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Abstract: Reliable wind modelling is of crucial importance for wind farm development. 

The common practice of using sector-wise Weibull distributions has been found 

inappropriate for wind farm layout optimization. In this study, we propose a simple and 

easily implementable method to construct joint distributions of wind speed and wind 

direction, which is based on the parameters of sector-wise Weibull distributions and 

interpolations between direction sectors. It is applied to the wind measurement data at 

Horns Rev and three different joint distributions are obtained, which all fit the 

measurement data quite well in terms of the coefficient of determination ܴଶ. Then, the best 

of these joint distributions is used in the layout optimization of the Horns Rev 1 wind farm 

and the choice of bin sizes for wind speed and wind direction is also investigated. It is 

found that the choice of bin size for wind direction is especially critical for layout 

optimization and the recommended choice of bin sizes for wind speed and wind direction 

is finally presented. 

Keywords: layout optimization; wind modelling; wind speed; wind direction;  

joint distribution; sector-wise Weibull distribution 
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1. Introduction 

In the last two decades, the progress of technologies, together with the increased experience of wind 

farm (WF) construction and operation, has enabled the development of modern WFs, which typically 

consist of tens or hundreds of utility-scale (multi-MW) wind turbines (WTs) and can have a total 

capacity of hundreds of MW. In parallel with this trend, the efforts to increase the percentage of wind 

power in the energy mix have led to the proliferation of modern WFs [1]. 

One of the critical problems for modern WF development is layout optimization, which seeks to 

determine the optimal positions of WTs inside the WF by maximizing and/or minimizing a single 

objective or multiple objectives, while satisfying certain constraints. This problem has been 

investigated in many studies with different problem formulations and using various optimization 

algorithms [2]. Most of these studies focused on developing and improving the optimization methods, 

with relatively less attention paid to the appropriate modelling of wind.  

In their seminal work published in 1994, Mosetti et al. constructed an ideal test problem of WF 

layout optimization and solved it with genetic algorithm (GA) [3]. They used three wind cases:  

(1) uniform north wind with a speed of 12 m/s; (2) equally distributed (36 directions) wind with a 

speed of 12 m/s; (3) non-uniformally distributed (36 directions) wind with speeds of 8, 12 and 17 m/s. 

Clearly these ideal wind cases are quite simple compared with the real wind, and they do not need 

much consideration in wind modelling. The same ideal wind cases were used in many following studies 

which mainly aimed at developing various optimization methods, including GA [4], particle swarm 

optimization [5], extended pattern search [6], and so on. 

As the energy source for wind power, wind needs to be characterized appropriately in order to 

obtain a profitable utilization of wind energy. For the wind speed variation, different statistical models 

were proposed [7], among which Weibull distribution is the most widely used one. For the wind 

direction variation, the frequencies of occurrence of different direction sectors are usually used, 

typically presented in a wind rose. Combining these two, the measured wind data can be fitted into 

sector-wise Weibull distributions, which is the common practice in wind modelling for wind resource 

assessment and annual energy production (AEP) calculation. This more realistic wind modelling 

method has been adopted in several studies on WF layout optimization. Some studies used 12 sectors 

for wind direction [8,9], while some studies used 24 sectors [10,11]. 

Modelling wind with sector-wise Weibull distributions has been proved to be suitable for wind 

resource assessment or AEP calculation for a given WF in the industry’s past experience. However, in 

our previous study [12], we found that this modelling method might cause problematic results when 

optimizing the layout of a large offshore WF, with 12 or even 72 sectors for wind direction. The reason 

lies in the discreteness and discontinuity of wind direction in the wind modelling. Additionally, in a 

numerical study of the same WF [13], Porté-Agel et al. demonstrated that the power production of a 

large WF is highly sensitive to wind direction due to the complex wake effects between WTs.  

These studies suggest that more advanced wind modelling methods that can better characterize wind 

direction variations are quite needed, especially for application in WF layout optimization. 

Considering the fact that the wind speed and wind direction are not independent random variables, 

we can expect that a bivariate distribution of both wind speed and wind direction would characterize 

the wind better and also be beneficial for WF layout optimization based on its continuous nature in 
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both dimensions of speed and direction. Such distributions have been proposed by different studies, 

which mainly aimed at wind modelling. Carta et al. [14] proposed to construct a joint distribution from 

two marginal distributions, i.e., truncated Normal-Weibull mixture distribution for wind speed and a 

finite mixture of von Mises distributions for wind direction. Erdem and Shi [15] constructed seven 

different bivariate joint distributions using three construction approaches, namely, angular-linear, 

Farlie-Gumbel-Morgenstern and anisotropic lognormal approaches. Zhang et al. [16] presented a 

multivariate distribution of wind speed, wind direction and air density by using a non-parametric 

approach, multivariate kernel density estimation. However, these joint distributions have not yet been 

widely known or used in the wind energy field. One possible reason might be that the method of  

sector-wise Weibull distributions has been proved to be adequate for the tasks such as wind resource 

assessment and AEP calculation, and has become the widely adopted common practice.  

