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Abstract: Study on Napier grass leaf (NGL), stem (NGS) and leaf and stem (NGT) was 

carried out. Proximate, ultimate and structural analyses were evaluated. Functional groups 

and crystalline components in the biomass were examined. Pyrolysis study was conducted 

in a thermogravimetric analyzer under nitrogen atmosphere of 20 mL/min at constant heating 

rate of 10 K/min. The results reveal that Napier grass biomass has high volatile matter, higher 

heating value, high carbon content and lower ash, nitrogen and sulfur contents. Structural 

analysis shows that the biomass has considerable cellulose and lignin contents which are 

good candidates for good quality bio-oil production. From the pyrolysis study, degradation 

of extractives, hemicellulose, cellulose and lignin occurred at temperature around 478, 543, 

600 and above 600 K, respectively. Kinetics of the process was evaluated using reaction 

order model. New equations that described the process were developed using the kinetic 

parameters and data compared with experimental data. The results of the models fit well to 
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the experimental data. The proposed models may be a reliable means for describing thermal 

decomposition of lignocellulosic biomass under nitrogen atmosphere at constant heating rate. 

Keywords: Napier grass; characterization; proximate and ultimate analysis; XRD; FTIR; 

TGA; DTG 

 

1. Introduction 

Development of alternative renewable energy continues to grow in recent times due to the fear of 

energy insecurity in the near future and environmental cum sociopolitical issues associated with the use 

of fossil fuels. Application of lignocellulosic biomass (non-food materials) such as forest residues,  

agro-wastes, energy grasses, aquatic plants and algae, etc. for bioenergy production seem promising as 

they are evenly distributed across the globe and have also eliminated initial public perception of food 

insecurity associated with first generation biofuels which were produced from food materials [1–3].  

In addition, these materials have low levels of sulfur, nitrogen and ash content which make them 

relatively environmentally friendly. Napier grass (Pennisetum purpureum) is an herbaceous plant with 

high potential for use as a feedstock for biofuel processing. It has a high biomass yield compared to other 

energy grasses such as miscanthus, switchgrass, etc, typically in the range of 25–35 oven dry tons per 

hectare annually, which corresponds to 100 barrels of oil energy equivalent per hectare. Cultivation of 

Napier grass follows conventional farming practices. It outcompetes weeds, needs very little or no 

supplementary nutrients and therefore requires lower establishment costs. It can be harvested up to four 

times within a year with a ratio of energy output to energy input of around 25:1, hence making it one of 

the best potential energy crops for development of efficient and economic bioenergy systems [4]. 

Furthermore, our recent trials in the field have proved that Napier grass can be intercropped with oil 

palm. The study was conducted under 70% and 50% shade levels with a full sunlight treatment as control. 

The plant showed more potential for higher dry weights in shaded conditions due to its elongated stem 

which contained more biomass than the higher leaf biomass produced in unshaded conditions. This 

suggests that shaded Napier grass produces longer and thicker stems in an attempt to reach better quality 

light. Intercropping Napier grass with oil palm will offer higher biomass yield, minimize the unused 

spaces in the oil palm plantation (estimated at 26.63% of the total space) and bring added economic 

value to the oil palm industries.  

Compared to other herbaceous biomass resources few studies on the characteristics of Napier grass 

biomass and its utilization for the development of biomaterials and biofuels have been carried out. 

Recently, Reddy et al. [5,6] have studied the thermal properties of Napier grass fiber, and its chemical 

and structural characterization, respectively. Effects of alkaline pretreatment on the thermal stability and 

mechanical properties were investigated. The findings revealed that alkali-pretreated Napier grass fiber 

can be used as reinforcement in green composites. Strezov et al. [7] and Lee et al. [8] also conducted 

studies on the thermochemical conversion of Napier grass to pyrolysis oil. The results of their separate 

investigations showed that the bio-oil was made up of highly oxygenated compounds which was 

attributed to the nature of the composition of the grass. In order to develop effective and efficient 

conversion of Napier grass into biofuel and chemicals via pyrolysis, there is need to further understand 
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its properties so as to be able to predict product compositions, yields, selectivity and co-products formed 

during conversion. The objective of this paper was to carry out a comprehensive characterization of the 

different parts of Napier grass for sustainable biofuel production. 

