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Abstract: To explore the problems associated with applying dynamic programming (DP) 

in the energy management strategies of plug-in hybrid electric vehicles (PHEVs), a plug-in 

hybrid bus powertrain is introduced and its dynamic control model is constructed.  

The numerical issues, including the discretization resolution of the relevant variables and 

the boundary issue of their feasible regions, were considered when implementing DP to 

solve the optimal control problem of PHEVs. The tradeoff between the optimization 

accuracy when using the DP algorithm and the computational burden was systematically 

investigated. As a result of overcoming the numerical issues, the DP-based approach has 

the potential to improve the fuel-savings potential of PHEVs. The results from comparing 

the DP-based strategy and the traditional control strategy indicate that there is an 

approximately 20% improvement in fuel economy. 

Keywords: plug-in hybrid electric vehicles; global optimization; dynamic programming; 

energy management strategy; modeling 
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1. Introduction 

In contrast to hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs) have a 

larger battery, which can replace a certain amount of conventional fossil fuels with grid electricity [1–4]. 

The manner in which the onboard electrical energy is used significantly influences the energy utilization 

efficiency and subsequently impacts the fuel economy [5–8]. 

As an approach that solves multi-step optimization problems based on Bellman’s principle of 

optimality [9,10], dynamic programming (DP) guarantees global optimality through an exhaustive 

search of all control and state grids. Applying DP in PHEVs consists of finding optimal control 

sequences to obtain the optimal battery state of charge (SoC) trajectory and to minimize fuel 

consumption over a given driving schedule. The DP-based energy management strategy belongs to the 

category of off-line energy management techniques, which are not suitable for online control [11]. 

However, this approach provides a benchmark for assessing the optimality of other energy management 

strategies and helps to improve the online strategy [12–16]. 

Because DP is a numerical algorithm, the continuous-time control problem must be discretized.  

In fact, the DP processes are implemented backward from the final state to the initial state by searching 

for the optimal trajectory among the discretized grid points. Moreover, the grid points are the 

intersections of discretizing lines of state space and time space, as shown in Figure 1. However,  

the state output of the model function is continuous in the state space, which does not generally 

coincide with the nodes of the state grid but rather between them. Consequently, it is necessary to 

appropriately evaluate the DP process, and interpolation is used to find the cost-to-go value,  

which inherently introduces numerical errors [17,18]. Therefore, the accuracy of the DP solutions 

depends on the number of grid points [19]. Higher discretization resolution of the state space and time 

space could increase the number of grid points, which would consequently increase the optimality of 

the DP results. Unfortunately, higher discretization resolution also leads to an increase in the 

computation load required to calculate the global optimum [17,19,20]. 
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Figure 1. Discretization of the state space and time space. 

Another issue to consider is the valuation of the cost function for the infeasible states. An infinite 

cost is always used as the cost function for the state points in the infeasible area, which could result in 

the cost-to-go values, obtained by linear interpolation between an infinite cost-to-go and a finite one, 
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for the feasible state points near the boundary line becoming infinite. Consequently, the actual 

infeasible domain is enlarged during the calculation process. Moreover, the control variables also need 

to be properly discretized. For the control variables, the proportion of the feasible region that can be 

utilized depends on its discretization resolution, as shown in Figure 2. Clearly, the number of available 

points increases as the discretization resolution increases. Additionally, the optimality of the DP-based 

control sequences improves, whereas the computation load is substantially increased. 

 

 

Figure 2. Discretization of the control variables. 

In general, if the aforementioned problems are not fully taken into account and appropriately 

treated, then the relevant numerical errors would have a large impact on the final result. These issues 

for the case of PHEVs will be investigated in this paper. 

The remainder of this paper is organized as follows: Section 2 provides an introduction and 

discusses systematic modeling for the targeted single-axis series-parallel plug-in hybrid electric bus 

(PHEB). The DP of the optimal control problem for the PHEB is formulated in Section 3.  

The numerical issues when solving the DP are investigated in Section 4. The results from the PHEB 

with two types of strategies are discussed in Section 5. Finally, conclusions are drawn in Section 6. 