In this study, with the WF layout optimization as the targeted application, we propose a simple and 

easily implementable method to construct joint distributions of wind speed and direction based on the 

parameters of sector-wise Weibull distributions. Since in the common practice these parameters can 

usually be obtained from a wind measurement campaign and are often presented in the wind 

measurement report, this method is quite convenient for a WF developer to use. Three types of joint 

distributions are constructed using this method. We apply this method to the 3 years’ measurement 

data at Horn Rev 1 and use one of the obtained distributions, namely, spline joint distribution, in the 

layout optimization of the Horns Rev 1 WF. We also investigate the choice of bin sizes for wind speed 

and wind direction in numerical calculation, both for WF power calculation and layout optimization, 

and find that the choice of bin size for wind direction is especially critical for layout optimization.  

The recommended choice of bin sizes for wind speed and wind direction is presented after the case 

study for Horns Rev 1 WF.  

2. Background 

2.1. Wind Farm Layout Optimization 

Wind farm layout optimization can be formulated as a general optimization problem, which seeks to 

find the optimal layout by minimizing a cost function subject to certain constraints. Considering a WF 
with ܰ௪௧  WTs located at ࢄ ൌ ,ଵݔൣ ,ଶݔ … , ࢅ ,ேೢ೟൧ݔ ൌ ,ଵݕൣ ,ଶݕ … ,  ேೢ೟൧, we can denote the layout asݕ

ሺࢄ,  :ሻ and write the layout optimization problem in the following formࢅ

min ݂ሺࢄ,  ,ሻࢅ

subject	to ௜݃ሺࢄ, ሻࢅ ൑ 0, ݅ ൌ 1, 2, … ,݉.  
(1) 

where ݂ሺࢄ, ሻࢅ  denotes the cost function of layout optimization, ݃௜ሺࢄ, ሻࢅ  represent the constraint 

functions and ݉ is the number of constraints.  

The cost function ݂ሺࢄ,  ሻ can be derived for different optimization objectives, such as maximizingࢅ

the power, AEP, profit, net present value, or minimizing the cost of energy (CoE), levelized production 

cost (LPC) [2]. In all these cost functions, one of the essential components is the expected power 

output of the WF. Note that for a given WF site, the wind resource is given; if we assume the type of 

WTs is also given, then the expected power output is a function of the layout ሺࢄ, ሻࢅ , i.e., 
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௧ܲ௢௧ ൌ ௧ܲ௢௧ሺࢄ,  ሻ. For maximizing the power of a WF with ܰ௪௧ WTs, the cost function can be definedࢅ

as ݂ሺࢄ, ሻࢅ ൌ െ ௧ܲ௢௧ሺࢄ,  .ሻࢅ

The constraints in WF layout optimization may come from various considerations, such as technical, 

environmental and economic ones. The boundary of WF and the minimal distance between WTs are 

the two commonly considered constraints. 

In order to calculate ௧ܲ௢௧ , the wake effects between WTs need to be modelled appropriately.  

The most widely used wake model is the Jensen wake model [17], which was developed by assuming 

conservation of momentum within the wake and linear expansion of wake region. In this study, we use 

the same problem formulation and modelling methods as in our previous study [12], in which the detailed 

calculation methods for power and constraints can be found. 

2.2. Wind Modelling 

Wind resource assessment is the starting point of a WF development project, since wind resource 

will mostly determine the amount of power production and therefore the profit of the WF in its lifetime. 

To get a reliable assessment, it is typical to first carry out a wind measurement campaign at the 

planned WF site and collect a large quantity of wind data. The measured wind data might be obtained 
at a reference height ܪ௥௘௙ and then used to predict the power production of WTs with hub height ܪ.  

It is thus necessary to first convert the measured wind speed ݒ௥௘௙ into the inflow wind speed ݒ at hub 

height ܪ, usually using the logarithmic law: 

ݒ ൌ ௥௘௙൯ݒு൫ݒ ൌ ௥௘௙ݒ
lnሺܪ ⁄଴ݖ ሻ
lnሺܪ௥௘௙ ⁄଴ݖ ሻ

 (2) 

where ݒ௥௘௙ denotes the wind speed at the reference height and ݖ଴ is the surface roughness length.  

The converted wind data can be processed using the method of bins [18]. Considering all wind 

directions and the interested speed range ሾ ௜ܸ௡, ௢ܸ௨௧ሿ for power production, where ௜ܸ௡ is the cut-in wind 

speed, ௢ܸ௨௧  is the cut-out wind speed, we can first discretize the interested wind conditions into  

ܰ௪௦ ൈ ܰ௪ௗ  two dimensional bins by using bin size ݒ߂  for wind speed and ߠ߂  for wind direction.  