2. Experiment 

Fresh Napier grass stem (NGS), leaf (NGL) and stem and leaf (NGT) chopped 6 to 8 cm were 

collected from the Crops for the Future (CFF) Field Research Centre and transported in plastic bags to 

the research building of the University of Nottingham Malaysia campus. The materials were oven dried at 

105 °C for moisture content determination according to the BS EN 14774-1 standard [9]. The dried 

materials were then shredded in a Retsch® rotor beater mill to particle sizes between 0.2 mm and 2 mm 

and stored in air tight plastic bags for further studies. Volatile matter and ash content on dry basis were 

determined according BS EN 15148 [10] and BS EN 14775 [11], respectively. Fixed carbon was 

computed by subtracting the percentage compositions of ash and volatile matter from the bone dry 

sample mass. Higher heating value (HHV) was determined using a Parr 6100 oxygen bomb calorimeter 

following BS EN 14918 [12]. The ash inorganic composition was determined using energy dispersive  

x-ray (EDX). Elemental compositions were determined using a LECO Corporation, USA CHNS analyzer 

(LECO Corporation, St Joseph, MI, USA). The structural analysis of the biomass was performed 

according to the procedure outlined in NREL/TP-510-42618 [13]. X-ray diffraction (XRD) was carried 

out to examine the crystalline systems present in each sample using PANalytical XpertPro (DSKH 

Technology Sdn Bhd, Selangor, Malaysia) (CuKα radiation, λ = 0.1541 nm) between 2Ө angle of 10°–60° 

at 25 mA, 45 kV, step size of 0.025°and 1.0 s scan rate. Crystallinity index (CrI) was calculated using 

peak height method according to Equation (1) below [14]:  

100 (%) 
200

200 






 


I

II
CrI am  (1)

where I200 and Iam is the intensity of crystalline and amorphous portion of the biomass respectively. The 

nature of chemical bonds and functional groups was evaluated by Fourier transform infrared 

spectroscopy (FTIR) on a PerkinElmer Spectrometer Spectrum RX1 instrument (Perkin Elmer Sdn Bhd, 

Selangor, Malaysia) using the potassium bromide (KBr) method. The translucent KBr discs (13 mm 

diameter) were made from homogenized 2 mg samples in 100 mg KBr using a CARVER press at  

5.5 tons for 5 min. Spectra were recorded with the Spectrum V5.3.1 software within the wavenumber 

range of 400–4000 cm−1 at 32 scans and 4 cm−1 resolution. Pyrolysis characteristics of the samples were 

studied in a PerkinElmer Simultaneous Thermal Analyzer (STA) 6000 thermogravimetric analyzer 

(TGA) (Perkin Elmer Sdn Bhd, Selangor, Malaysia) in a nitrogen atmosphere, flow rate 20 mL/min at 

temperature between 300 K and 1100 K and heating rate of 10 K/min. About 10.0 mg of sample (with a 

particle size of 0.2 mm) was used. 

3. Results and Discussion 

Table 1 gives the characteristics of different part of the Napier grass biomass. Moisture content at 

harvest varied across different section of the plant. Napier grass stem (NGS) has the highest moisture of 

75.27 wt. %, followed by the Napier grass total, NGT (stem and leaf) with 74.22 wt. % and the least 
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from leaf (NGL) having 62.25 wt. %. High volatile matter of 85.17 wt. %, 81.51 wt. % and 79.06 wt. % 

was recorded in the NGT, NGS and NGL, respectively. Ultimate analysis on a dry basis revealed that 

NGS has higher carbon (48.61 wt. %) and lower oxygen (44.07 wt. %) contents relative to NGT with 

45.10 wt. % carbon, 47.17 wt. % oxygen and NGL (44.17 wt. % carbon, 49.04 wt. % oxygen).  

Table 1. Proximate, ultimate, structural and ash characteristics of Napier grass (NGS, NGL and NGT). 

