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Abstract: Recently, the optimization of power flows in portable hybrid power-supply 

systems (HPSSs) has become an important issue with the advent of a variety of mobile 

systems and hybrid energy technologies. In this paper, a control strategy is considered for 

dynamically managing power flows in portable HPSSs employing batteries and 

supercapacitors. Our dynamic power management strategy utilizes the concept of approximate 

dynamic programming (ADP). ADP methods are important tools in the fields of stochastic 

control and machine learning, and the utilization of these tools for practical engineering 

problems is now an active and promising research field. We propose an ADP-based 

procedure based on optimization under constraints including the iterated Bellman inequalities, 

which can be solved by convex optimization carried out offline, to find the optimal power 

management rules for portable HPSSs. The effectiveness of the proposed procedure is tested 

through dynamic simulations for smartphone workload scenarios, and simulation results 

show that the proposed strategy can successfully cope with uncertain workload demands. 

Keywords: hybrid power-supply systems; dynamic power management; approximate 

dynamic programming 
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1. Introduction 

Recently, mobile technologies have advanced to a remarkable extent, and power consumption from 

mobile devices has become a serious concern in portable electronics such as smartphones, tablet PCs, 

and electric vehicles. The most widely used power-supply systems for portable electronic devices are 

electrochemical-battery-based. However, battery technology has progressed very slowly and suffers 

from several drawbacks such as the high current load that rapidly depletes the battery’s energy and  

its intrinsic low power density characteristic, resulting in inefficiency when handling high load 

fluctuations. One of the promising methods that can compensate for some of the battery’s drawbacks is 

based on the use of supercapacitors [1]. The supercapacitor is an emerging technology that is currently 

experiencing rapid development and is particularly attractive for portable systems. This is because the 

supercapacitor has a higher power density and faster charge/discharge capability compared to a power 

supply based only on batteries. Owing to the strengths of supercapacitors that can compensate for the 

weaknesses of batteries, portable hybrid power-supply systems (HPSSs) employing both batteries and 

supercapacitors are now considered to be an important alternative to conventional battery-only power 

supply systems [2,3]. Because the lifetime of an HPSS can be significantly extended by judiciously 

controlling the level of each component’s power consumption, optimization of the power flows in HPSSs 

is a key issue that should be solved for intelligent power management of HPSSs [4]. In this paper,  

the problem of dynamically managing power flows in portable HPSSs employing batteries and 

supercapacitors is considered, and we propose an approximate dynamic programming (ADP)-based 

solution. In recent years, stochastic optimal control theory has been applied to various engineering 

problems. As is well known, a general stochastic optimal control strategy can be derived, in principle, 

utilizing the concept of the state value function, which is defined as the minimum total expected cost 

achieved by an optimal control policy from the given state. This value-function-based method is called 

dynamic programming (DP) and provides an important theoretical foundation for various optimal 

control problems. However, most real-world optimal control problems cannot be solved by DP exactly, 

except in very simple cases, and many studies rely on ADP, which finds an approximate solution to the 

stochastic optimal control problem utilizing an approximate value function, in order to obtain a good 

suboptimal control policy [5–9]. The main objective of this paper is to consider an ADP-based solution 

to dynamic power management (DPM) for portable HPSSs employing batteries and supercapacitors. 

More specifically, we consider a mathematical formulation of DPM for an HPSS in the form of a 

stochastic optimal control problem and establish an ADP-based procedure for solving the resulting 

controller synthesis problem. Simulation results show that this procedure works well when applied to 

DPM for smartphones under various load profiles. 

The remainder of this paper is organized as follows. In Section 2, a preliminary background is 

provided regarding the mathematical formulation of the DPM problem for portable HPSSs employing 

batteries and supercapacitors. In Section 3, we present the framework for stochastic optimal control and 

describe the ADP-based controller synthesis procedure for the DPM problem. In Section 4, the 

effectiveness of the ADP-based procedure is illustrated by using actual workload scenarios for mobile 

phones. Finally, in Section 5, concluding remarks are presented. 
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2. Problem Formulation 

This section describes the portable HPSS, and presents a mathematical model in the form of a  

state-space description. 