Then the middle point of each bin can be denoted as: 

௜௝ݒ ൌ ௜ܸ௡ ൅ ሺ݅ െ 0.5ሻݒ߂, ௜௝ߠ ൌ െ0.5ߠ߂ ൅ ሺ݆ െ 0.5ሻߠ߂,
with	݅ ൌ 1, 2, … , ௪ܰ௦, ݆ ൌ 1, 2, … , ܰ௪ௗ.

 (3) 

where ܰ௪௦, ܰ௪ௗ are the numbers of bins for wind speed and wind direction respectively, which are 

determined by the bin sizes ݒ߂  and ߠ߂ . Note that in Equation (3) the range of interest for wind 

direction is deliberately chosen as ሾെ0.5ߠ߂, ߨ2 െ  ሻ, so that the middle point of the first bin isߠ߂0.5

always at wind direction ߠ ൌ 0°, which coincides with the common practice in wind measurement. 

Then the converted wind data can be summarized in matrix form as: 

ࡲ ൌ ൫ܨ௜௝൯ (4) 

where ܨ௜௝ ൌ ௢݂௖௖ሺݒ௜௝, ߠ௜௝) denotes the frequency of occurrence of the ijth wind bin (ݒ௜௝,  ௜௝ሻ. Based onߠ

the frequency of occurrence, we can also calculate the bivariate probability density function (PDF) of 
wind speed and wind direction at the discretized points ሺݒ௜௝,ߠ௜௝ሻ as:  

௜௝ሻߠ,௜௝ݒሺ݌ ൌ ௢݂௖௖ሺݒ௜௝,  ሻ (5)ߠ߂ݒ߂௜௝ሻ/ሺߠ
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In the common practice, the wind measurement data can also be processed using tools like  

WAsP [19] to obtain the wind rose, which describes the probability distribution of wind direction 

variation, and a fitted Weibull distribution for every direction sector (usually 12 sectors with width of 

30° each), which describes the wind speed variations.  

In both methods, it is necessary to choose appropriate bin sizes ݒ߂ and ߠ߂, as discretization is 

always needed when calculating the expected power output of the WF by using numerical integration. 

Usually in AEP assessment, ݒ߂ ൌ 1	m/s and ߠ߂ ൌ 30° are used. But in the context of WF layout 

optimization, we have shown in Ref. [12] that a large number of direction sectors, i.e., ߠ߂  much 

smaller than 30°, have to be used in order to get consistent and reliable results.  

To better demonstrate the importance of choosing appropriate ߠ߂, we can construct an ideal WF 

that is composed of three Vestas V80 WTs. The three turbines are located on the edge of a circle with 

radius of 400 m and placed with equal distances between any two ones. Two possible layouts of the 

WF and the characteristics of the WTs are shown in Figure 1.  

(a) (b) 

Figure 1. Constructed ideal WF composed of three WTs: (a) two possible layouts:  

Layout 1 (in blue), Layout 2 (in red); (b) characteristic curves of a Vestas V80 WT. 

Note that in Figure 1a, the small colored circles represent the covering area of the turbine rotor and 

Layout 2 is obtained by rotating Layout 1 with 15°. Assume the wind condition here is represented by 

a constant wind speed ݒ ൌ 10	m/s with uniformly distributed wind directions, i.e., the wind blows 

from any direction with the same possibility. Observing the characteristics of these two layouts and the 

wind condition, we can conclude that Layout 1 and 2 will have the same expected power output. 

If we choose ߠ߂ ൌ 30°, then we are assuming 12 wind directions as shown in Figure 1a. Using the 

Jensen wake model and assuming the wake decay coefficient ߙ ൌ 0.04, we can plot the wake zone 

developments of WT 1 along certain wind directions, which are shown in Figure 2 for both layouts. 
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(a) (b) 

Figure 2. Wake zone developments of WT 1 along certain wind directions, in: (a) Layout 1; 

(b) Layout 2. 

We can easily see from Figure 2 that for Layout 1, the wake effects will reduce the expected power 

output, whereas for Layout 2, the expected power output will not be reduced. If we use this kind of 

wind modeling (ߠ߂ ൌ 30° ) and calculate the expected power production, we will come to the 

conclusion that Layout 2 will produce more power than Layout 1, which contradicts with the 

observation we have made before, i.e., these two layouts are identical in terms of power production. 

We can put this constructed ideal case in the context of WF layout optimization. If we use the 

common practice, i.e., 12 sectors for wind direction, the optimization algorithm might give an 

‘improved’ layout (Layout 2) over the original one (Layout 1). This might be achieved by moving the 

locations of each WT to escape the wake effects of other WTs, since there are some big ‘gaps’ between 

different wind directions. But in reality wind comes from all possible directions instead of only the 

discretized 12 directions, so the achieved ‘improvement’ might actually be artificial, as in this constructed 

case; or even deterioration, as shown in Ref. [12]. Therefore, it is of crucial importance to choose small 

enough value for ߠ߂, so that we can obtain consistent and reliable results for layout optimization. 