Property 
Biomass 

NGS NGL NGT 

Proximate analysis (wt. %)    

Moisture content a 75.27 ± 0.21 62.25 ± 0.14 74.22 ± 0.17 
Volatile matter b 81.51 ± 0.30 79.06 ± 0.26 85.17 ± 0.21 

Ash content b 1.75 ± 0.01 4.00 ± 0.03 6.34 ± 0.01 
Fixed carbon c 16.74 ± 0.09 16.94 ± 0.04 8.49 ± 0.02 
HHV (MJ/kg) 18.11 ± 0.10 16.21 ± 0.10 16.58 ± 0.10 

Ultimate analysis (wt. %) b    

Carbon (C) 48.61 ± 0.80 44.17 ± 0.73 45.10 ± 0.70 
Hydrogen (H) 6.01 ± 0.14 5.51 ± 0.14 5.93 ± 0.15 
Nitrogen (N) 0.99 ± 0.03 1.01 ± 0.03 1.45 ± 0.04 

Sulfur (S) 0.32 ± 0.01 0.27 ± 0.01 0.35 ± 0.01 
Oxygen (O)c 44.07 ± 0.66 49.04 ± 0.74 47.17 ± 0.71 

O/C (atomic ratio) 0.91 1.11 1.05 
H/C (atomic ratio) 0.124 0.125 0.131 

Structural composition (wt. %)    

Cellulose 38.75 ± 2.30 29.36 ± 2.01 34.21 ± 2.17 
Hemicellulose 19.76 ± 1.68 15.96 ± 1.55 20.44 ± 1.70 

Lignin 26.99 ± 1.29 30.09 ± 1.30 24.34 ± 1.34 
Extractives 12.07 ± 0.32 5.57 ± 0.30 9.26 ± 0.27 

EDX Analysis of ash (wt. %)    

Sodium (Na) 0.27 ± 0.006 0.21 ± 0.004 0.25 ± 0.005 
Magnesium (Mg) 2.34 ± 0.075 2.17 ± 0.070 1.89 ± 0.049 
Aluminum (Al) 0.93 ± 0.032 1.67 ± 0.057 1.66 ± 0.057 

Silicon (Si) 7.44 ± 0.248 24.98 ± 0.833 7.78 ± 0.265 
Phosphorus (P) 2.31 ± 0.064 3.55 ± 0.107 2.25 ± 0.068 

Sulfur (S) 1.47 ± 0.047 1.75 ± 0.060 3.37 ± 0.104 
Chlorine (Cl) 16.13 ± 0.471 12.44 ± 0.400 18.95 ± 0.653 
Potassium (K) 64.77 ± 2.228 49.88 ± 1.716 59.85 ± 2.061 
Calcium (Ca) 4.34 ± 0.129 3.34 ± 0.100 4.01 ± 0.129 

Notes: a As received at harvest; b dry basis; c by difference; (NGS) Napier grass stem; (NGL) Napier grass leaf 

and (NGT) Napier grass stem and leaf. 

NGS produced a higher heating value (HHV) of 18.11 MJ/kg compared to NGT (16.58 MJ/kg) and 

NGL (16.21 MJ/kg). The higher energy content in the NGS may be attributed to its lower ash content, 

high carbon content and lower oxygen level. EDX analysis of biomass ash showed that ash from all parts 

of the Napier grass contains similar metallic and non-metallic elements in different proportions in the 

following order K>Ca>Mg>Al>Na and Cl>Si>P>S, respectively. This composition follows general 
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trend of a typical biomass ash [7,15–17]. Result of structural analysis revealed that NGS has 38.75 wt. % 

cellulose, 19.76 wt. % hemicellulose and 26.99 wt. % lignin while 34.21 wt. %, 20.44 wt. %, 24.34 wt. % 

and 29.36 wt. %, 15.96 wt. %, 30.09 wt. % of cellulose, hemicellulose, lignin were recorded in NGT and 

NGL respectively. This structural characteristica are similar to those o obtained by Reddy et al. [5], and 

Lee et al. [8] and those of other warm season grasses such as switchgrass, Miscanthus, etc. [18,19]. 

The diffraction pattern (Figure 1) from the XRD study shows similar patterns for all the biomass 

samples with peaks at a 2Ө value of 22.16° (main peak), 15.81° and 35.10° (broad peaks) which reflect 

the crystalline system in the samples. These represent the crystallographic planes 200, 110 and 004, 

respectively, according to the native cellulose structure [20–23]. These characteristic peaks in the 

diffractogram are comparable to the Napier grass peaks identified by Reddy et al. [6]. The remaining 

components, mainly hemicellulose, lignin and extractives in the material are approximated to belong to 

the amorphous phase since no larger crystals are formed by these components [20,24]. The value of 

crystallinity index obtained using Equation (1) above was 79.15%, 76.14 and 75.41 for NGS, NGT and 

NGL correspondingly. This result shows good agreement with the structural analysis result. 