2. Plug-in Hybrid Powertrain Model 

As an approach to solve global optimization problems over a finite horizon, DP is always used for 

solving the optimal energy management problem of HEVs [21–23]. In this paper, for the purpose of 

minimizing the fuel consumption of PHEVs over a given driving cycle, DP is responsible for finding 

the optimal power combination of the power components to meet the power demand of the vehicle, 

which is based on the vehicle dynamic model. 

2.1. A Plug-in Hybrid Electric Bus Powertrain 

A single-axis series-parallel PHEB is taken as the research object, and its powertrain configuration 

is shown in Figure 3. It consists of a conventional internal combustion engine (ICE), an integrated 

starter and generator (ISG), a traction motor (TM), an automatically controllable friction clutch,  

a battery pack, an on-board battery charger and electronic control systems, which include a vehicle 

control unit (VCU), a battery management system (BMS), an integrated motor controller for the ISG 

and the TM, an ICE control unit, and so on. The technical parameters of the PHEB are summarized in 

Table 1. 
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Figure 3. Powertrain configuration of the series-parallel PHEB. 

Table 1. The PHEB main specifications. 

Powertrain Parameter Value Parameter Value 

ICE Maximum power/kW 147 Maximum torque/Nm 730 
ISG Maximum power/kW 55 Maximum torque/Nm 500 
TM Maximum power/kW 166 Maximum torque/Nm 2080 

Battery pack Capacity/Ah 60 Voltage/V 576 

Others 

Curb weight/kg 12,500 Aerodynamic drag coefficient 0.55 
Gross weight/kg 18,000 Rolling resistance coefficient 0.0095 
Frontal area/m2 6.6 Transmission efficiency 0.93 

Tire rolling radius/mm 473 - - 

For the PHEB powertrain, the ICE output is connected directly to the ISG rotor shaft and then 

connected to the clutch input plate. The TM rotor is connected directly to the clutch output plate.  

The power from the ICE, the ISG and the TM can be delivered directly to the rear drive wheels 

through the final drive and the differentials. The automatically controllable friction clutch is used to 

connect or disconnect the ICE/ISG torque with the TM torque. If the clutch input plate and output plate 

are connected, then the ICE/ISG torque can be delivered directly to the driving wheels, and the PHEB 

works in a parallel hybrid mode. When the clutch input plate and output plate are disconnected,  

the ICE/ISG can only output electricity, and the PHEB works in a series hybrid mode. Note that the 

ISG can instantaneously start the ICE once the ICE needs to work. 

2.2. The Vehicle Model 

The movement behavior of a vehicle along its moving direction is completely determined by all of 

the forces that act on it in the same direction. In the longitudinal direction, the major external forces 
acting on a two-axle vehicle include the rolling resistance of the front and rear tires, fF ; the 

aerodynamic drag, wF ; the climbing resistance, iF ; the acceleration resistance, jF ; and the tractive 
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effort of the drive wheels, dF . The dynamic equation for vehicle motion along the longitudinal 

direction is expressed by: 
2

d f w i j D

1 d
cos sin

2 d

v
F F F F F mgf C A v mg m

t
                  (1)

where m  is the vehicle gross weight, g  is the acceleration due to gravity, f is the rolling resistance 

coefficient,   is the road gradient, DC  is the aerodynamic drag coefficient, A  is the vehicle frontal 

area,   is the air density, v  is the vehicle velocity,   is the mass factor that equivalently converts the 

rotational inertias of rotating components into translational mass, and 
d

d

v

t
 is the vehicle acceleration.  

The driving resistances depend on the current state of the vehicle and on the driver’s expectation at 

the next moment. During the simulation, the desired velocity at the next moment is determined from 

the driving cycle profile. Because the vehicle simulation system is a discrete-time system, the current 
acceleration, ka , can be described as: 

1

step

'k k
k

v v
a

t
   (2)

where kv  is the current velocity, 1'kv   is the desired velocity at the next simulation step, and stept  is the 

simulation time step. 

By combining Equations (1) and (2), the vehicle torque requirements for the powertrain at the 
current step in the discrete-time space, req _ kT , can be formulated as: 

2d
req _ D

0 T

1
( cos sin )

2k k k k k

r
T mgf C A v mg m a

i
   


            (3)

where dr  is the dynamic radius of the wheel, 0i  is the ratio of the final gear, T  is the transmission 

efficiency, and k  is the road gradient at the current step. 