3. Data Source 

The wind farm investigated in this study is the Horns Rev 1 offshore wind farm, which is located 

about 15 km off the westernmost point of Denmark and has a rated capacity of 160 MW. It consists of 

80 Vestas V80 WTs, which have a rotor diameter ܦ ൌ 80	m  and a hub height ܪ ൌ 70	m . Its 

construction started in February 2002 and its commissioning occurred in December 2002. Before the 

construction, meteorological measurements had been conducted at Horns Rev since May 1999, using 

primarily a wind mast. Three years’ (01/06/1999–31/05/2002) wind measurement data from this wind 

mast are used, which is imposed of statistical 10-min mean values for wind speed and wind direction 

and has 145,048 data points in total. Since the used measurement data is from a period when no WT 

has been in operation, it can be treated as clean data, i.e., wind data without wake effects involved. 

With the assumption that the three years’ wind characteristics are representative for the following  

20 years, this set of data is suitable for evaluating the power production of the WF in Horns Rev.  
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Note that the wind speed is measured at ܪ௥௘௙ ൌ 62	m and will first be converted into wind speed at 

the hub height using Equation (2). The converted wind data and the corresponding total power of the 

WF, calculated using the same method and code as in Ref. [12], are shown as time series in Figure 3.  

(a) (b) 

Figure 3. Time series of wind speed, wind direction at hub height and calculated total 

power in: (a) 3 years (01/06/1999–31/05/2002); (b) 1 day (01/01/2002). 

The expected power output can be calculated as ௧ܲ௢௧ ൌ 78.79	MW by averaging the simulated time 

series of power. This can be viewed as a direct way of using the wind measurement data for power 

calculation, but it is much more time consuming than using statistical wind modelling method. If “one 

WF simulation” represents simulating the power production of a given WF for a given wind speed and 

wind direction once, then using a time series of wind measurement composed of ܰ data points to 

calculate the expected power requires ܰ WF simulations. For the Horns Rev 1 site, calculating the 

expected power output of a given layout once will need 145,048 WF simulations, which in turn puts a 

quite high computation cost for the optimization process. From this perspective of view, the statistical 

modelling of wind is not only needed for characterizing the long term wind conditions, but also 

beneficial for reducing computation cost in layout optimization.  

The converted wind data at hub height can also be processed with wind rose and Weibull 

distribution, which is a widely used probability distribution for wind speed modelling and governed by: 

,ݒௐ௕ሺ݌ ,ܣ ܿሻ ൌ ቀ
ܿ
ܣ
ቁ ቀ
ݒ
ܣ
ቁ
௖ିଵ

exp ൤െቀ
ݒ
ܣ
ቁ
௖
൨ (6) 

where ܣ is the scale parameter and ܿ is the shape parameter. Assuming that the mean value ̅ݒ and the 

standard deviation ߪ௩  of wind speed have been calculated from the data, we can estimate the two 

parameters as [18]:  

ܣ ൌ ቀ
௩ߪ
ݒ̅
ቁ
ିଵ.଴଼଺

, ܿ ൌ
ݒ̅

ሺ1߁ ൅ ሻܣ/1
 (7) 

where ߁ሺݔሻ ൌ ׬ ݁ି௧ݐ௫ିଵ݀ݐ
ஶ
଴  is the gamma function. Choosing ߠ߂ ൌ 30° , i.e., using 12 direction 

sectors, we can obtain the wind rose and Weibull distribution of the 3 years’ wind data as shown in 

Figure 4. 
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(a) (b) 

Figure 4. Characteristics of the 3 years’ wind data at hub height: (a) wind rose;  

(b) Weibull distribution.  

For each of the 12 direction sectors, the same procedure can be used to derive 12 sector-wise 

Weibull distributions, the obtained parameters and the frequency of occurrence for each sector are 

listed in Table 1. 

Table 1. Parameters of Weibull distribution and frequency of occurrence for 12 sectors. 

  ࣂ
Direction 

0°  
N 

30°  
NNE 

60°  
ENE 

90°  
E 

120° 
ESE 

150° 
SSE 

180° 
S 

210° 
SSW 

240° 
WSW

270°  
W 

300° 
WNW

330° 
NNW

ሾm/sሿ 8.89 9.27 8.23 9.78 11.64	ܣ 11.03 11.50 11.92 11.49 11.08 11.34 10.76 
ܿ	ሾെሿ 2.09 2.13 2.29 2.30 2.67 2.45 2.51 2.40 2.35 2.27 2.24 2.19 
݂	ሾ%ሿ  4.82 4.06 3.59 5.27 9.12 6.97 9.17 11.84 12.41 11.34 11.70 9.69 

4. Construction of Joint Distributions 

In this section, we present a method for constructing joint distributions of wind speed and wind 

direction, which gives the bivariate probability density functions (PDFs) for three wind distribution 

models. This method is based on the parameters obtained by fitting the measurement data into  

sector-wise Weibull distributions, as shown in Table 1, and it can be implemented easily. Three 

variants of this method are presented, in which one obtains a piecewise bivariate PDF, while the other 

two obtain continuous bivariate PDFs by using parameter interpolation. 