 

Figure 1. X-ray diffractogram of Napier grass (NGT, NGS and NGL). 

Table 2 below lists typical FTIR wavenumber bands for the biomass material. The averaged FTIR 

spectra (Figure 2) show similar characteristic peaks for all the biomass samples, with a region of high 

frequency between 4000 cm−1 and 2300 cm−1 and region of low frequency between 1626 cm−1 and 400 cm−1 

which indicates the possible presence of different alkyl, aromatic, alcohol, ester and carbonyl functional 

groups originating from the extractive, hemicellulose, cellulose and lignin components of all the 

biomass. In the high frequency region, peaks in the samples between 3700 cm−1 and 3421 cm−1 can be 

attributed to different hydroxyl group (alcohol/phenol) stretching vibrations [25–28]. The band at 2937 cm−1 
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could be a result of aliphatic saturated C-H stretching vibrations (asymmetric and symmetric methyl and 

methylene stretching groups) from extractives and lignin components of the biomass since fatty acid 

methyl esters and phenolic acid methyl esters, have methyl and methylene groups [29–32]. In the 

fingerprint region, the band at 1600 cm−1 may be due to the ring-conjugated C=C bonds of lignin while 

the band observed at 1200 cm−1 may be an indication of O-H bending in the cellulose and hemicellulose 

components of the biomass [5,25,26,28,33–36]. The frequency at 1,050 cm−1 may be ascribed to  

C-O, and C=C, and C-C-O stretching in cellulose, hemicelluloses and lignin [25,28,34,36] while the 

bands between 800 and 600 cm−1 may be attributed to aromatic C-H bending vibrations from the lignin 

in the samples [5,35,36]. 

Table 2. FTIR wavenumber bands in biomass material. 

Wavenumber (cm−1) Functional Group Reference 

3700, 3421 O-H Stretching vibration [25–28] 
2937 Alkyl C-H stretching [29–32] 
1600 Aromatic C=C Bending [26,35,36] 
1200 O-H bending in cellulose and hemicellulose [5,25,28,34,36] 
1050 C-O, C=C and C-C-O stretching  [5,24,28,34,36] 

860–680 Aromatic C-H bending [5,35,36] 

 

Figure 2. Averaged FTIR spectra (auto-smoothed and auto-baseline corrected) of Napier 

grass samples (NGT, NGS and NGL).  

Thermogravimetric analysis revealed thermal decomposition of various structural components of 

NGS, NGT and NGL (Figure 3). Point (a) at 478 K is attributed to decomposition of extractives while 

(b) and (c) correspond to decomposition of hemicellulose at temperatures 543 K and cellulose at 600 K, 
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respectively. Beyond 600 K, point (d), indicates the decomposition of lignin. Considering decomposition 

intensity of the main peaks (cellulose), reaction intensities of 5.3, 6.0 and 6.6 wt. %/K were recorded for 

NGS, NGT and NGL in that order. The lower value for NGS may be attributed to w high amount of 

alkali metals, particularly potassium, in the biomass (see Table 1) since high levels of alkali metals tends 

to reduce the cellulose decomposition rate during pyrolysis [36–39]. A noticeable peak was observed in 

the lignin decomposition region of NGT at 730 K and NGL at 880 K while none was observed in NGS. 

Consequently, it can be deduced that the lignin content of NGS has similar decomposition pathways 

while the change observed in the NGT and NGL may be attributed to different oxygen functional groups 

present in the lignin component of the respective biomass sanmples. The decomposition temperature 

values of different parts of the Napier grass in this study are in good agreement with literature values of 

373–523 K, 523–623 K, 623–773 K and above 773 K for extractives, hemicellulose, cellulose and lignin, 

respectively [6,36,39]. 

 

Figure 3. Residual mass ratio and DTG of Napier grass on dry basis. (NGT) Napier  

grass stem and leaf, (NGS) Napier grass stem, (NGL) Napier grass leaf. (a) Extractives;  

(b) Hemicellulose; (c) Cellulose; and (d) lignin decompositions respectively. Condition: 

nitrogen atmosphere (20 mL/min), heating rate (10 K/min). 

