaining part an 

increase of at least 10%, with the exception of Lincs where waves recover more quickly throughout the 

farm due to the soft climate and enlarged shape of the farm, and only the turbines of the first half of the 

farm experienced an increase in the accessibility over 10% [103]. Indeed, in the case of Alpha Ventus, 

Bard and Horns Rev the ratio between the wave reduction in the most distant area and the average 

within the farm is over 60%, whereas it is around 38% in Lincs. 
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In order to translate the increase of time accessibility into monetary terms, it could be considered an 

estimated cost (or lost earnings) of delayed repairs about 300 €/h [122,123]. The aggregate failure rate 

per wind turbines is approximately five failures per year [124], and they occur particularly in the 

winter months due to the storm periods [125]. Therefore, it is likely that when these failures occur do 

sea conditions overtake the operational workboats limit, having to wait until the end of the  

storm—winter storm periods have an average duration between three and four days in the North  

Sea [126]. Thus, avoiding one of this downtime periods would involve cost savings around 25,000 € 

per turbine. 

4. Conclusions 

The first aim of this paper was to present a general view of the economics of wave energy, a 

renewable which is still in its infancy but presents a large available resource. It was concluded that its 

offshore character—in most cases—along with the initial stage of development of the technology 

reduce the economic viability of wave energy, which may curb the development of this promising 

renewable technology. However, in a second part of the analysis, in which the learning curve factor 

was included in conjunction with the externalities, the levelised cost of wave energy was found to be 

closer to that of conventional energy resources. In fact, this assessment of the energy cost is a fairer 

analysis since includes all the factors involved throughout the life cycle of the energy installations. 

The second purpose of this paper was to demonstrate that co-located wave and wind energy results 

in more convenient options than individual systems. In this sense, the paper gave a glimpse into the 

different synergies that can be realised by these combined systems, such as the reduced investment 

costs or smoothed power output, translating these benefits into monetary terms. Among the different 

synergies, this study focused on the reduction of operation and maintenance costs in a wind farm by 

increasing the accessibility to the wind turbines and, thus, reducing downtime periods. It was concluded 

that implementing co-located WECs in wind farms could raise significantly the accessibility to the 

wind turbines. In fact, increases by up to 18% were found, reaching high levels of availability even 

over 90%. However, the shielding effect of the co-located WECs depends on the farm layout and 

characteristics of the wind farm. The best results were found for farm layouts with the minimum 

spacing between WECs, and protecting the wind farms not only from the predominant waves but also 

secondary directions. Wind farms with a disposition similar to a square required fewer co-located 

WECs than enlarged farms, and wind farms located in areas with less energetic wave climates 

benefited the least by the co-location of WECs. 

Therefore, both offshore wind and wave energy would achieve mutual benefit throughout  

co-located farms. First, offshore wind farms would obtain enlarged weather windows for O & M tasks, 

avoiding non-operational periods and the associated costs, while producing a smoother power output. 

Second, the inclusion of co-located WECs into wind farms could accelerate the development of wave 

energy technology, which may be expected to lead to reductions in the cost of wave energy based on 

the learning curve. 
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