2.1. System Configuration and Related Background 

Recently, the optimization of power flows in HPSSs has become an important issue for the purposes 

of energy savings, lifetime lengthening, and so forth. For the current state-of-the-art works on the 

subject, the reader is referred to papers such as [10–15]. Romaus et al. [10] addressed the problem of 

controlling the power flows of a hybrid energy storage system combining batteries and double layer 

capacitors, and proposed the use of self-optimization methods that can consider various operating 

conditions and take into account several partly conflicting objective functions. As an application domain, 

the reference paper [10] considered an autonomous rail-bound vehicle. Chen et al. [11] proposed a 

scheduling strategy for a hybrid energy storage system for a wind farm based on predictive wind speed 

and the particle swarm optimization (PSO) algorithm. The strengths of the proposed scheduling 

strategy are that the optimization results can not only satisfy the requirements of output power quality, 

but also have good prediction accuracy for the wind power output. Choi et al. [12] presented an 

optimal energy management scheme based on the so-called the multiplicative-increase-additive-decrease 

(MIAD) policy for hybrid energy storage systems with the objectives of minimizing the 

magnitude/fluctuation of the battery current, and minimizing the supercapacitor energy loss. Gee et al. [13] 

analyzed and implemented a battery lifetime extension strategy for a battery/supercapacitor hybrid 

energy storage system, in which current filtering using a low pass filter was proposed to divert the 

high-frequency component of the HPSS system charge/discharge current to the supercapacitor in real 

time. The results of [13] showed the potential improvement in battery lifetime of HPSS in a wind 

power system without applying any optimization methods. Blanes et al. [14] considered the 

implementation of a hybrid energy storage system using ultracapacitor, and investigated a simple 

FPGA control method with a bidirectional buck-boost converter for an electrical vehicle HPSS system. 

In the method in [14], the battery supplies the low frequency part and the supercapacitor supplies the 

high-frequency part of the motor current, which reduces the battery stress and softens the battery peak 

current. Min et al. [15] presented a linear programming (LP) based method to address the problem of 

minimizing the installation cost while meeting the grid connection requirement, together with a 

quadratic programming-based approach to transmit the optimal operational signals to battery energy 

storage system and electric double layer capacitor modules. 

This paper is concerned with an ADP-based DPM of an HPSS employing batteries and 

supercapacitors, which are used for portable and low-power applications. A typical example is shown 

in Figure 1. In this example, the HPSS consists of a single battery, two supercapacitors, two DC-DC 

converters, and five bidirectional switches. As is well known, a battery is currently the most widely 

used device that supplies energy to portable systems and has a high-energy and low-power density. 

However, the intrinsic low-power density of a battery often results in inefficiency, especially when 

handling high load fluctuations. On the other hand, supercapacitors have a low-energy and high-power 

density. Thus, batteries and supercapacitors can compensate for each other’s weaknesses quite  
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well [16]. In the portable HPSS in Figure 1, the battery and supercapacitors can operate in the charging 

and discharging modes, respectively, or all together. DC-DC converter #1 between the 

battery/supercapacitors and the load of the HPSS regulates the load voltage at a constant value.  

DC-DC converter #2 between the battery and the supercapacitors controls the charging current,  

which is calculated by the DPM unit. Because energy loss may occur during the process of DC-DC 

conversion, the converter topologies need be carefully selected [17]. Switches connect the components 

of the portable HPSS following the operation strategy provided by DPM. The DPM monitors the 

system at each sampling time step and determines the optimal decision to lengthen the lifetime of the 

HPSS, thus improving the energy conversion efficiency. 

 

Figure 1. Structure of a typical portable hybrid power supply system. 

2.2. State Equation and Performance Index 

In this section, we describe the DPM of a portable HPSS employing batteries and capacitors within  

the framework of a stochastic optimal control problem. Throughout this paper, we consider an HPSS 

with the structure shown in Figure 1, which has a single battery and two supercapacitors. 

Generalization of the model and the corresponding solution procedure for a case with any multiple 

number of batteries and supercapacitors is straightforward. The steps for deriving the state equation 

and the performance index (PI) for the system are based on the results of [18] with some modifications. 

The details of these modifications will be specified later in this section. 