Biomass decomposition can be represented by the Equation (2) below: 

)()()( sg
k

s RsVB   )2(

where :B  solid biomass; :V  volatiles and :Rs  residual solid. :k  decomposition rate constant. 

From solid state chemistry, the rate of reaction can be written as [40]: 

)()( b
b xfTk
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The rate constant k is a function of temperature and generally represented by the Arrhenius equation 

and f (xb) is expressed in form of reaction order model. Equation (3) then becomes: 

 )1( RT

E
n

b
b Aex
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dx 
  )4(

For a non-isothermal process at constant heating rate (β), Equation (4) can be transformed as given 

in Equation (5): 
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Taking the natural logarithm of Equation (5) and rearranging, we obtain Equation (6). A plot of right 

hand side versus 1/T will give a straight line for a particular reaction order. The kinetic parameters; 

frequency factor, A (min−1) and activation energy, E (kJ/mol) can be obtained from the intercept and 

slope of the graph. R is the general gas constant (8.314 J/mol·K): 
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where the terms mo, mt, and m∞ are the initial sample mass, mass remaining at any time (t) and residual 

mass at the end of pyrolysis, respectively. 

From Equation (7), we need to develop the limit for dxb/dT and relate it to the experimental data: 
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The experimental data were fitted to the straight line model presented in the Equation (6) above for 

different components in the biomass as identified in the DTG curves in Figure 3 above. Summarized 

kinetic parameters such as activation energy, frequency factor and reaction order are given in Table 3. 

The lignin decomposition NGS and NGL biomass samples followed a reaction order of 1.8 while a 2.3 

reaction order was recorded for NGT. The activation energy was between 23.37 and 46.31 kJ/mol which 

was lower than that of the remaining components. This observation may be attributed to mass and heat 

transfer effects. Similar lower values of activation energy of lignin decomposition have been reported in 

the literature [41–45]. Similarly, the cellulose and extractives decompositions of NGS and NGL biomass 

obeyed the same reaction order of 5, whereas NGT followed 7 and 11 reaction orders for cellulose and 

extractives. High activation energies of 178.62, 171.25 and 168.84 kJ/mol were recorded for cellulose 

in NGT, NGS and NGL, respectively. The higher value of activation energy of cellulose may be linked 

to the high crystallinity index recorded in the samples which generally tends to inhibit cellulose 

degradation due to resistance to heat diffusion [36,37,46,47]. This observation is also in agreement with 

our previous study where pretreated biomass produced higher activation energy compared to the 

untreated sample due to increased crystallinity brought about by the pretreatment [39]. On the other 

hand, the reaction orders for hemicellulose varied across all the biomass samples: orders of 4.5, 3 and 5 

were recorded for hemicellulose decomposition in NGT, NGS and NGL, respectively with 

corresponding activation energy of 81.05, 82.59 and 102.56 kJ/mol. 

Table 3. Kinetic parameters of pyrolysis Napier grass (NGT, NGS and NGL) under nitrogen 

atmosphere (20 mL/min) and heating rate of 10 K/min using reaction order model. 

Biomass Slope Intercept Order (n) R-Square Value A (min−1) EA (kJ/mol.)

NGT       

Extractives −11,578.0 23.217 11.00 0.9880 1.21 × 1010 96.26 
Hemicellulose −9,748.3 17.982 4.50 0.9991 6.45 × 107 81.05 

Cellulose −21,484.0 39.912 7.00 0.9786 2.16 × 1017 178.62 
Lignin −5,570.1 8.3817 2.30 0.9961 4.37 × 103 46.31 

NGS       

Extractives −9,470.8 18.854 5.00 0.9813 1.54 × 108 78.74 
Hemicellulose −9,933.8 18.416 3.00 0.9990 9.95 × 107 82.59 

Cellulose −20,597.0 38.25 5.00 0.9573 4.09 × 1016 171.25 
Lignin −2,811.1 4.3639 1.80 0.9697 7.86 × 101 23.37 

NGL       

Extractives −6,700.4 12.25 5.00 0.9864 2.09 × 105 55.71 
Hemicellulose −12,335.0 23.345 4.00 0.9993 1.38 × 1010 102.56 

Cellulose −20,307.0 38.054 5.00 0.9317 3.36 × 1016 168.84 
Lignin −3,234.2 4.9492 1.80 0.9927 1.41 × 102 26.89 