4.1. Piecewise Bivariate PDF 

Denoting the number of direction sectors as ௦ܰ௘௖௧௢௥ ൌ 12 , we can write the processed wind 

resource data shown in Table 1 as: ሾߠ௞, ,௞ܣ ܿ௞, 	 ௞݂ሿ  with ݇ ൌ ሾ1, 2, … , ௦ܰ௘௖௧௢௥ሿ . Note that when 

modelling wind with sector-wise Weibull distributions as described above, we are assuming that the 

wind speed satisfies the same probability distribution inside a direction sector.  

Based on the sector-wise parameters ሾߠ௞, ,௞ܣ ܿ௞, 	 ௞݂ሿ, the joint distribution of wind speed and wind 

direction can be constructed as:  
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,ݒ௉௜௘ሺ݌ ሻߠ ൌ ,ݒௐ௕ሺ݌ ,௞ܣ ܿ௞ሻ
௞݂

ሺ360/Nୱୣୡ୲୭୰ሻ
, when ߠ is in the ݇th direction	sector, (8) 

which describes the piecewise bivariate PDF of the joint distribution. 

Using the converted wind data and choosing a discretization of ݒ߂ ൌ 1	m/s and ߠ߂ ൌ 10°, we can 
calculate the bivariate PDF at the discretized points using Equation (5) as ݌ሺݒ௜௝,ߠ௜௝ሻ. The bivariate 

PDF at the same points can also be obtained by the constructed joint distribution using Equation (8).  

In order to evaluate the goodness-of-fit of the proposed piecewise joint distribution and the recorded 

data, the coefficient of determination ܴଶ, can be used. ܴଶ is calculated from two data series: one is the 

observed values ݕଵ, ,ଶݕ … , ,ଵݖ ௡, and the other is the corresponding valuesݕ ,ଶݖ … ,  ௡ that are estimatedݖ

by the model. Suppose ݕത is the mean of the observed data, then ܴଶ can be calculated as: 

ܴଶ ൌ 1 െ
∑ ሺݕ௜ െ ௜ሻଶݖ
௡
௜ୀଵ

∑ ሺݕ௜ െ തሻଶ௡ݕ
௜ୀଵ

 (9) 

In this paper, ܴଶ is calculated for the bivariate PDF values at discretized points, i.e., ݌ሺݒ௜௝,ߠ௜௝ሻ from 

the measurement data and ݌௉௜௘ሺݒ௜௝,ߠ௜௝ሻ from the piecewise joint distribution. For discretization with 

ݒ߂ ൌ 1	m/s, ߠ߂ ൌ 10°, we get ܴଶ ൌ 0.9116, which suggests the model fits the data quite well.  

Two joint distributions of wind speed and wind direction, calculated from measurement data and 

modelled by the proposed piecewise joint distribution respectively, are shown in Figure 5. 

(a) (b) 

Figure 5. Bivariate PDF of wind speed and wind direction at the hub height: (a) from wind 

measurement data (using ݒ߂ ൌ 1	m/s, ߠ߂ ൌ 10°); (b) using piecewise joint distribution.  

It can be seen in Figure 5 that the overall shape of the observed joint distribution of wind speed and 

wind direction has been quite well captured by the proposed piecewise joint distribution, and also 

some of the sharp variations shown in measurement have been smoothed. It is also worthy to note that 

the piecewise joint distribution shows significant discontinuity between different direction sectors, 

which is an artificial phenomenon introduced by the way this model is constructed. 

4.2. Continuous Joint Distributions  

In order to avoid the discontinuity in wind direction introduced by the piecewise model, we use 

interpolation to better utilize the sector-wise parameters, i.e., ሾߠ௞, ,௞ܣ ܿ௞, 	 ௞݂ሿ . Two interpolation 
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methods are applied here: one is linear interpolation, and the other is spline interpolation. In this study, 
the spline interpolation is done by using the cubic spline data interpolation (spline function in Matlab). 

From interpolations, we can obtain Weibull parameters and frequency of occurrence as continuous 

functions of wind direction: ܣ ൌ ሻߠሺܣ , ܿ ൌ ܿሺߠሻ  and ݂ ൌ ݂ሺߠሻ , while in the piecewise joint 

distribution, they are all assumed to be piecewise functions. These different functions are shown 

against each other in Figure 6. 

 

Figure 6. Weibull parameters and frequency of occurrence as functions of wind direction: 

blue—piecewise in 12 sectors; green—linear interpolation; red—spline interpolation.  