2.3. ICE Model 

The experimental modeling method is used to develop the ICE model in the quasi-static vehicle 

model without considering its dynamic characteristics. The fuel consumption map of the ICE is 

expressed as the relationship between the crankshaft speed and the torque by a non-linear 3-D MAP 

from experimental ICE data. Figure 4 shows the fuel consumption map of a 6.5 L diesel engine.  

Note that BSFC is the abbreviation for brake specific fuel consumption. 
Therefore, the ICE fuel consumption rate e e e( , )g n T  at the operating point e e( , )n T , where the ICE 

outputs torque eT  at speed en , is obtained from the following interpolation function: 

e e e e e( , ) ( , )g n T f n T  (4)

In the discrete-time system, the ICE fuel consumption at the thk  simulation step, fuel_kV , is obtained by: 

 fuel_ e _ e _ e e _ e _ step
fuel

1
,

 34380000k k k k kV n T g n T t


    


 (5)



Energies 2015, 8 3230 

 

 

where fuel  is the fuel density and e _ kn  and e _ kT  are the speed and output torque of the ICE at the 

current step, respectively. 

 

 

Figure 4. The ICE fuel consumption map. 

Then, the ICE fuel consumption fuelV  during the simulation process is obtained by: 

sim

fuel fuel_
1

L

k
k

V V


   (6)

where simL  is the number of simulation steps, obtained as sim
sim

step

T
L

t
 , and simT  is the simulation period. 

2.4. The ISG and TM Models 

The experimental modeling method is also used to develop the ISG model and the TM model.  

Their efficiency characteristics are expressed as the relationship between the speed and the torque by a  

non-linear 3-D MAP from experimental data. Figure 5 shows the ISG efficiency map, and Figure 6 

shows the TM efficiency map. The torque output model of the motor is similar to the ICE. The  
motor efficiency m m m( , )n T  at the operating point m m( , )n T  is obtained from the following 

interpolation function: 

m m m m m( , ) ( , )n T f n T   (7)

where mn  is the speed of the motor and mT  is the motor output torque, which is defined as positive 

during propelling and negative during regenerative braking. 
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Figure 5. The ISG efficiency map. 

 

 

Figure 6. The traction motor efficiency map. 

2.5. The Battery Model 

A lithium-ion battery is used, which can be modeled with a static equivalent circuit [24]. In this paper, 

the Rint model, which is based on experimental data of battery charging-discharging, is used due to its 

simplicity and effectiveness for lithium-ion batteries. This model is illustrated in Figure 7. 

 

 

Figure 7. The Rint battery model. 

Here ocU  is the battery open-circuit voltage, which is related to the SoC and the battery temperature 

bT  and can be obtained from the interpolation function oc b( , )U f SoC T  based on the experimental 

data; I  is the battery charging-discharging current, which is defined as positive during discharging and 
negative during charging; intR  is the battery internal resistance, including an Ohmic resistance  

oR  and a polarization resistance pR , which can be obtained from the interpolation function 
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int b( , , )R f SoC T I ; and U  is the load voltage of the battery, which can be obtained by 

oc intU U I R   . 

Based on the equivalent circuit shown in Figure 7, the following equations can be obtained: 
2

bat oc int oc int( )P U I U I R I U I I R           (8)

where batP  is the electric power provided by the battery, which is positive during discharging and 

negative during charging. 
In addition, batP  is determined by the ISG and the TM as shown in the following equation:  

TM

TM

ISG

T sgn( )
ISG ISG ISG

bat sgn( )
TM TM TM ISG

sgn( )

sgn( )

T

T

T T n
P

T T n









   
         

 (9)

where ISGT , ISGn  and ISG  are the output torque, speed and working efficiency of the ISG, respectively, 

and TMT , TMn  and TM  are the output torque, speed and working efficiency of the TM, respectively. 

Equation (8) is transformed to the following form: 

2
oc oc int bat

int

4

2

U U R P
I

R

  
  (10)

The first-order derivative of the battery SoC with respect to time can be expressed as follows: 

2
oc oc int bat

int

4d

d 2

U U R PSoC I

t C R C

  
   


 (11)

where C is the nominal capacity of the battery. 