Generally, the biomass decomposition process is a multi-step reaction of its components which 

contribute to the overall reaction rate. From the kinetic parameters obtained above, a general equation 

can be developed for the whole NGT, NGS and NGL biomass decomposition process from Equation (5), 

as follows: 
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where 5n and the first, second, third and fourth term of Equations (12)–(14) represent the rate of 

conversion of extractives, hemicellulose, cellulose and lignin at temperatures between 373–473 K,  

473–573 K, 573–673 K and >673 K, respectively. Using these models with the kinetic parameters 

obtained above, predicated DTG data was obtained using the relation in Equation (11). The predicated 

DTG was compared with the experimental DTG as shown in Figure 4 below. The result showed that the 

models described well the pyrolysis process of the different components of Napier grass biomass. 
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Figure 4. Comparison between Experimental and Predicted DTG curves of Napier Grass 

Biomass. (a) NGL; (b) NGS; (c) NGT. 
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4. Conclusions 

Napier grass leaf (NGL), stem (NGS) and leave and stem (NGT) were characterized. Proximate and 

ultimate analyses revealed that the materials have high volatile matter contents, higher heating value, 

high carbon content and lower ash, nitrogen and sulfur contents. Structural composition showed that 

Napier grass biomass has considerable cellulose and lignin contents which makes it a good candidate for 

good quality bio-oil production. However, some levels of extractives and hemicellulose were also 

recorded. The biomass ash consists mainly of the elements potassium, chlorine and silicon. These 

minerals, together with extractives and hemicellulose, may be reduced through a pretreatment step prior 

to the pyrolysis process. The pyrolysis characteristics from the thermogravimetric studies under nitrogen 

atmosphere of 20 mL/min at constant heating rate of 10 K/min showed that degradation of extractives, 

hemicellulose, cellulose and lignin occurred at temperatures around 478 K, 543 K, 600 K and above 600 K, 

respectively. The kinetics of the process were evaluated using a reaction order model. Higher activation 

energy was recorded for the decomposition of cellulose. This was attributed to the high level of crystallinity 

in the materials. Some models were developed using the kinetic parameters and the data compared with 

the experimental data. The results of the models fit well to the experimental data. The proposed models 

may be a reliable means for describing the thermal decomposition of other lignocellulosic biomass 

samples under nitrogen atmosphere at constant heating rate, which shall be the focus of our next study. 

Acknowledgments 

The project was supported by the Crops for the Future (CFF) and University of Nottingham under the 

grant BioP1-005. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Margeot, A.; Hahn-Hagerdal, B.; Edlund, M. New improvements for lignocellulosic ethanol.  

Curr. Opin. Biotechnol. 2009, 20, 372–380. 

2. Nigam, P.S.; Singh, A. Production of liquid biofuels from renewable resources. Prog. Energy 

Combust. Sci. 2011, 37, 52–68. 

3. Srirangan, K.; Akawi, L.; Moo-Young, M. Towards sustainable production of clean energy carriers 

from biomass resources. Appl. Energy 2012, 100, 172–186. 

4. Samson, R.; Mani, S.; Boddey, R. The potential of C4 perennial grasses for developing a global 

bioheat industry. Crit. Rev. Plant Sci. 2005, 24, 461–495. 

5. Reddy, K.O.; Maheswari, C.U.; Shukla, M.; Rajulu, A.V. Chemical composition and structural 

characterization of Napier grass fibers. Mater. Lett. 2012, 67, 35–38. 

6. Reddy, K.O.; Maheswari, C.U.; Reddy, D.J.P.; Rajulu, A.V. Thermal properties of Napier grass 

fibers. Mater. Lett. 2009, 63, 2390–2392. 

7. Strezov, V.; Evans, T.J.; Hayman, C. Thermal conversion of elephant grass (Pennisetum Purpureum 

Schum) to bio-gas, bio-oil and charcoal. Bioresour. Technol. 2008, 99, 8394–8399. 



Energies 2015, 8 3415 

 

 

8. Lee, M.-K.; Tsai, W.-T.; Tsaic, Y.-L.; Lin, S.-H. Pyrolysis of Napier grass in an induction-heating 

reactor. J. Anal. Appl. Pyrolysis 2010, 88, 110–116. 

9. Solid Biofuels. Determination of Moisture Content. Oven Dry Method. Total Moisture. Reference 

Method; BS EN 14774-1; British Standards Institution: London, UK, 2009. 