Denoting the functions of Weibull parameters and frequency of occurrence obtained from linear 

interpolation as ܣ ൌ ܿ ,ሻߠ௅௜௡ሺܣ ൌ ܿ௅௜௡ሺߠሻ and ݂ ൌ ௅݂௜௡ሺߠሻ, we can now construct the joint distribution 

of wind speed and wind direction as:  

,ݒ௅௜௡ሺ݌ ሻߠ ൌ ,ݒௐ௕ሺ݌ ,ሻߠ௅௜௡ሺܣ ܿ௅௜௡ሺߠሻሻ
௅݂௜௡ሺߠሻ

ሺ360/Nୱୣୡ୲୭୰ሻ
 (10) 

which describes the continuous bivariate PDF constructed by using linear interpolation.  

Similarly, the continuous bivariate PDF constructed by using spline interpolation is governed by 

,ݒௌ௣௟ሺ݌ ሻߠ ൌ ,ݒௐ௕൫݌ ,ሻߠௌ௣௟ሺܣ ܿௌ௣௟ሺߠሻ൯
ௌ݂௣௟ሺߠሻ

ሺ360/Nୱୣୡ୲୭୰ሻ
 (11) 

where ܣௌ௣௟ሺߠሻ, ܿௌ௣௟ሺߠሻ and ௌ݂௣௟ሺߠሻ represent the functions obtained from spline interpolation.  

Using the same procedure as in Section 4.1, we can also calculate the coefficient of determination 

for these two continuous PDFs, which is ܴଶ ൌ 0.9208 for the model using linear interpolation, and 

ܴଶ ൌ 0.9224 for the model using spline interpolation. These bivariate PDFs are shown in Figure 7. 
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(a) (b) 

Figure 7. Bivariate PDF of wind speed and wind direction at the hub height for model:  

(a) using linear interpolation; (b) using spline interpolation.  

Note that we have proposed three joint distributions of wind speed and wind direction, which are 

described by Equation (8), Equation (10) and Equation (11), and they can be called as “piecewise joint 

distribution”, “linear joint distribution” and “spline joint distribution”, respectively. Comparing these 

three distributions, we can conclude that the spline joint distribution fits the measurement data best.  

5. Application in Wind Farm Layout Optimization 

Considering the Horns Rev 1 WF, whose layout is shown in Figure 8, we can formulate the layout 

optimization problem as described in Equation (1), i.e., maximizing the expected total power output 

௧ܲ௢௧, while satisfying the constraints of WF boundary and minimal distance between any two WTs  

(set as five rotor diameters).  

 

Figure 8. Original layout of the Horns Rev 1 WF. 

The problem can be solved by using the random search algorithm, which was developed in our 

previous study [12]. Since this study is focused on wind modelling, the details of the wake modelling 

and the optimization algorithm are referred to Ref. [12]. In this section, the important task of choosing 

appropriate bin sizes ݒ߂ and ߠ߂ for wind modelling in numerical calculation is investigated, both for 

power calculation and layout optimization. 
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5.1. Assessment of Bin Sizes for Power Calculation  

Since the expected power output ௧ܲ௢௧  of a WF is calculated by numerical integration over all 

interested wind conditions, the result of calculation can depend on the choice of bin sizes. Thus, we 

first make a sensitivity study of the power calculation for the Horns Rev 1 WF regarding different 

combinations of ݒ߂  and ߠ߂ . The results are shown in Table 2 for using the three proposed  

joint distributions. 

Table 2. Sensitivity of power calculation to bin sizes when using different joint distributions. 

ࣂࢤ °30 =	ࣂࢤ [m/s] ࢜ࢤ ࣂࢤ 10° = ࣂࢤ 5° =  °1 =	ࣂࢤ 3° =

 ௧ܲ௢௧ (using piecewise joint distribution) 

2  77.13 MW 78.80 MW 78.93 MW 79.02 MW 78.86 MW 
1  76.86 MW 78.57 MW 78.69 MW 78.78 MW 78.63 MW 

0.5  76.85 MW 78.53 MW 78.65 MW 78.74 MW 78.59 MW 
0.1  76.85 MW 78.54 MW 78.65 MW 78.75 MW 78.59 MW 

 ௧ܲ௢௧ (using linear joint distribution) 

2  77.13 MW 78.44 MW 78.49 MW 78.58 MW 78.42 MW 
1  76.86 MW 78.22 MW 78.26 MW 78.35 MW 78.20 MW 

0.5  76.85 MW 78.19 MW 78.21 MW 78.30 MW 78.15 MW 
0.1  76.85 MW 78.19 MW 78.22 MW 78.31 MW 78.16 MW 

 ௧ܲ௢௧ (using spline joint distribution) 

2  77.13 MW 78.84 MW 78.94 MW 79.04 MW 78.89 MW 
1  76.86 MW 78.61 MW 78.70 MW 78.80 MW 78.66 MW 

0.5 76.85 MW 78.58 MW 78.66 MW 78.75 MW 78.62 MW 
0.1 76.85 MW 78.58 MW 78.66 MW 78.77 MW 78.62 MW 

From the results obtained by using each distribution, and comparing the variations of the calculated 

௧ܲ௢௧ along rows and along columns, we can see that power calculation is relatively more sensitive to 

the choice of ߠ߂ than that of ݒ߂, which is consistent with what we have shown through the ideal WF 

in Section 2 and also in our previous study [12]. We can also see that the three joint distributions 

proposed in the last section give similar results when using the same combination of ݒ߂ and ߠ߂, which 

suggests that they can all be applied for wind modelling in power calculation or layout optimization.  