Equation (11) is transformed to a discrete form, as follows: 

2
oc _ oc _ int_ bat _

1
int_

4

2
k k k k

k k
k

U U R P
SoC SoC

R C

  
 


 (12)

where 1kSoC   is the battery SoC at the (k+1)th step and kSoC , oc _ kU , bat _ kP  and int_ kR  are the SoC, 

open-circuit voltage, electric power and internal resistance of the battery at the kth step, respectively. 

The electricity consumption Q during the simulation process is obtained by: 

sim

oc _ step
1

1

 3600

L

k k
k

Q U I t


     (13)

where kI  is the battery charging-discharging current at the kth step. 

3. Dynamic Programming 

3.1. Formulating Dynamic Programming 

Prior to formulating the DP, the control variables and state variables need to be determined. In this 

paper, the state variables, such as the vehicle speed v  and SoC, reflect the state of the PHEB. Because 

DP is implemented over the known driving cycle, the vehicle speed at every stage is known. Therefore, 

SoC is chosen as the only state variable in this work. There are many control variables in the PHEB, 
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such as the ICE output torque eT , ICE output speed en , TM output torque TMT , TM output speed TMn , 

ISG output torque ISGT , ISG output speed ISGn , and hydraulic brake torque bT . However, only two 

control variables, eT  and TMT , are independent, and these two variables are chosen as the independent 

control variables in this work. 

In the discrete-time format, the PHEB system can be expressed as follows: 

1 ( , )k k kx f x u   (14)

where kx  and ku  are the state variable and the control variable, respectively. 

Compared with HEVs, whose battery acts as a power equalizer to improve the ICE operating 

efficiency with the expectation of the same SoC at the start and end of a trip, PHEVs have a larger 

battery and can replace a certain amount of fossil energy with grid electricity. In general, the exhaust 

emissions from the hybrid electric bus are not taken into consideration. In studying the object PHEB in 

this paper, we only focus on minimizing the fuel consumption. Then, the optimal control problem is to 

find the control sequences to minimize the following cost function: 

 
1

0

,
N

k k
k

J L x u




  (15)

where N is the stage number of the driving cycle and L is the instantaneous cost. 

To ensure safe/smooth operation of the components, such as the ICE, ISG, TM and battery, during 

the solving process, it is necessary to satisfy constraints related to their ratings and the power flow 

between them. The physical constraints on the states and the inputs are denoted by the following 

inequalities and equalities: 

   

   

   

min max

e_min e _ e_max

e_min e_ e _ e_max e_

ISG_min ISG _ ISG_max

ISG_min ISG_ ISG_ ISG_max ISG_

TM_min TM _ TM_max

TM_min TM _ TM_ TM_max TM _

req_

, ,

, ,

k

k

k k k

k

k k k k k

k

k k k k k

k

SOC SOC SOC

n n n

T n T T n

n n n

T n SOC T T n SOC

n n n

T n SOC T T n SOC

T

 
 

 

 

 

 

 

e _ ISG_ TM_ b_ 0= + + +k k k kT T T T i
















 (16)

where ISG_kn  and ISG_kT  are the speed and output torque of the ISG at the kth step, respectively; TM _ kn  

and TM_kT  are the speed and output torque of the TM at the kth step, respectively; b_kT  is the hydraulic 

brake torque at the kth step; and the subscripts min and max in the variables denote the maximum and 

minimum of those variables, respectively. 

3.2. Implementing Dynamic Programming 

During the backward simulation procedure, the DP problem can be described by the recursive 

Equations (17) and (18). The sub-problem for the (N – 1)th step is: 
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1

*
1 1 1 1( ) min ( , )

N
N N N Nu

J x L x u


     (17)

For the thk  ( 0 1k N   ) step, the sub-problem is: 

* *
1 1( ) min ( , ) ( )

k
k k k k k ku

J x L x u J x      (18)

where *( )k kJ x  is the optimal cost-to-go function at state kx  from the kth simulation step to the terminal 

of the driving cycle and 1kx   is the state in the ( 1)thk   stage when the control variable ku  is applied 

to state kx  at the thk stage according to Equation (14). 