10. Solid Biofuels. Determination of the Content of Volatile Matter; BS EN 15148; British Standards 

Institution: London, UK, 2009. 

11. Solid Biofuels. Determination of Ash Content; BS EN 14775; British Standards Institution: London, 

UK, 2009. 

12. Solid Biofuels. Determination of Calorific Value; BS EN 14918; British Standards Institution: 

London, UK, 2009. 

13. Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination 

of structural carbohydrates and lignin in biomass. In Laboratory Analytical Procedure,  

NREL/TP-510-42618; National Renewable Laboratory: Golden, CO, USA, 2012. 

14. Segal, L.; Creely, L.; Martin, A.E.; Conrad, C.M. An empirical method for estimating the degree of 

crystallinity of native cellulose using X-ray diffractometer. Text. Res. J. 1959, 29, 786–794. 

15. Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical 

composition of biomass. Fuel 2010, 89, 913–933. 

16. Lindberg, D.; Backman, R.; Chartrand, P.; Hupa, M. Towards a comprehensive thermodynamic 

database for ash-forming elements in biomass and waste combustion—Current situation and future 

developments. Fuel Process. Technol. 2013, 105, 129–141. 

17. Yeboah, N.N.N.; Shearer, C.R.; Burns, S.E.; Kurtis, K.E. Characterization of biomass and high 

carbon content coal ash for productive reuse applications. Fuel 2014, 116, 438–447. 

18. Bioenergy System Planners Handbook. Available online: http://bisyplan.bioenarea.eu/html-files-

en/04-02.html (accessed on 23 April 2015). 

19. DoKyung, L.; Vence, N.O.; Arvid, B.; Peter, J. Composition of herbaceous biomass feedstocks. In 

Sun Grant Initiative 2007; North Dakota University: Brookings, SD, USA, 2007. 

20. Wada, M.; Okano, T.; Sugiyama, J. Allomorphs of native crystalline cellulose I evaluated by two 

equatorial d-spacings. J. Wood Sci. 2001, 47, 124–128. 

21. Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose crystallinity index: 

Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 

2010, 3, 4–10. 

22. Poletto, M.; Pistor, V.; Zattera, A.J. Structural characteristics and thermal properties of native 

cellulose. In Cellulose-Fundamental Aspects; van de Ven, T., Gdbout, L., Eds.; InTech.:  

Caxias do Sul, Brazil, 2013; pp. 45–68. 

23. Timpano, H.; Sibout, R.; Devaux, M.-F.; Alvarado, C.; Looten, R.; Pontoire, B.; Martin, M.; Legée, F.; 

Cézard, L.; Lapierre, C.; et al. Brachypodium cell wall mutant with enhanced saccharification 

potential despite increased lignin content. Bioenerg. Res. 2014, doi:10.1007/s12155-014-9501-1. 

24. Cheng, G.; Varanasi, P.; Li, C.; Liu, H.; Melnichenko, Y.B.; Simmons, B.A.; Kent, M.S.; Singh, S. 

Transition of cellulose crystalline structure and surface morphology of biomass as a function of 

ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 2011, 12, 

933–941. 



Energies 2015, 8 3416 

 

 

25. Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and 

lignin pyrolysis. Fuel 2007, 86, 1781–1788. 

26. Xu, F.; Yu, J.; Tesso, T.; Dowell, F.; Wang, D. Qualitative and quantitative analysis of lignocellulosic 

biomass using infrared techniques: A mini-review. Appl. Energy 2013, 104, 801–809. 

27. Nazir, M.S.; Wahjoedi, B.A.; Yussof, A.W.; Abdaulla, M.A. Eco-friendly extraction and 

characterization of cellulose from oil palm empty fruit bunches. BioResources 2013, 8, 2161–2172. 

28. Lupoi, J.S.; Singh, S.; Simmons, B.A.; Henry, R.J. Assessment of lignocellulosic biomass using 

analytical spectroscopy: an evolution to high-throughput techniques. Bioenergy Res. 2014, 7, 1–23. 

29. Yokoi, H.; Nakase, T.; Goto, K.; Ishida, Y.; Ohtani, H.; Tsuge, S.; Sonoda, T.; Ona, T. Rapid 

characterization of wood extractives in wood by thermal desorption-gas chromatography in the 

presence of tetramethylammonium acetate. J. Anal. Appl. Pyrolysis 2003, 67, 191–200. 

