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Abstract: This paper proposes a parameter-independent speed controller based on the
classical cascade speed control strategy comprising an inner-loop current controller and an
outer-loop speed controller for permanent magnet synchronous machines. The contribution
of this paper is three-fold: the first is the proposal of a parameter-independent current
controller in the inner loop with global asymptotic stability guarantee; the second is the
presentation of a guideline for choosing stabilizing proportional-integral (PI) gains in the
outer loop; and the third is designing an adaptive disturbance observer (ADOB) to predict
the one step ahead state, so that this predicted state compensates the one-step time delay on
the control input. The effectiveness of the proposed controller is demonstrated by simulating
a wind power generation application using powerSIM (PSIM) software.
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1. Introduction

Permanent magnet synchronous machines, such as generators (PMSG) and motors (PMSM), are
widely used for various electrical/mechanical power generation applications owing to their high
efficiency, high power factor and simple structures [1–8].

Conventionally, a cascade control strategy has been used for controlling the speed of synchronous
machines. This strategy involves the use of two proportional-integral (PI) controllers for inner loop
current control and outer loop speed control [2,3,9]. Because the inner loop current controller plays
a crucial role in enhancing closed-loop performance, several current controllers have been reported,
such as PI controllers [2,3,9], nonlinear controllers [4,5,10,11] and optimal controllers [12,13]. However,
the nonlinear controllers [4,5,10,11] and optimal controllers [12,13] require exact PMSM parameter
values, upper and lower bounds of the PMSM parameters or, at least, PMSM parameters generated
using a properly-designed parameter estimator. In the case of the PI controllers [2,3,9], although PMSM
parameter information is not explicitly used in the controller, the closed-loop poles rely on the PMSM
parameters. Dependency on PMSM parameters could limit the closed-loop performance or lead to
instability of the closed-loop system, because it is difficult to acquire exact PMSM parameter values, and
these values slowly change with the passage of time. Although a suitably-designed parameter estimator
can avoid this limitation, the computational burden would increase.

Following the classical cascade control strategy, in this paper, a parameter-independent current
controller for the inner loop with global asymptotic stability is proposed, and it is shown that any
positive PI gain in the outer loop leads to asymptotic convergence of the PMSG speed with its reference
value. The proposed current controller uses only current information and, unlike [4,5,10–13], does not
require any PMSG parameter information, even that about the upper and lower bounds of the parameters.
Moreover, because the controller structure is very simple, similar to the classical PI controller, its
implementation is easy. It is shown that any symmetric and positive-definite control gain leads to the
global asymptotic stability of closed-loop systems; this result is in sharp contrast with the results obtained
in [2,3,9]. Furthermore, it is proven that an outer loop PI controller with any positive PI gain forces the
PMSG speed to track its reference value. In order to compensate the one-step time delay that is inevitable
in the real implementation, we design an adaptive disturbance observer (ADOB), so that its predicted
state compensates the one-step time delay on the control input. Through the results of simulations using
powerSIM (PSIM) software, it is shown that the closed-loop performance of the proposed controller is
satisfactory for controlling the speed of a PMSG in wind power generation.

2. PMSG Model in a Rotating d-q Frame

For convenience, a PMSG is considered in the rest of the paper, because the dynamic equations of
a PMSG and a PMSM are very similar. The dynamics of the surface-mounted PMSG used herein is
described in the rotating d-q frame as follows [9]:

ω̇r(t) = −Bm

Jm
ωr(t) +

1

Jm
(Tm(t)− Te(x(t))) (1)

ẋ(t) = (ωe(t)J− R)x(t) + Bu(t)− ωe(t)d, ∀t ≥ 0 (2)
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where Bm and Jm represent the viscous friction and rotor moment of inertia, respectively, and ωr(t) and
Tm(t) denote the rotor speed and mechanical load torque, respectively. The state variable x(t), control
input u(t), torque Te(x(t)) and electric rotational rotor speed ωe(t) are defined as follows:

x(t) =

[
x1(t)

x2(t)