Before recursive Equations (17) and (18) are solved in reverse, it is necessary for the continuous 

variables to be discretized. The continuous state SoC is discretized into finite points, and the number of 

discretized state, S, is: 

 max minSoC SoC
S SoC

   (19)

where SoC  is the increment of the discretized SoC and maxSoC  and minSoC  are the upper and lower 

constrains of SoC, respectively. 
In addition, the independent control variables, eT  and mT , are all continuous and also need to be 

discretized into finite points. Due to the coupling relationship between the torque variables, eT  and mT  

have the same discretization resolution, denoted by T , which is defined here as the torque increment. 
During the backward simulation procedure, the model output 1kSoC   of the system state SoC based 

on Equation (12) is continuous in the state space, and it does not generally coincide with the nodes of 
the state grid but is rather between them, as depicted in Figure 8. When evaluating the function *( )k kJ x  

at every grid point, such as 1n
kSoC  , n

kSoC , 1n
kSoC  , and so on, *

1 1( )k kJ x   is evaluated by interpolation 

if the model output 1kSoC   does not fall exactly on grid points. 
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Figure 8. The interpolation diagram during the backward simulation. 

During the backward simulation, the optimal controls at every grid point are obtained. When the 

initial SoC is specified, the optimal control sequences can be found through a forward simulation. 

During the forward simulation procedure, the interpolation is also needed to find the optimal control 
sequences, as shown in Figure 9. When the optimal control at the kth stage is ku , the optimal control 

1ku   at the 1thk   stage is obtained through interpolation between 1
1

n
ku 
  and 1

n
ku  , which are the optimal 

controls at the grid points 1
1

n
kSoC 
  and 1

n
kSoC  , respectively, at the 1thk   stage. 
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Figure 9. The interpolation diagram during the forward simulation. 

4. Numerical Issues of the DP 

The errors that occur during implementation of the DP procedure result from approximating the 

valuation when the actual state does not coincide with the nodes of the state grid, as in Figures 8 and 9. 

Additionally, these errors are closely related to the discretization resolution of relevant continuous 

variables. In this section, the interaction mechanism between the accuracy of the calculated results and 

the numerical issues, such as the resolution issue of the discretized variables and the boundary issue,  

is investigated with consideration of the computational load. 

4.1. Resolution Study 

For the vehicles, because of the correlation between the sampling period of the given driving cycle 

and the total vehicle energy demand under this driving cycle, the stage step, the discretization step of 

the time space, is chosen to equal to the sampling period such that the stage number N is equal to the 

number of sampling points of the driving cycle. Thus, the discretization resolution of the state space 

and the control variables is investigated in the following section. 

4.1.1. Resolution of the State Variable 

The increment of the discretized state variable SoC, SoC , represents its resolution. The dynamics 

of the battery SoC is inherently determined by the sampling period, the battery capacity and the 

charging/discharging current, which is dependent on the output power of the motor. However, the only 

adjustable variable relative to the SoC dynamics is the torque increment T  in this work. Moreover,  

it is clear that the smaller T  is, the more accurate are the results calculated by DP. The relationship 

between the battery charging/discharging current and the different T  is investigated, and the results 

are presented in Figure 10. 

As shown in Figure 10, within certain limits, the increase in T  does not clearly influence the 

battery working current and the computational load is noticeably reduced. Based on the mathematical 

principle of DP, the discretization resolution of the state space and the discretization resolution of the 

control variables are independent of the calculated results. Therefore, during the procedure for 

investigating the SoC discretization resolution, the difference in the T  does not influence the rate of 

convergence of the calculated results. 
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Figure 10. The distribution probability of the absolute value of the battery 

charging/discharging current for different T . 

Here, T  is chosen as 30 Nm, and the relationship between SoC  and the calculated results for 

batteries with different capacities is shown in Figure 11. The computational load with different SoC  

is also checked, and the results are shown in Figure 12. Note that the abscissa values of the three 

graphs in Figure 11 are consistent with those in Figure 12. 
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Figure 11. The results calculated by DP with different SoC . 

 

 

Figure 12. The relative computational load for different SoC . 

From Figures 11 and 12, it is clear that the fuel consumption decreases as SoC  decreases and 

tends to be stable after SoC  is sufficiently small; the SoC termination follows the same trend. 