Generally, dynamical systems in discrete-time stochastic optimal control problems are described by 

the state-space model in the form of: 

( 1) ( ( ), ( ), ( )), 0,1,...,x t f x t u t w t t    (1)

where x(t) ϵ X is the state vector, u(t) ϵ U is the control input vector; and w(t) is the external 

disturbance, all at time t. In the DPM problem presented in this paper, w(t) is the load demand during a 

single time interval (t, t + 1). The state vector that we consider for the DPM problem contains the 

amounts of charge of the supercapacitors and battery as well as the change in the battery’s charge, i.e., 
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where rcap,i(t) is the charge state of the ith supercapacitor at time t, rbat(t) is the charge state of the 

battery at time t, and ∆rbat(t) = rbat(t − 1) − rbat(t) is the difference in the charge state of the battery. 

Note that in this paper, we assume that the state-of-charge (SOC) values of the supercapacitors and the 

battery are all available. In practical implementations, these SOC values can be estimated by e.g., 

extended Kalman filters [19]. The control input vector we consider for the DPM problem contains 

information regarding the proportion of the charge that each component (i.e., the ith supercapacitor or 

battery) supplies to meet the workload and the level of the battery charge transferred to each 

supercapacitor. As in [18], an upper bound Rth is placed on the amount of charge that can be 

transferred from a battery to each supercapacitor within a time interval so that the battery charge may 

not be exhausted during the process of charging the supercapacitors. More specifically, the control 

input vector consists of the following five entries, all in the range of [0, 1]: 
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 (3)

Here, aix(t), i = 1, 2, is the normalized level of the ith supercapacitor being charged by the battery; 

thus, the amount of charge transferred from the battery to the ith supercapacitor during the time 

interval (t, t + 1) is Rth·aix(t). The other entries, a1y(t), a2y(t), and abat(t), are the proportions of the 

charges that the two supercapacitors and battery supply to meet the workload w(t) in the time interval 

(t, t + 1). Because these entries are all proportions, they satisfy:  

     1 2 1y y bata t a t a t    for 0,1,t   (4)

With the above definitions of the state and control inputs, the state transition from time step t to (t + 1) 

can be expressed as follows [18]: 

         ,1 ,1 1 11cap cap y x thr t r t a t w t a t R     (5)

         ,2 ,2 2 21 ,cap cap y x thr t r t a t w t a t R     (6)

           1 21 ,bat bat bat x th x thr t r t a t w t a t R a t R      (7)
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 (8)

Note that with the above definitions of the state vector and control input vector, these state 

transitions can be compactly written in the following state equation form: 

       
      1
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 (9)

where 
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In addition, note that u(t) should satisfy the following constraints from the definitions of the  

control inputs: 

   0 1 0 1 1 1,u t   (13)

 5 1 5 10 1u t    (14)

In real portable HPSS applications, exhausting the charge of any component during operation is not 

desirable. Considering this practical constraint, one can additionally place constraints on the operating 

ranges of the battery and supercapacitors as follows: 

 min ,1 max
cap cap

capR r t R   (15)

 min ,2 max
cap cap

capR r t R   (16)

 min
bat

batR r t  (17)

As mentioned before, the state equation is based on the HPSS model of Mirhoseimi and Koushanfar 

in [18]. The main differences between these two models are as follows: 

 In [18], it is assumed that the charge values of the batteries and supercapacitors take only 

discrete values. In this study, we omit this assumption; thus, rcap,i(t) and rbat(t) are all real-valued. 

 In the model in [18], supercapacitors are constrained to not be simultaneously charged by the 

battery and discharged by the load. In this paper, we omit this constraint. 

 In the model in [18], a decision for assigning the source to the workload is carried out such that 

only one electronic energy supply source can transfer the required charge to the load. Hence,  

the control inputs in [18] are all binary numbers, and only one member of aiy(t) and abat(t) is one. 

In this study, we omit this constraint. As a result, aiy(t) and abat(t) are nonnegative real numbers 

satisfying ∑iaiy(t) + abat(t) = 1. 

 In the model in [18], it is assumed that at most one supercapacitor can be charged by the battery. 