]
:=

[
id(t)

iq(t)

]
, u(t) =

[
u1(t)

u2(t)

]
:=

[
vd(t)

vq(t)

]

Te(x(t)) :=
3

2
Pλmx2(t), ωe(t) := Pωr(t), ∀t ≥ 0

where P and λm denote the number of pole pairs and the permanent magnet flux, respectively. Matrices
J, R, B and d are expressed as follows:

J :=

[
0 1

−1 0

]
, R :=

Rs

L
I2×2, B :=

[
1
L

0

0 1
L

]
, d :=

λm
L

[
0

1

]
where I2×2 refers to a 2 × 2 dimensional identity matrix and Rs and L are stator resistance and
inductance, respectively. Physically, the values of Rs and L should be positive. The next section designs
a parameter-independent speed controller under the classical cascade speed control strategy using the
state Equation (2).

3. Controller Design

This section presents a cascade speed control scheme without any use of parameter information
of the PMSM, considering the one-step time delay on the control input. Section 3.1 constructs a
parameter-independent current controller for the inner-loop, so that the current asymptotically converges
to its reference. Section 3.2 describes how to assign the stabilizing control gain of the outer-loop PI
controller. Section 3.3 designs an ADOB in order to predict the one-step ahead state, so that it makes up
for the one-step time delay on the control input that is inevitable in the real implementation.

3.1. Parameter-Independent Current Controller Design and Stability Analysis

This section describes the construction of a parameter-independent current controller for achieving
the control objective:

lim
t→∞

x(t) = r (3)

where r =
[
rd rq

]T
denotes a current reference. Then, the following current controller is proposed:

u(t) = −K1x(t)−K2z(t) (4)

ż(t) = ex(t), ∀t ≥ 0 (5)

where K1 ∈ R2×2 and K2 ∈ R2×2 are the controller gain matrices, and the tracking error ex(t) is defined
as ex(t) := x(t) − r, ∀t ≥ 0. It is observed that the proposed controller comprising Equations (4) and
(5) is very simple, similar to the classical PI controller, as well as completely independent of the PMSG
parameters. The closed-loop stability can be proven by imposing a constraint on the controller gains
K1 and K2. For details, see Theorem 1. The mechanical dynamics of most electrical machines is much
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slower than their electrical dynamics. Therefore, when considering only the electrical state Equation (2),
it makes sense to assume that there exist an unknown constant ω0

e and a sequence (a0, a1, · · · , an−1),
such that the ordinary differential equation:

ω̃(n)
e (t) + an−1ω̃

(n−1)
e (t) + · · ·+ a1 ˙̃ωe(t) + a0ω̃e(t) = 0, ∀t ≥ 0 (6)

is stable, which means that the all roots of Equation (6) are placed in the left half plane of the complex
number space. Here, the speed error ω̃e(t) is defined as ω̃e(t) := ωe(t)− ω0

e , i.e., ωe(t) is time-varying,
but exponentially converges to an unknown constant ω0

e as time goes by.

Theorem 1. Suppose that there exists a sequence (a0, a1, · · · , an−1, an), such that Equation (6) is stable
and that the matrices K1 and K2 in the controller (4)–(5) are chosen to be symmetric and positive-definite,
i.e.,

K1 = KT
1 > 0, K2 = KT

2 > 0. (7)

Then, the closed-loop system comprising the state equation (2) and the proposed controller (4)–(5) is
globally asymptotically stable.

From the result of Theorem 1, it is seen that the proposed controller (4)–(5) with the control gain
satisfying Condition (7) establishes the control objective (3). Furthermore, the proposed controller does
not depend on the PMSG parameters, and the closed-loop stability is preserved as long as the values of
all parameters are positive, unlike those of [2,3,9].