In the rest of this study, the spline joint distribution will be used, since it fits the measurement data best. 

Note that the expected power output, when calculated using the 3 years’ time series directly,  

is ௧ܲ௢௧ ൌ 78.79	MW , while the value obtained by using joint distributions with ݒ߂ ൌ 1	m/s  and 	
ߠ߂ ൌ 30° is 76.86	MW. Comparing these two values, we can see the relative difference is within 

2.45%, and we may conclude that the common practice of choosing ݒ߂ ൌ 1	m/s and ߠ߂ ൌ 30° is 

appropriate, if the task is to assess the power production of a given large WF with a layout of regular 

shape, such as that of Horns Rev 1 WF. Besides, we can see that using ݒ߂ ൌ 1	m/s and ߠ߂ ൌ 10° is a 

better choice, since it obtains a result closer with the value from using measurement data directly,  

but without increasing the computation cost dramatically. 

However, as we have demonstrated through the ideal WF in Section 2, the choice of appropriate bin 

sizes, especially bin size of wind direction, has to be made through more careful investigations, if the 

task is to carry out layout optimization. 



Energies 2015, 8 3087 

 

 

5.2. Choice of Bin Size ߠ߂ for Layout Optimization  

The effect of bin size ߠ߂  for layout optimization is investigated here, by solving the layout 

optimization problem with the RS algorithm using a fixed value of ݒ߂ and four different values of ߠ߂. 

The spline joint distribution is applied in wind modelling and the optimized layouts using these four 

bin size choices, i.e., bs-1: ݒ߂ ൌ 1	m/s, ߠ߂ ൌ 30°; bs-2: ݒ߂ ൌ 1	m/s, ߠ߂ ൌ 5°; bs-3: ݒ߂ ൌ 1	m/s, 	
ߠ߂ ൌ 3°; bs-4: ݒ߂ ൌ 1	m/s, ߠ߂ ൌ 1°, are shown in Figure 9. Note that ‘bs-i’ denotes the ith kind of 

bin size choice. It is obvious that the optimized layout in Figure 9a shows the largest deviation from 

the original layout. 

(a) (b) 

(c) (d) 

Figure 9. Optimized layouts of the Horns Rev 1 WF by using the spline joint distribution  

in wind modelling and choosing (a) bs-1: ݒ߂ ൌ 1	m/s, ߠ߂ ൌ 30°; (b) bs-2: ݒ߂ ൌ 1	m/s, 
ߠ߂ ൌ 5°; (c) bs-3: ݒ߂ ൌ 1	m/s, ߠ߂ ൌ 3°; (d) bs-4: ݒ߂ ൌ 1	m/s, ߠ߂ ൌ 1° in optimization.  

In order to better assess the superiority of the optimized layouts over the original layout, the power 

improvements in the four cases, obtained with bin size choices: bs-1, bs-2, bs-3 and bs-4, are  

re-evaluated with different combinations of bin sizes of wind speed and wind direction, and also with 

measured time-series directly. The results are shown in Figure 10.  
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(a) (b) 

Figure 10. Power improvement of the optimized layouts, obtained with four bin size  

choices bs-1, bs-2, bs-3 and bs-4, re-evaluated with: (a) ݒ߂ ൌ 1	m/s and different ߠ߂;  

(b) ߠ߂ ൌ 1° and different ݒ߂ . (Note: ‘Data’ denotes those re-evaluated with measured 

time-series.) 

It can be seen that, when assessing the superiority of an optimized layout over the original layout, 

the calculated power improvement is more sensitive to ߠ߂  in re-evaluation than to ݒ߂ , and the  

re-evaluated improvement with ݒ߂ ൌ 1	m/s and ߠ߂ ൌ 1° is more consistent with that obtained by 

using measured time-series directly.  

In this figure, the optimized layout with bin size choice bs-1, i.e., ݒ߂ ൌ 1	m/s , ߠ߂ ൌ 30°, shows 

an impressive improvement of up to 6.5% when evaluated with the same choice of bin sizes, but the 

improvement turns into actually a negative value when evaluated with smaller ߠ߂  or measured  

time-series. Comparing the four optimized layouts, we can see that the optimized layout with bin size 

choice bs-4, i.e., ݒ߂ ൌ 1	m/s ߠ߂ , ൌ 1° , obtains the largest improvement when re-evaluated with 

smaller ߠ߂) ߠ߂ ൌ 1°) or measured time-series, and it also shows the most consistent improvement 

when evaluated with different combinations of bin sizes.  