This assumption is omitted in this paper. 
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In order to solve the DPM problem within the framework of stochastic optimal control, we have to 

choose a PI that can ensure improved energy savings after optimization. A widely used choice for the 

PI in a stochastic optimal control problem is the expected sum of the discounted stage costs, i.e., 

    
0

,
T

t

t

J E x t u t


    
   (18)

where γ ϵ (0, 1) is the discount factor; l(·,·) is the stage cost function; and T is the final time whose value 

is ∞ in infinite-horizon problems. By minimizing this PI over all admissible state feedback control 

policies ϕt: X→U, the optimal control problem can be solved. For the performance index in the 

optimization of power flows for HPSSs, one may resort to some ad-hoc stage cost functions (e.g., [18]). 

However in this paper, it turns out that a traditional objective function which is more clear and widely 

used in the field of linear quadratic optimal control works well. More precisely, we derive an ADP-based 

solution to the dynamic power management of HPSSs with the purpose of minimizing the battery charge 

consumption rate and maintaining the charge level of supercapacitors while keeping the control efforts 

reasonably low. For the purpose, the stage cost function l(·,·) of the DPM task is chosen as follows: 
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 

 
(19)

where the weight values (w1, w2, w3, w4, and βbat) are obtained empirically via a tuning process. In the 

DPM in [18], the Q-learning method [20] was used to derive an approximation for the optimal power 

management strategy, and the stage function was defined as 

      
 

 , max/

, .
cap

cap i
batibat

r t R
E r tr tR x t u t e e e

 
        


      (20)

Here, we adopt the main idea of this stage reward function with the following significant 

modifications. First, representing the stage costs in a quadratic form is important for solving the DPM 

problem in the context of constrained linear quadratic stochastic optimal control. Hence, our stage cost 

function utilizes second order polynomial terms instead of exponential functions. Second, in order to 

minimize the battery charge consumption rate and maintain the charge level of supercapacitors with 

the control efforts kept reasonably low, we employ the cost terms involving ∆rbat(t), (rcap,i(t) − 0.5Rcap 
max)2,  

i = 1, 2, and the control-input-related quadratic terms, a2 
ix(t), a

2 
iy(t), i = 1, 2, and a2 

bat(t). Finally, note that 

our stage cost Equation (19) deals with the control effort directly with weighted summation of the 

quadratic input terms, whereas in the objective Equation (20) of the reference paper [18], consideration 

of the control efforts can be treated indirectly via the expectation operation. 
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3. Approximate Dynamic Programming Approach to Dynamic Power Management 

3.1. Preliminaries 

General stochastic optimal control problems can be analyzed, in principle, utilizing the concept of a 

state value function. This value-function-based method is called DP, and a variety of topics on 

stochastic optimal control and DP are well-addressed by [5–8]. A large class of stochastic optimal 

control problems deal with the dynamics of the form in Equation (1) and are concerned with finding a 

state-feedback control policy: 

     , 0,1,tu t x t t     (21)

that can optimize a given PI function. As mentioned before, a widely used choice for the PI is the 

expected sum of the discounted stage cost, i.e.,     
0

,t

t

J E x t u t




    
  . By minimizing this PI over 

all admissible control policies ϕt: X→U, the optimal value of J can be found. This minimal PI value is 

denoted J*, and the optimal state-feedback function achieving the minimal value is denoted by ϕ* 
t .  

The state value function is defined as the minimum total expected cost achieved by an optimal control 

policy from the given initial state x(0) = z, i.e., 

         *

0

inf , | 0
t

t
t

t

V z E x t x t x z





     
 
   (22)

Note that when the initial condition x(0) is a fixed vector x0, the optimal PI value can be expressed as 

J* = V*(x0). According to stochastic optimal control theory [6,7], the state value function in  

Equation (23) is the fixed point of the Bellman equation: 

       * *inf , , , .vV z l z v E V f z v w       (23)

In its operator form, the Bellman equation can be written as: 

* *V TV  (24)

where T is the Bellman operator (see e.g., [5]), whose domain and codomain are both function spaces 
mapping X onto  R  , defined as: 

 ( )( ) inf ( ( , ) ( ( , , ))
v

ETg z z v g f z v w    (25)