3.2. ADOB Design for Time Delay Compensation

The Euler approximation makes it possible to implement the differential operator in such a way that:

ḟ(t) ≈ f(t+ h)− f(t)

h
, ∀t, h > 0

where f denotes a given differentiable function. According to this relation, the proposed
controller (4)–(5) must be implemented as:

u(k) = −K1x(k)−K2z(k) (8)

z(k + 1) = z(k) + hex(k), ∀k ≥ 0 (9)

where h denotes the sampling period, and ex(k) := x(k) − r. Because the one-step time delay on
the control input is inevitable in the real implementation using a micro-processor, it is impossible
to implement the controller (4)–(5) in the form of Equations (8)–(9). The proposed control law
Equations (4)–(5) will be implemented as:

u(k) = −K1x(k − 1)−K2z(k − 1) (10)

z(k) = z(k − 1) + hex(k − 1), ∀k ≥ 0 (11)
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Because this one-step time delay on the control input may make the closed-loop performance degraded
or even unstable, it must be compensated. This paper proposes an adaptive disturbance observer (ADOB)
for compensating the the one-step time delay as follows:

˙̂x(t) = ωe(t)Jx(t)− θ̂1x(t) + θ̂2u(t)− ωe(t)d̂(t) + L1eo(t) (12)
˙̂d(t) = −L2ωe(t)eo(t) (13)
˙̂
θ1(t) = −γ1xT (t)eo(t) (14)
˙̂
θ2(t) = γ2uT (t)eo(t), ∀t ≥ 0 (15)

where eo(t) denotes the state estimation error defined as eo(t) = x(t) − x̂(t), ∀t ≥ 0, L1 ∈ R2×2,
L2 ∈ R2×2, γ1 and γ2 are estimation gains to be used as design parameters and δd, δ1 and δ2 are small
positive constants to be set as small as possible. Because the differential operation on the estimated state
x̂(t) is implemented as:

˙̂x(t) ≈ x̂(t+ h)− x̂(t)

h
, ∀t, h > 0

where h denotes the sampling period, it is seen that the proposed ADOB comprising Equations (12)–(15)
can be used as a state predictor generating x̂(k+ 1) if it ensures driving the state estimation error eo(t) to
zero. Theorem 2 proves that the state estimation error eo(t) is asymptotic towards zero by the proposed
ADOB.

Theorem 2. The proposed ADOB comprising Equations (12)–(15) ensures making the corresponding
estimation error dynamics globally ultimately bounded for any L1 = LT1 > 0, L2 = LT2 > 0,

γ1 > 0, γ2 > 0.

It is observed that the proposed ADOB guarantees a satisfactory asymptotic state estimation
performance with a sufficiently small δd, as long as L2 is invertible, because, in the steady state,
Equation (13) satisfies that:

ω0
eL2e0o ≈ 0

where e0o is the steady-state value of eo(t).
Because it is possible to feedback the one step ahead predicted state x̂(k + 1) thanks to the ADOB

equations (12)–(15), it is possible to implement the proposed control law (4)–(5) as follows:

u(k) = −K1x̂(k)−K2z(k) (16)

z(k + 1) = z(k) + hêx(k), ∀k ≥ 0 (17)

where êx(k) := x̂(k)− r, ∀k ≥ 0.

3.3. Speed Controller Design in the Outer Loop

This section presents a guideline for choosing PI gains in the outer loop, such that the PMSG speed
is forced to track its reference value for any positive PI gain in the presence of PMSG parameter
uncertainties. To this end, we consider that the inner-loop control system with the proposed controller is
sufficiently fast and assume that:

iq(t) ≈ rq(t), ∀t ≥ 0 (18)
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where rq(t) is a signal that varies slowly with time. Note that this type of assumption is also made
in [14,15]. Let signal rq(t) be the output of the outer-loop PI controller as follows:

rq(t) = kP eω(t) + kI

∫ t

0

eω(τ)dτ, ∀t ≥ 0 (19)

where eωr(t) := ωr(t) − r, ∀t ≥ 0 and r denotes a speed reference. Then, through some algebraic
manipulations after substituting Equation (1) into Equation (19) under the assumption in Equation (18),
it can be verified that:

ëωr(t) + c1(kP )ėωr(t) + co(kI)eωr(t) =
1

Jm
Ṫm(t), ∀t ≥ 0 (20)

where:

c1(kP ) :=
3Pλm

2J
kP +

Bm

Jm

c0(kI) :=
3Pλm
2Jm

kI

Because the coefficients c1(kP ) and c0(kI) are positive for any kP > 0 and kI > 0, the ordinary
differential equation (20) indicates that the speed error eωr(t) converges to zero for any positive PI gain
given that the mechanical torque Tm(t) is sufficiently slow, so that Ṫm(t) = 0, ∀t. That is,

lim
t→∞

eωr(t) = 0, ∀kP > 0, ∀kI > 0,∀eωr(0) (21)

Although the mechanical load torque satisfies Ṫm(t) = d(t), ∀t, for some unknown norm-bounded signal
d(t), it can be proven that any positive PI gain guarantees that the speed error is ultimately bounded.
That is,

lim
t→∞
|eωr(t)| ≤ δ(d̄), ∀kP > 0,∀kI > 0,∀eωr(0) (22)

where δ(d̄) is a positive constant and the constant d̄ satisfies |d(t)| ≤ d̄, ∀t. Here, it is reasonable to
assume that Ṫm(t) = d(t), ∀t, for the wind power generation application. This analysis is justified if the
inner loop control system is sufficiently fast, so that signal rq(t) generated by the outer loop PI controller
can be treated as a constant.

4. Simulations

In this section, we simulate a PMSG-based wind power generation system using PSIM software, as
shown in Figure 1. The PMSG speed is controlled by the proposed controller; the DC link voltage Vdc
is regulated to the value 600 V by the classical PI controller; and the capacitor value of the DC link
voltage is given as C = 1000 µF. The wind turbine part is emulated using the wind turbine block of the
renewable energy package in the PSIM software where the nominal output power, moment of inertia,
base wind speed, base rotational speed and initial rotational speed are set to be 1 kW, 1 × 10−3 kgm2,
12 m/s, 50 rpm and 10 rpm, respectively.
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Figure 1. Simulated closed-loop system.

The PMSG parameters are given by:

Rs = 5 Ω, L = 10 mH, λm = 0.11307 Wb, P = 3,

Jm = 0.0046 kgm2, Bm = 0.1 Nm/rad/s.

Space vector pulse width modulation (SVPWM) is used for implementing the proposed controller,
and its period is set to 0.1 ms. As shown in Figure 2, the proposed controller is implemented with the
sampling period h = 0.1 ms where the one-step time delay elements are used for the realistic simulation.
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Figure 2. Simulated closed-loop system.

Because it is assumed that all PMSG parameters are uncertain, the controller gain should be adjusted
using an ad hoc method. A control gain tuning guideline is summarized as follows:

1. Connect a constant speed load to the PMSG for fixing the speed using the secondary inverter, and
set all control gains to zero.
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2. Choose the inner-loop proportional gain matrix K1 = KT
1 > 0, such that the d-q frame current

tends to a value as quickly as possible without overshoot.
3. Choose the inner-loop integral gain matrix K2 = KT

2 > 0, such that the d-q frame’s current
converges as quickly as possible to its reference value without overshooting it.

4. Remove the constant-speed load connected to the PMSG.
5. Choose the outer-loop proportional gain kP , such that the speed approaches its reference value as

soon as possible without overshooting it.
6. Choose the outer-loop integral gain kI , such that the speed converges to its reference value as

quickly as possible without overshooting it.

Thus, the controller gains are tuned as follows:

K1 =

[
150 50

50 150

]
, K2 =

[
105 3000

3000 105

]

kP = 0.05, and kI = 300. The current reference is set to r =
[
rd rq

]T
=
[

0 rq(t)
]T

, where
rq(t) denotes the output signal generated by the PI controller (19). Note that, for orienting all linkage
flux along the d-axis and maximizing the torque per ampere, the d-frame current must be regulated to
zero [16,17]. Thus, we set rd = 0. The parameters of ADOB of Equations (12)–(15) are tuned as:

L1 = L2 = 5000I2×2, γ1 = 1500, γ2 = 1500

so that the state estimation error goes to zero as quickly as possible.
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Figure 3. (Left) d-frame current response without the adaptive disturbance observer
(ADOB); (Right) d-frame current response with ADOB.