Unfortunately, the computational load increases many fold when SoC  decreases. In addition, the 

convergence rate of the calculated results is closely related to the battery capacity, and the slower the 

convergence speed is, the larger the battery capacity will be. In other words, the maximum SoC  

through which the accuracy could be ensured increases as the battery capacity decreases.  
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Thus, the appropriate SoC , which requires a minimum computational load to ensure accuracy, can 

be obtained according to the battery capacity. 

4.1.2. Resolution of the Control Variables 

As mentioned above, the torque increment T  represents the resolution of the control variables. 

When a lower discretization resolution is chosen, the feasible region of the power components is not 

effectively utilized and the optimality of the calculated results is inherently degraded. However,  

a higher discretization resolution corresponds to a higher computational load. Due to the decoupling 

characteristics between the discretization resolution of the state space and the discretization resolution 

of the control variables mentioned above, SoC  is set constant at 0.001 when investigating the 

influence of T  on the calculated results. The calculated results are shown in Figure 13, and the 

corresponding computational load is shown in Figure 14. 

 

 

Figure 13. The results calculated by DP with different T . 

 

 

Figure 14. The relative computational load for different SoC . 

As shown in Figure 13, the SoC termination is almost not influenced by T , and the fuel 

consumption gradually tends to the optimal value with decreasing T . For HEVs and PHEVs, the fuel 

consumption is generally the optimization goal, and ICE is the only component that consumes fuel. 

The specific fuel consumption of ICE is related to its capacity, calibrating conditions and so on;  

thus, the fuel consumption map of ICE needs to be taken into consideration when selecting T . 

Compared with SoC , the influence of T  on the computational load is very mild, as shown in 

Figure 14. When the maximum T  is 400 times greater than the minimum, the difference between the 

corresponding computational loads is less than 4-fold. This result is the reason why the discretization 

of control variables is not necessary to be implemented in every computation when solving DP. 

Therefore, the extent to which T  impacts the computational load is dependent on the frequency that 

discretization is implemented during the calculation. 
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4.2. Boundary Issue 

When implementing DP, the boundary issue can be divided into two parts: the boundary issue of the 

state space and the boundary issue of the feasible region of control variables. In contrast to the optimal 

control problem of HEVs, whose state variable SoC remains constant within the preset range, the SoC 

trajectory of PHEVs monotonically decreases overall, as shown in Figure 15. Correspondingly,  

the boundary issue of the state space influencing the DP results exists throughout the solving procedure 

of DP for HEVs’ optimal control problem, whereas it only exists near the start and end of the trip for 

PHEVs. Therefore, it could be negligible to the accuracy of the results calculated by DP when using 

DP to solve the optimal control problem for PHEVs. 

 

 

Figure 15. The optimal SoC trajectory of HEVs and PHEVs. 

The boundary issue of the feasible region of control variables is that the available control points on 

the boundary lines face the risk of being missed, which is essentially derived from the discretization of 

the control variables. It has been actually embodied in the influence of the discretization resolution on 

the results calculated by DP. 

In summary, from the results presented in Figures 11 and 13, it could be observed that the 

convergence characteristics of the SoC termination are related to SoC  but not influenced by T . 

Thus, for the optimal control problem of PHEVs, the SoC trajectory is determined by the discretization 

resolution of the state variable SoC, whereas the optimality of the fuel consumption is primarily 

dependent on the discretization resolution of the state variable SoC and the discretization resolution of 

the control variables. 

5. Application Example 

In previous works [24], we defined the basic PHEV operating modes as pure electric driving (PED), 

hybrid driving charge depleting (HDCD) and hybrid driving charge sustaining (HDCS) based on the 

battery SoC profile and developed the PED + HDCD + HDCS strategy, which is an optimal online 

strategy that is practical for PHEVs. This strategy is optimally composed of the PED mode, the HDCD 

mode and the HDCS mode. In this section, DP is utilized to solve the optimal control problem of the 

PHEB presented in Section 2. The results obtained by DP are compared with the simulation results of 

the PHEB with the PED + HDCD + HDCS strategy. 
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The Chinese Standard Urban Driving Cycle (CSUDC), which is shown in Figure 16, is selected to 

be used during the simulation experiment. The trip distance is 180 km, which is attained by 

successively repeating the same driving cycle 31 times. Additionally, the vehicle is loaded with 65% of 

a full load. 
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Figure 16. Velocity profile of the CSUDC cycle. 