From these observations, we can see that the choice of bin size ߠ߂ is of crucial importance for 

layout optimization. In order to obtain reliable and consistent results, using ߠ߂ ൌ 1°  in the 

optimization process is necessary, and the common practice of using ߠ߂ ൌ 30°  tends to obtain 

artificial improvement, which may looks impressive but actually leads to decreased power. This is 

consistent with our previous finding [12]. 

5.3. Choice of Bin Size ݒ߂ for Layout Optimization 

Similarly, the layout optimization is carried out here by using a fixed value of ߠ߂ and four different 

values of ݒ߂. The optimized layouts, obtained using these four combinations of bin sizes, i.e., bs-5: 

ݒ߂ ൌ 2	m/s, ߠ߂ ൌ 1°; bs-6: ݒ߂ ൌ 1	m/s, ߠ߂ ൌ 1°; bs-7: ݒ߂ ൌ 0.5	m/s, ߠ߂ ൌ 1°; bs-8: ݒ߂ ൌ 0.1	m/s, 
ߠ߂ ൌ 1°, are shown in Figure 11. 
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(a) (b) 

(c) (d) 

Figure 11. Optimized layouts of the Horns Rev 1 WF by using the spline joint  

distribution in wind modelling and choosing (a) bs-5: ݒ߂ ൌ 2	m/s, ߠ߂ ൌ 1°; (b) bs-6: 

ݒ߂ ൌ 1	m/s, ߠ߂ ൌ 1°; (c) bs-7: ݒ߂ ൌ 0.5	m/s, ߠ߂ ൌ 1°; (d) bs-8: ݒ߂ ൌ 0.1	m/s, ߠ߂ ൌ 1° 
in optimization.  

The four optimized layouts, obtained with bin size choices: bs-5, bs-6, bs-7 and bs-8, are then 

assessed by using the same re-evaluation procedure as in Section 5.2, and the obtained results are 

shown in Figure 12.  

It can be seen that the optimized layouts with different choices of bin sizes bs-5, bs-6, bs-7 and  

bs-8, i.e., ߠ߂ ൌ 1° and different ݒ߂, show nearly the same level of improvements when re-evaluated 

with smaller ߠ߂) ߠ߂ ൌ 1°) or measured time-series. From this figure, we can see that the choice of bin 

size ݒ߂ is not so important when ߠ߂ ൌ 1° is chosen. Thus, the common practice of using ݒ߂ ൌ 1	m/s 
is valid for application in layout optimization. 
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(a) (b) 

Figure 12. Power improvement of the optimized layouts, obtained with 4 bin size choices 

bs-5, bs-6, bs-7 and bs-8, re-evaluated with: (a) ݒ߂ ൌ 1	m/s and different ߠ߂; (b) ߠ߂ ൌ 1° 
and different ݒ߂. (Note: ‘Data’ denotes those re-evaluated with measured time-series.) 

Based on the above investigations, we can conclude:  

 The proposed continuous joint distributions of wind speed and wind direction can be applied 

in both wind farm power calculation and layout optimization;  

 The common practice of using ݒ߂ ൌ 1	m/s and ߠ߂ ൌ 30° might be appropriate to assess the 

power production of a given wind farm with a layout of regular shape, but it is not suitable to 

be applied in layout optimization;  

 The choice of using ݒ߂ ൌ 1	m/s  and ߠ߂ ൌ 1°  is recommended in layout optimization,  

in order to obtain reliable and consistent optimization results. 

6. Conclusions 

In this study, a simple and easily implementable method for constructing joint distributions of wind 

speed and wind direction is proposed. First, the measurement data is fitted into sector-wise Weibull 

distributions. The obtained parameters are used to construct three types of joint distributions, namely, 

piecewise joint distribution, linear joint distribution and spline joint distribution. For the three years’ 

wind measurement data at Horns Rev, reasonable levels of good fitness have been obtained by the 

three proposed distributions, among which the spline joint distribution shows the best fitness.  

Second, the choice of bin sizes for wind modelling in numerical calculation is investigated.  

The importance of choosing small enough value for bin size of wind direction is addressed by 

considering a constructed ideal wind farm. Furthermore, the wind modelling problem is investigated in 

a realistic setting, i.e., for the layout optimization problem of Horns Rev 1 wind farm. The proposed 

spline joint distribution is applied for wind modelling, and the problem of choosing appropriate bin 

sizes for wind speed and wind direction is solved by carrying out a detailed sensitivity study. It has 

been found that the choice of bin size for wind direction is crucial for layout optimization and the choice 

of using ݒ߂ ൌ 1	m/s and ߠ߂ ൌ 1° is recommended, so that reliable and consistent optimization results 

can be obtained. 
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Future study will consider the uncertainties in wind modelling for wind farm layout optimization 

and their impacts on optimization results. The uncertainties may come from various sources, such as 

the wind measurement, the statistical models, the representative limitations (considering the fact that 

we are using the measured data in several years to predict the wind condition in the future life time of 

the wind farm, which is typically up to 20 years).  
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