It is assumed that the speed reference r is given as a square wave with the minimum and maximum
speeds of 45 rpm and 70 rpm, respectively. First, we assume that a constant wind speed of 9 m/s is
applied to the wind power generation system shown in Figure 1. This means that the PMSG is subjected
to a constant load torque. Figures 3–5 show that the proposed current controller successfully forces the
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current and the PMSM speed to their references, and the ADOB keeps the ripples in the current and the
speed considerably small despite the one-step time delay on the control input. Moreover, these results
also show that the selected PI gain ensures the convergence of the PMSG speed under a constant load
torque; i.e., the property in Equation (21) is established.
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Figure 4. (Left) q-frame current response without ADOB; (Right) q-frame current response
with ADOB.
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Figure 5. (Left) Permanent magnet synchronous motor (PMSM) speed response without
ADOB; (Right) PMSM speed response with ADOB.

Figure 6 shows that the current estimation performance of the proposed ADOB is satisfactory. Thus,
it is expected that the ADOB successfully compensates the one-step time delay on the control input
as intended.
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Figure 6. (Left) d-frame current reference estimation performance; (Right) q-frame current
reference estimation performance

Second, we performed a simulation under the scenario that the wind generated using a Weibull
distribution-based wind model [18] depicted in Figure 7 is applied to the wind power generation system.
Figures 8 and 9 show that the proposed controller successfully drives the current close to its reference
value in the presence of load torque variations. Figure 10 shows that the selected PI gain forces the
PMSG speed to track its reference value and to be close to the reference value in the presence of random
load torque changes; i.e., the property in Equation (22) is achieved. From these results, the ADOB also
successfully maintains a satisfactory closed-loop performance by suppressing the ripples in the current
and the speed.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

Time(s)

W
in

d
 s

p
e
e
d

 (
m

/s
)
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Figure 8. (Left) d-frame current response without ADOB; (Right) d-frame current response
with ADOB.
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Figure 9. (Left) q-frame current response without ADOB; (Right) q-frame current response
with ADOB.

Figure 11 shows that the ADOB still provides a satisfactory state estimation performance in the
presence of the load torque changes.
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with ADOB.
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Figure 11. (Left) d-frame current reference estimation performance; (Right) q-frame
current reference estimation performance

5. Conclusions

This paper proposes a parameter-independent speed control scheme for a PMSG under the classical
cascade speed control strategy, taking the one-step time delay on the control input into account. The
developed controller for the inner loop is as simple as the classical PI controller; therefore, it is easy
to implement. Moreover, it is shown that the resulting closed-loop current control system is globally
asymptotically stable, so long as the controller gains are chosen to be symmetric and positive definite.
In addition, it is proven that any positive PI gain leads to convergence of the PMSG speed with its
reference value, and an ADOB is designed to predict the one step ahead state, so that the proposed
controller, including the predicted state, efficiently keeps the closed-loop performance satisfactory
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despite the one-step time delay on the control input. It is shown that, conducting realistic simulations
using the PSIM software, the proposed speed controller makes the closed-loop performance satisfactory
despite the time-varying disturbance originating from the wind turbine, as well as the one-step time delay
on the control input.
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Appendix

A. Proofs of Theorems

In this section, we verify the statements of Theorem 1 and Theorem 2. First, the proof of Theorem 1
is given as follows:

Proof. Based on the facts that B−1 = LI2×2 and B−1J = LJ, it is possible to write the closed-loop
system as follows:

Lẋ(t) = (ωe(t)LJ− Rc(K1))x(t)−K2z(t)− ωe(t)Ld

= (ω0
eLJ− Rc(K1))x(t)−K2z(t)− ωe(t)Ld

+ω̃e(t)LJex(t) + ω̃e(t)LJx0 (23)