As is well known, the Bellman equation or its operator equation version cannot be solved exactly, 

except in simple special cases [5,6], and an alternative strategy when finding the exact state value 

function is the use of ADP relying on an approximate state value function ˆ :V X R . In the DPM 

problem discussed in this paper, we are concerned with an ADP solution utilizing convex quadratic 

functions. This class of quadratic functions is a good choice for the approximate state value function [5,8] 

because these functions are convenient and powerful for handling various optimization steps appearing 

in the ADP procedure. 
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3.2. ADP-Based Solution Procedure 

From the above preliminary steps, the DPM of the portable HPSS can now be represented as the 

following dynamic stochastic control problem: 

      

        
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





 
  
   





 (26)

where l(·,·) is the quadratic stage cost function specified in Equation (19). To solve the above DPM 

problem for the portable HPSS, we propose an ADP-based solution procedure utilizing the 

approximate value function (AVF) policy approach of O’Donoghue, Wang, and Boyd [9]. In this AVF 

policy approach [9], the convex quadratic function: 

 ˆ 2 , 0,...,T T
i i i iV x x Px p q i M     (27)

is used for approximating the state value functions, and by letting the parameters (i.e., Pi, pi, and qi) 

satisfy the iterated Bellman inequalities: 

1
ˆ ˆ , 0,...,i iV TV i M   (28)

with 1
ˆ ˆ
M MV V  , it is ensured that 0̂V  is a lower bound of the optimal state value function V* [5,9]. 

Further, by optimizing this lower bound 0̂V  via convex optimization, the ADP approach finds a 

suboptimal approximate state value function 0 1
ˆ ˆ ˆ, , , MV V V  and the corresponding ADP policies 

0 1
ˆ ˆ ˆ, , , M   . In the following, we derive an ADP-based solution to the dynamic management problem 

for the portable HPSS. 

First, note that our stage cost function at time t can be expressed using the state x(t) and input u(t)  

as follows: 
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Then, the general stage cost term can be written in the following matrix–vector form: 
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Energies 2015, 8 5062 

 

 

where 

3

4

11 3

4

4

0 0 0 0

0 0 0 0

0 0 0 0 ,

0 0 0 0

0 0 0 0 bat

w

w

L w

w

w

 
 
 
 
 
 
  

 (31)

12 5 40 ,L   (32)

13 5 10 ,L   (33)

2

2
22

0 0 0

0 0 0
,

0 0 0 0

0 0 0 0

w

w
L

 
 
 
 
 
 

 (34)

2 max

2 max
23

1

0.5

0.5
,

0

0.5

cap

cap

w R

w R
L

w

 
  
 
 
  

 (35)

 2

33 2 maxand 0.5 .capL w R  (36)

Next, we define the derived matrix variable Gi, i = 1, …, M to satisfy the following: 

  1
ˆ .

1 1

T

i i w

u u

x G x E V Ax B B w u

   
           
      

 (37)

Note that the right hand side of Equation (37) is the expectation of the convex quadratic function îV  

evaluated at the next state. Since the expectation can be expressed as a quadratic function with respect 

to u and x, we use the derived matrix variable Gi [8] for notational convenience. Here, the expectation 

of the right-hand side of Equation (37) can be further expanded as follows: 

   1 1

1 1

1 1

0 0
.

0 0 1 0 0 1
1 1

T

i iw w
T
i i

T

i iw w
T
i i

P pAx B B w u Ax B B w u
E

p q

u u
P pB B w A B B w A

x E x
p q

         
     
      
                                 

 (38)

Furthermore, by further evaluating the right-hand side of Equation (38), one can obtain 

 
   

,11 ,12 ,13

,12 ,22 ,23

,13 ,23 ,33

,

i i i

T

i i i i

T T

i i i

G G G

G G G G

G G G

 
 
 
 
 
 

 (39)
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where 

2
,11 1 1 1 1 ,T T T T

i i i w w i w i wG B PB B PB w B PB w B PB w     (40)

,12 1
T T

i i w iG B P A B P Aw   (41)

,13 1
T T

i i w iG B p B p w   (42)

,22
T

i iG A P A  (43)

,23
T

i iG A p  (44)

,33i iG q  (45)

In Equations (40)–(42), w  and 2w  are the first and second moments of the external workload 

demands, respectively. 
With the convex quadratic approximation  ˆ 2 , 0,...,T T

i i i iV x x Px p q i M    , the Bellman 

inequalities 1
ˆ ˆ , 1,..., ,i iV TV i M   for the DPM problem can be written as 

 1 0, 1,..., ,

1 1

T

i i

u u

x L G S x i M

   
          
      

 (46)

where Si−1 is the matrix variable defined by 

1 1 1

1 1

0 0 0

0 .