Prior to conducting the simulation experiments, it is assumed that the battery of the PHEB has been 

fully charged from the power grid. Note that the PHEB is not allowed to implement regenerative 

braking when the battery SoC is higher than 80% for the purpose of protecting the battery.  

When implementing the DP, the SoC  and the T  are set to 0.5% and 5 Nm, respectively. The SoC 

trajectories of the PHEB with two types of control strategies are shown in Figure 17. 

 

 

Figure 17. The SoC trajectories under two types of strategies. 

When the battery SoC is higher than 80%, the trends of the two SoC trajectories are similar, and the 

slight difference between them results from the ICE often being turned on to propel the vehicle under 

the DP-based strategy whereas the ICE is turned off for the PED + HDCD + HDCS strategy. When the 

battery SoC is between 80% and 30%, the battery SoC acquired by DP linearly decreases overall. 

Moreover, the available energy from the battery is exhausted only at the end of the trip, which provides 

the best benchmark for improving the online strategy. Figure 18 shows the relationship between the 

trip distance and the fuel consumption per 100 km of the PHEB with the two types of strategies. 
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Figure 18. The relationship curve between fuel economy and trip distance under the two 

types of strategies. 

The fuel economy of the PHEB with the PED + HDCD + HDCS strategy is better than the results 

calculated by DP in the first fraction of the trip, as shown in Figure 18. However, the latter gradually 

becomes superior to the former as the trip distance increases. The reason for this result is that the  

DP-based strategy can coordinate different components of the PHEB powertrain to efficiently work 

from a global perspective. The shutdown proportion of the ICE and the ISG, which is performed by 

DP, is higher than that under the PED + HDCD + HDCS strategy, as shown in Figures 19 and 20, 

respectively. Moreover, the ICE under the DP-based strategy works in the higher efficiency area, as 

shown in Figures 21 and 22. 
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Figure 19. The ICE shutdown percentage under the two types of strategies. 
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Figure 20. The ISG working percentage under the two types of strategies. 
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From the results presented in Figure 21, it is clear that the proportion of the ICE working points 

calculated by DP in the higher efficiency area is clearly greater than that under the PED + HDCD + 

HDCS strategy. Consequently, the distribution probability of the BSFC of the ICE working points in 

the results calculated by DP is considerably better than that under the PED + HDCD + HDCS strategy, 

as shown in Figure 22. 

 

 

Figure 21. The statistical results of the BSFC of the working points of the ICE under the 

two types of strategies. 

 

 

Figure 22. The distribution probability of the BSFC of the working points of the ICE 

under the two types of strategies. 

From the comparative analysis mentioned above, the drawback of the online strategy is clear.  

Then, the goal and the effective plan to improve the online strategy could be easily drawn. 

6. Conclusions 

We constructed a DP-based optimal control algorithm for a PHEB and investigated the interaction 

mechanism between the accuracy of the calculated results and the numerical issues, such as the 

resolution issue of the discretized variables and the boundary issue with consideration of the 

computational load. The main conclusions are as follows: 

(1) Numerical issues emerged when the optimal control problem of PHEVs was solved using DP. 

A single-axis series-parallel PHEB was modeled, and its systematic model was constructed for 

studying these issues. Then, the discretization resolution of the relevant variables and the 

boundary issue of their feasible region were investigated. 
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(2) The battery SoC trajectory is determined by the discretization resolution of the state variable 

SoC, whereas the optimality of the fuel consumption is primarily dependent on the discretization 

resolution of the state variable SoC and the discretization resolution of the control variables. 

Additionally, the lowest discretization resolution of the state variable SoC with maintained 

accuracy is closely related to the battery capacity, whereas the fuel consumption map of  

ICE needs to be taken into consideration when selecting the discretization resolution of the 

control variables. 

(3) The computational load increases many fold as the discretization resolution of the state variable 

SoC increases. However, the influence of the discretization resolution of the control variables 

on the computational load is very mild. Moreover, the extent to which it impacts the 

computational load depends on the frequency with which the discretization is implemented 

during the calculation. 

(4) A simulation experiment was performed, and the results from two types of strategies were 

compared. The DP-optimized result provided the maximum potentiality of an energy 

management strategy for PHEVs, which serves an optimized target for other online control 

strategies by proper calibration methods. 
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