ż(t) = ex(t), ∀t ≥ 0 (24)

where Rc(K1) = RsI2×2 + K1 (> 0). Note that the differential equation (6) is stable, and it holds that:

lim
t→∞

ωe(t) = ω0
e

Using this fact, the steady state of the closed-loop system (23)–(24) can be described as:

0 = (ω0
eLJ− Rc(K1))x0 −K2z0 − ω0

eLd (25)

0 = e0x (26)
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where x0, z0 and e0x represent the steady-state values of x(t), z(t) and ex(t), respectively. By
subtracting Equations (25) and (26) from Equations (23) and (24), respectively, and defining w̃e(t) :=[
ω̃e(t) ˙̃ωe(t) · · · ω̃n−1e

]
, we have the closed-loop error dynamics as follows:

Lėx(t) = (ω0
eLJ− Rc(K1))ex(t)−K2ez(t)

+ ω̃e(t)(LJx0 − Ld) + ω̃e(t)LJex(t) (27)

ėz(t) = ex(t) (28)
˙̃we(t) = Aωw̃e(t), ∀t ≥ 0 (29)

where ez(t) := z(t)− z0, ∀t ≥ 0, and:

Aω :=


0 1 0 · · · 0 0

0 0 1 0 · · · 0
...

...
...

... . . . ...
−a0 −a1 −a2 · · · −an−2 −an−1


Note that all eigenvalues of matrix Aω are located in the left half plane of the complex space, because the
differential equation (6) is stable. This implies that there exists a positive-definite matrix Pω = PTω > 0,
such that:

AT
ωPω + PωAω = −I (30)

Along with matrix Pω satisfying Equation (30), consider the positive definite function defined as:

V (ex(t), ez(t), w̃e(t)) :=
L

2
‖ex(t)‖2 +

1

2
eTz (t)K2ez(t) +

ρ

2
w̃T
e (t)Pωw̃e(t), ∀t ≥ 0 (31)

where ρ is a positive constant to be defined later. Then, its time derivative along the trajectory of the
system (27)–(29) is given by:

V̇ (ex(t), ez(t), w̃e(t)) = eTx (t)

(
(ω0

eLJ− Rc(K1))ex(t)−K2ez(t)

+ω̃e(t)(LJx0 − Ld) + ω̃e(t)LJex(t)
)

+ eTz (t)K2ex(t)

+ρw̃T
e (t)PωAωw̃e(t), ∀t ≥ 0

Using the property J = −JT , it is observed that:

eTx (t)Jex(t) =
1

2
eTx (t)Jex(t) +

1

2
eTx (t)JT ex(t)

=
1

2
eTx (t)Jex(t)−

1

2
eTx (t)Jex(t) = 0, ∀t ≥ 0

This implies that:

V̇ (ex(t), ez(t), w̃e(t)) = −eTx (t)Rc(K1)ex(t) + eTx (t)L(Jx0 − d)ω̃e(t)

−ρ
2
‖w̃e(t)‖2, ∀t ≥ 0, ∀ex(0), ez(0), w̃e(0) 6= 0, ∀t ≥ 0

By applying Young’s inequality:

2xTy ≤ ε‖x‖2 +
1

ε
‖y‖2, ∀x, y ∈ Rn, ∀ε > 0
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we have:

V̇ (ex(t), ez(t), w̃e(t)) ≤ −eTx (t)Rc(K1)ex(t) +
λmin(Rc(K1))

2
‖ex(t)‖2

+
L2‖Jx0 − d‖2

2λmin(Rc(K1))
ω̃2
e(t)

−ρ
2
‖w̃e(t)‖2, ∀t ≥ 0, ∀ex(0), ez(0)w̃e(0) 6= 0

where λmin(·) and λmax(·) denote the minimum and maximum eigenvalues, respectively, of matrix (·).
Considering the relationships:

λmin(Rc(K1))‖ex(t)‖2 ≤ eTx (t)Rc(K1)ex(t) ≤ λmax(Rc(K1))‖ex(t)‖2, ∀t, and

ω̃2
e(t) ≤ ‖w̃e(t)‖2, ∀t

V̇ (ex(t), ez(t), w̃e(t)) can be written as:

V̇ (ex(t), ez(t), w̃e(t)) ≤ −1

2
eTx (t)Rc(K1)ex(t)

−1

2
(ρ− L2‖Jx0 − d‖2

λmin(Rc(K1))
)‖w̃e(t)‖2, ∀t ≥ 0, ∀ex(0), ez(0), w̃e(0) 6= 0

Eventually, it follows by choosing:

ρ =
L2‖Jx0 − d‖2

λmin(Rc(K1))
+ η (32)

that:

V̇ (ex(t), ez(t), w̃e(t)) ≤ −1

2
eTx (t)Rc(K1)ex(t)

−η
2
‖w̃e(t)‖2 ≤ 0, ∀t ≥ 0, ∀ex(0), ez(0), w̃e(0) 6= 0

Suppose that V̇ (ex(t), ez(t), w̃e(t)) = 0, ∀t. This implies that ex(t) = 0, w̃e(t) = 0, ∀t. Consequently,
ėx(t) = 0, ˙̃we(t) = 0, ∀t. Based on Equation (27), it follows from ex(t) = 0, ∀t, ėx(t) = 0, ∀t and
w̃e(t) = 0, ∀t that ez(t) = 0, ∀t, which proves the global asymptotic stability of the closed-loop system
according to LaSalle’s invariance principle [19].

Now, we describe the proof of Theorem 2.

Proof. The continuous time system (2) can be rewritten as:

ẋ(t) = (ωe(t)J− R)x(t) + Bu(t)− ωe(t)d

= ωe(t)Jx(t)− θ1x(t) + θ2u(t)− ωe(t)d, ∀t ≥ 0

where θ1 := Rs

L
and θ2 := 1

L
. Using this equation, it is possible to write the corresponding estimation

error dynamics as:

ėo(t) = −L1eo(t)− eθ1(t)x(t) + eθ2(t)u(t)− ωe(t)ed(t) (33)

ėd(t) = L2ωe(t)eo(t) (34)

ėθ1(t) = γ1xT (t)eo(t) (35)

ėθ2(t) = −γ2uT (t)eo(t), ∀t ≥ 0 (36)
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where eθ1(t) := θ1− θ̂1(t), eθ2(t) := θ2− θ̂2(t) and ed(t) := d− d̂(t), ∀t. Consider the positive-definite
function given by:

Vo(eo(t), ed(t), eθ1(t), eθ2(t)) :=
1

2
‖eo(t)‖2 +

1

2
eTd (t)L−12 ed(t)

+
1

2

2∑
i=1

1

γi
e2θi(t), ∀t ≥ 0 (37)

Note that the positivity of the estimation gains ensures the positive-definiteness of the function Vo.
Its time derivative along the trajectory of System (33)–(36) becomes:

V̇o = eTo

(
− L1eo(t)− eθ1(t)x(t) + eθ2(t)u(t)− ωe(t)ed(t)

)
+eTd (t)ωe(t)eo(t) + eθ1(t)xT (t)eo(t)− eθ2(t)uT (t)eo(t)

= −eTo L1eo(t) ≤ 0, ∀t ≥ 0 (38)

which implies that:

‖eo(t)‖ <∞, ‖ed(t)‖ <∞, |eθ1(t)| <∞, |eθ2(t)| <∞, ∀t ≥ 0 (39)

Since the boundedness property of Equation (39) guarantees that:

V̈o = −2eTo (t)L1ėo(t)

= −2eTo (t)

(
− L1eo(t)− eθ1(t)x(t) + eθ2(t)u(t)− ωe(t)ed(t)

)
< ∞, ∀t ≥ 0, (40)

it holds that:
lim
t→∞

eo(t) = 0

by Barbalat’s lemma in [19].
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