0
i i i

T
i i

S P p

p q
  

 

 
   
  

 (47)

Note that the constraints in Equations (13)–(17) are all given in the form of an affine equality or 

affine inequalities with respect to the state and control inputs. Thus, these constraints can be compactly 

expressed via the affine form Du(t) + Fx(t) + H. More specifically, the equality constraint in  

Equation (13) can be written as 

         1 1 1 0,D u t F x t H    (48)

where      1 1
1 40 1 0 1 1 , 0 ,D F   and  1 1.H    

Similarly, the remaining inequality constraints can be represented by  

          0, 2,3,4,5,k k kD u t F x t H k     (49)

where 

 2
5 5 ,D I    (50)

 2
5 40 ,F   (51)

 2
5 10 ,H   (52)

 3
5 5 ,D I   (53)
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 3
5 40 ,F   (54)

 3
5 11 ,H    (55)

 4
3 50 ,D   (56)

 4

1 0 0 0

0 1 0 0 ,

0 0 1 0

F

 
   
  

 (57)

 
min

4
min

min

,

cap

cap

bat

R

H R

R

 
   
  

 (58)

 5
2 50 ,D   (59)

 5 1 0 0 0
,

0 1 0 0
F

 
  
 

 (60)

and  5 max

max

.
cap

cap

R
H

R

 
   

 (61)

Note that these constraints can be further modified in accordance with the requirements considered 
in the design stage. One of the key steps in this solution procedure is to find t̂V  satisfying the Bellman 

inequalities in Equation (28) under the constraints in Equations (46) and (48). For this, we resort to the 

S-procedure [21]. On the basis of the S-procedure, we can ensure that the Bellman inequalities be 

satisfied under the constraints in Equations (46) and (48) by requiring that the following linear matrix 

inequalities (LMIs) hold true: 

   
1 0,k k

i i i
k

L G S         (62)

   0, , 1,..., ,k
idiag k i M     (63)

where ξ(k) 
i  represents the S-procedure multipliers [21], and  

 

 

 

       

0 0 / 2

0 0 / 2 .

/ 2 / 2

k

k k

T T
k k k

D

F

D F H

 
 
  
 
 
  

 (64)

By combining the above steps, one can obtain a DPM design procedure. The following show an 

illustrative design procedure:  

Controller synthesis procedure: 

Preliminary steps: 

1. Choose the parameters of the problem: γ, λ, M, Rth, Rcap 
min, R

cap 
max, and Rbat 

min. 

2. Estimate the 1st and 2nd moments of the external load demands, w  and 2w , from the training data. 
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Main steps: 

1. Initialize the decision-making time t = 0, and choose x(0)= x0. 

2. Compute the stage cost matrix L  in Equation (30) and the constant matrix  k  in Equation (64). 

3. Define the LMI variables: 

(1) Define the basic LMI variables: Pi, pi, and qi in Equation (27). 

(2) Define the derived LMI variables: Gi in Equation (39) and Si−1 in Equation (47). 

(3) Define the S-procedure multipliers: ξ(k) 
i  in Equation (63). 

4. Find the approximate state value functions, îV , by solving the following convex optimization 

problem: 

 

   

  

0 0 0 0 0 0 0 0

3

1
1

1

ˆmin 2

subject to 

0, 1,..., ,

,

0, 0,..., ,

0, 1,..., , 2,3.

T T

k k
i i i

k

M M

i

k
i

V x x P x p x q

L G S i M

S S

P i M

diag i M k






  

       


 

   

  
(65)

5. Obtain the ADP controllers on the basis of 

1( ) argmin( ( , ) ( ( , , )))t t
u

EVx x u f x u w    for 0,...,t M  (66)

1( ) argmin( ( , ) ( ( , , )))t T
u

EVx x u f x u w    for t M  
(67)

4. Simulation Results and Trajectories 

In this section, we first describe a portable HPSS example to illustrate the proposed ADP-based 

DPM procedure. Afterwards, we conduct simulations and provide discussions for simulation results. 