30. Ishida, Y.; Goto, K.; Yokoi, H.; Tsuge, S.; Ohtani, H.; Sonoda, T.; Ona, T. Direct analysis of 

phenolic extractives in wood by thermochemolysis-gas chromatography in the presence of 

tetrabutylammonium hydroxide. J. Anal. Appl. Pyrolysis 2007, 78, 200–206. 

31. Mészáros, E.; Jakab, E.; Várhegyi, G. TG/MS, Py-GC/MS and THM-GC/MS study of the 

composition and thermal behavior of extractive components of Robinia pseudoacacia. J. Anal. Appl. 

Pyrolysis 2007, 79, 61–70. 

32. Plis, A.; Lasek, J.; Skawinska, A.; Kopczynski, M. Thermo-chemical properties of biomass from 

Posidonia Oceanica. Chem. Pap. 2014, 68, 879–889. 

33. Naik, S.; Goud, V.V.; Rout, P.K.; Jacobson, K.; Dalai, A.K. Characterization of Canadian biomass 

for alternative renewable biofuel. Renew. Energy 2010, 35, 1624–1631. 

34. Nanda, S.; Mohanty, P.; Pant, K.K.; Naik, S.; Kozinski, J.A.; Dalai, A.K. Characterization of north 

american lignocellulosic biomass and biochars in terms of their candidacy for alternate 

renewable fuels. Bioenergy Res. 2013, 6, 663–677. 

35. Qian, K.; Kumar, A.; Patil, K.; Bellmer, D.; Wang, D.; Yuan, W.; Raymond, L.; Huhnke, R.L. 

Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char. 

Energies 2013, 6, 3972–3986. 

36. Sills, D.L.; Gossett, J.M. Using FTIR to predict saccharification from enzymatic hydrolysis of 

alkali-pretreated biomasses. Biotechnol. Bioeng. 2012, 109, 353–362. 

37. Raveendra, K.; Ganesh, A.; Khilar, K.C. Pyrolysis characteristics of biomass and biomass 

components. Fuel 1996, 75, 987–998. 

38. Hagedorn, M.M.; Bockhorn, H.; Krebs, L.; Muller, U. A comparative kinetics study on the pyrolysis 

of three different wood species. J. Anal. Appl. Pyrolysis 2003, 68–69, 231–249. 

39. Biwas, A.K.; Umeki, K.; Yang, W.; Blasiak, W. Change of pyrolysis characteristics and structure 

of wood biomass due to steam explosion pretreatment. Fuel Process. Technol. 2011, 92, 1849–1854. 

40. Mohammed, I.Y.; Abakr, Y.A.; Kabir, F.; Yusuf, S. Effect of aqueous pretreatment on pyrolysis 

characteristics of napier grass. J. Eng. Sci. Technol. 2015, in press. 

41. Khawam, A.; Flanagan, D.R. Solid-state kinetic models: Basics and mathematical fundamentals.  

J. Phys. Chem. B 2006, 110, 17315–17328. 

42. Pasquali, C.E.L.; Herrera, H. Pyrolysis of lignin and IR analysis of residues. Thermochim. Acta 

1997, 293, 39–46. 



Energies 2015, 8 3417 

 

 

43. Teng, H.; Wei, Y.-C. Thermogravimetric studies on the kinetics of rice hull pyrolysis and the 

influence of water treatment. Ind. Eng. Chem. Res. 1998, 37, 3806–3811. 

44. Orfao, J.J.M.; Antunes, F.J.A.; Figueiredo, J.L. Pyrolysis kinetics of lignocellulosic materials—

Three independent reactions model. Fuel 1999, 78, 349–358. 

45. Brebu, M.; Vasile, C. Thermal degradation of lignin—A review. Cellul. Chem. Technol. 2010, 44, 

353–363. 

46. Chen, W.-H.; Kuo, P.-C. Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and 

xylan using thermogravimetric analysis. Energy 2011, 36, 6451–6460. 

47. Braga, R.M.; Costa, T.R.; Freitas, J.C.O.; Barros, J.M.F.; Melo, D.M.A.; Melo, M.A.F. Pyrolysis 

kinetics of elephant grass pretreated biomasses. J. Therm. Anal. Calorim. 2014, 117, 1341–1348.  

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