4.1. An Illustrative Example 

We conducted simulations for a portable HPSS example [18] to illustrate the proposed ADP-based 

DPM procedure. For the example, we considered the workload scenarios of Figure 2, which are 

essentially based on the iPhone battery current measurements in [18,22]. The tasks considered in the 

scenarios include airplane mode (40 mA), default mode (100 mA), working internet with 3G network 

(310 mA), working game application “Tap-Tap” (220 mA), working 3D game application  

“GTI Racing” (400 mA), working application “YouTube” with WiFi (260 mA), working application 

“YouTube” (350 mA), and voice phone (170 mA) [18]. 

The portable HPSS in our example consists of two 200 [F] supercapacitors with Rcap 
max = 400 [C] and  

a single 4 [V] battery with rbat(0) = 1000 [C]. The initial state conditions for the HPSS were assumed  

as follows: 

         

 
,1 ,20 0 , 0 , 0 , 0

400,400,1000,0 .

cap cap bat bat

T

x r r r r   


 (68)
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Following the data treatment of [18], we rescaled the source and demand charges such that at each 

instant t, the load charge demand wload(t) was transformed into w(t) = wload(t)/10. We performed 

simulations based on the ten scenarios of Figure 2, and evaluated the resultant controllers. In the 

evaluation stage, we used a 10-fold cross-validation method for the iPhone workload data of Figure 2. 

For the simulation results, we considered all possible 10 different partitions of the training and test 

subsets. For the parameters of the problem, we chose the following: 

min max min

1 2 3 4

0.99, 1, 0, 40, 0, 150,

5, 0.2, 0.5, 5, 5,

cap cap bat
th

bat

R R R R M

w w w w

      
     

 

where the weight values, w1, w2, w3, w4, and βbat were obtained empirically via a tuning process based 

on a subset of the training data. Simulation results show that the above set of weight values yielded 

reasonably good results. To develop a more disciplined design guideline for the weight values is an 

important topic that can be covered in follow-up works. 

 

 

 

Figure 2. Cont. 

 

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

time t

cu
rr

en
t

Scenario #1

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

time t

cu
rr

en
t

Scenario #2

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

time t

cu
rr

en
t

Scenario #3

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

time t

cu
rr

en
t

Scenario #4

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

time t

cu
rr

en
t

Scenario #5

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

time t

cu
rr

en
t

Scenario #6



Energies 2015, 8 5067 

 

 

 

 

Figure 2. Considered workload scenarios, which are essentially based on the iPhone 

battery current measurements of [18]. 

4.2. Discussions and Performance Comparison 

Figure 3 is the simulation results of the 10-fold cross-validation, and describes the charge depletion 

patterns of the battery and the supercapacitors in the HPSS. The exact meaning of the pictures in the 

figure is as follows: the ith picture shows the charge-depleting patterns obtained by the proposed  

ADP-based DPM procedure for the ith numerical experiment, in which the ith workload scenario of 

Figure 2 was used as the test set, and the other nine workload scenarios were used as the training set for 

estimating the first and second moments of w(t). In the pictures, the solid line represents the charge 

value of the battery, rbat(t), and the dashed line is for the sum of supercapacitor charges, rcap,1(t) + rcap,2(t). 

Note that in the sixth picture, the scenario consists of heavy loads (such as playing games, browsing the 

Internet, and watching YouTube videos), and the charges in the battery and the supercapacitors were 

completely depleted before the end of the considered time horizon. Figure 3 shows that the proposed 

ADP-based DPM procedure resulted in reasonable dynamic charge management for the HPSS. From 

the simulation results, one can see that when the demand charge changed abruptly, then the control 

actions for the supercapacitors reacted promptly. It is well known that in general, the battery alone 

cannot handle the situation of rapidly changing loads effectively due to its low power density.  

By comparison, Figure 3 shows that the HPSS utilizing the ADP-based DPM was capable of handling 

such situation reasonably well. We believe that this capability is ensured by the stage cost function of 

Equation (19), which is defined with the purpose of minimizing the battery charge consumption rate 

and maintaining the charge level of supercapacitors appropriately for speedy reaction to fluctuating loads. 

Note that our ADP-based DPM procedure can be applied to a significantly larger class of stage cost 

functions as long as they are quadratic-program (QP) representable [23] (i.e., l(·,·) is convex quadratic 

plus a convex piecewise linear function, possibly including linear equality and inequality constraints). 
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Figure 3. Charge-depleting patterns of the battery and supercapacitors resulting from the 

ADP-based approach of this paper. 
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For the sake of performance comparison, we considered the reinforcement learning (RL) based 

DPM technique of the reference paper [18]. RL is a branch of machine learning which is related to 

stochastic optimal control. Recently, RL methods [20] have been successfully applied to various 

decision-making problems, including the field of DPM for HPSSs [18]. One of the main differences of 

the RL methods for stochastic optimal control is that in their solution procedures, they use the training 

data on the state transitions together with function approximation instead of exact mathematical 

analysis. In the reference paper [18], Q-learning [24], which is one of the most widely used  

value-function-based RL methods, was utilized to derive an RL-based DPM strategy. In Q-learning, 

given the state transition data (x(t), u(t), r(t), x(t + 1)), where r(t) is the reward signal defined as the 

negative cost (i.e., r(t) = −l(x(t), u(t))), the state-action value function Q [20,24] is updated via Q(x(t), 

u(t))←Q(x(t), u(t)) + α[r(x(t), u(t)) +  − Q(x(t), u(t))] In our numerical experiments 

for performance comparison, the discount rate of Q-learning was set to be the same (i.e., γ = 0.99). 

Function approximation for state-action value function Q was performed via the tile coding [20]. Also 

for the learning rate and the ε value for exploration via the ε-greedy policy [20], we used α =0.1 and  

ε = 0.1 (For detailed meaning of α and ε in Q-learning, the reader is referred to [20]). Figure 4 shows 

the learning curve (the solid line) resulting from Q-learning, which describes the average total cost vs. 

the iteration over a set of 10 simulation runs, together with the total cost of the proposed ADP-based 

DPM approach (the dashed line). As shown in the figure, Q-learning took about 500 iterations of 

training scenarios to have a convergent behavior. Figure 5 shows the simulation results of the  

Q-learning-based DPM strategy, and describes the charge depletion patterns of the battery and the 

supercapacitors in the HPSS. Also, Figure 6 reports the average stage cost sums over a set of ten 

simulation runs for the two methods. As shown in Figures 5 and 6, the proposed ADP-based DPM 

strategy yielded better performance than the Q-learning-based DPM [18]. 
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Figure 4. Charge-depleting patterns of the battery and supercapacitors resulting from the  

Q-learning-based DPM. 

 

Figure 5. Learning curve (the average total cost vs. the iteration over a set of 10 simulation 

runs): Q-learning (dashed) and ADP (solid). 
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Figure 6. Performance comparison for ADP and Q: Average total cost for each scenario. 

Finally, we think that the main significance of the ADP-based DPM approach of this paper and  

the Q-learning-based approach is in their capacity for customization. More specifically, they can 

customize the DPM for a (similar) user group, affecting the dynamic power management policy based 

on the first and second moments of the workloads and/or the past workload scenarios. We expect that 

this aspect will be covered in future works with sufficiently large training data sets. 

5. Conclusions  

Managing power flows in portable HPSSs has become an important issue with the advent of a 

variety of mobile systems and hybrid energy technologies, particularly when supercapacitors are used, 

which can compensate for the various weaknesses of conventional battery-based power supplies.  

The problem of optimally managing the power flows for HPSSs thus becomes more complicated.  

In this paper, the DPM problem for portable HPSSs with combined supercapacitors and battery energy 

supplies was considered, and an ADP-based DPM strategy was presented. Simulation results show that 

the proposed ADP-based approach can find a DPM strategy that copes with uncertain workload 

demands well, and its performance is better compared to the conventional Q-learning-based DPM 

method. Our plans for future work include more detailed modeling. For example, in the current model 

of the paper, the losses in the storage systems and in the power converters were neglected, and we are 

planning to take into account such losses as well with a more detailed model. Also, we will perform 

more extensive simulation studies, which should reveal the strengths and weaknesses of ADP-based 

methods, and applications to other types of HPSSs. 
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