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Abstract: This paper investigates governor design by reduced-order sliding mode for a hydropower
plant with an upstream surge tank. The governing system is made up of a tunnel, a surge tank, a
penstock, a wicket gate and servomechanism, a governor, a hydro-turbine and a grid. Concerning
the components of the governing system, their mathematic models are established. Then, these
models are interconnected to simulate the governing system. From the viewpoint of state space in
modern control theory, the governing system is partially observed, which challenges the governor
design. By introducing an additional state variable, the control method of reduced-order sliding
mode is proposed, where the governor design is based on a reduced-order governing system. Since
the governor is applied to the original governing system, the system stability is analyzed by means
of the small gain theorem. An genetic algorithm is employed to search a group of parameters of
the predefined sliding surface, and a fuzzy inference system is utilized to decrease the chattering
problem. Some numerical simulations are illustrated to verify the feasibility and robustness of the
control method.

Keywords: hydropower generation; governor; sliding mode control; order reduction; fuzzy logic;
genetic algorithm

1. Introduction

With the coming of the low-carbon era, low-carbon power generation [1] is becoming
increasingly significant and popular. Generally speaking, low-carbon power sources cover
zero-emission thermal power generation, advanced atomic power generation, renewable energy,
highly efficient electric power transmission, etc. As a kind of low-carbon power generation,
hydropower, currently accounting for 19% of global electricity generated [2], offers an important
low-carbon energy solution.

Hydropower uses hydraulic turbines to convert energy in flowing water into electricity. Such a
source is one way of electrical generation from renewable potential sources. Usually, a hydropower
plant is made up of the reservoir, water tunnel, surge tank, penstock, hydraulic turbine, speed
governor, generator and grid [3]. Its sketch [4] is illustrated in Figure 1. In such a system, there
exist strong couplings between hydraulic and mechano-electric dynamics. Moreover, the system has
many different operating points [5]. Once the operating point changes, its characteristics will change.
These undesired properties make its governor design challenging.
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Figure 1. Sketch of a hydropower plant with an upstream surge tank.

In a governing system, control approaches are adopted to govern the hydro-turbine speed.
Several approaches concerning the governor design problem have been reported in the last three
decades. Two classes of governors can be roughly seen in this literature. The first class is the
proportional integral derivative (PID) or PID-type governor [5–9]; the second class is the state
feedback or intelligence-based governor [10–15].

Since the PID methodology only concentrates on system output and employs the information of
the current error (P), the sum of errors in history (I) and the changing rate of error (D), the first class
of governors may not make full use of the internal information of the governing system. Moreover,
such a class is usually designed at the rated operating point and re-tuned for the worst operating
point, so that the design does not ensure the stability of the governing system at all operating points.
The second class of governors focuses on not only system output, but also a set of state variables
representing the internal information of the governing system. With the development of advanced
control technology, approaches, such as predictive control [10], intelligent method control [11], robust
control [13–15] and multi-model control [16], are now being considered to facilitate the governor
design of hydro-turbines.

Among various state space-based control methods, sliding mode control (SMC) with its
discontinuous state-feedback control law provides a solution of variable structure control (VSC) [17].
The SMC method is an alternative to solve the speed control problem of hydro-turbines. In [18–20],
the VSC methods with no sliding mode were taken into account for the problem. Compared to them,
the SMC is superior, because the system performance is able to be tuned by designing a predefined
sliding surface. To date, there has been rather rare literature about the SMC applications in this area.

There exist three issues concerning the SMC applications in the control problem. The first issue
is how to pick up a set of measurable state variables for control design, because some state variables
of the governing system are hard to measure in practice. The second one is how to select a group of
suitable parameters of the predefined sliding surface, because the parameters are directly related to
the dynamic performance of this control system. The third one is how to decrease the chattering
phenomenon, an inner drawback of the SMC method, because high frequency chattering of the
control signal is absolutely forbidden in the control problem.

In order to deal with the above issues in the governing speed of hydro-turbines, this paper
presents an approach by means of the reduced-order SMC for a hydropower plant with an upstream
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surge tank. After modeling the governing system, a reduced-order sliding mode controller is
proposed. The system stability is analyzed according to the small gain theorem. The genetic
algorithm (GA) is employed to search a group of parameters of the predefined sliding surface, and
a fuzzy inference system is built up to decrease the chattering problem by regulating the controller
gain. To verify the feasibility and robustness of the control method, simulation results are illustrated.
The remainder of this paper is organized as follows. In Section 2, the dynamics of the governing
system are described. The GA-based fuzzy reduced-order sliding mode control law is designed in
Section 3. The presented method in Section 4 is taken into account practically to verify the controller’s
feasibility and robustness. Finally, conclusions are drawn in Section 5.

2. Dynamics of a Hydropower Plant with an Upstream Surge Tank

A mathematic model is studied in [21] for a low-to-medium head plant with unrestricted head
and tail race and either a very large or no surge tank. In the referred papers, most of them [6–20]
take such a model as a benchmark. However, the model is simplified, and it neglects the effect of the
surge tank on the accuracy. Though Fang et al. [5] investigated a mathematical model for hydropower
plants with upstream and tail surge tanks, many hydropower plants do not have a surge tank at the
tail tunnel. To develop a governor for hydropower plants with an upstream surge tank, it is necessary
to model such a governing system [22–24].

Figure 2 displays a schematic diagram of hydropower plants with an upstream surge tank.
The symbols in Figure 2 are determined by reservoir head HR (m), tunnel length L1 (m), tunnel
cross-section area A1 (m2), head of surge tank Hs (m), cross-section area of the surge tank As (m2),
penstock length L2 (m), penstock cross-section area A2 (m2) and tail water head H0 (m). Both HR and
H0 are assumed to be constant. The conduits between the turbine and tail water lake are assumed to
be of negligible length. The water in the surge tank is considered as being in steady flow conditions.

Figure 2. Schematic diagram of a hydropower plant with an upstream surge tank.

2.1. Water Hammer

For the components of the tunnel and penstock, they physically belong to the pipe flow in fluid
dynamics. To model them, the classical mass and momentum equations for one-dimensional water
hammer flows [25] are introduced as:

a2

gA
∂Q
∂l

+
∂H
∂t

= 0 (1)

1
A

∂Q
∂t

+ g
∂H
∂l

+
4

ρD
τw = 0 (2)

where a (m· s−1) is acoustic (water hammer) wave speed, H (m) is the piezometric head,
A (m2) is the cross-sectional area of the pipe, Q (m3· s−1) is the cross-sectional average flow rate,
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g = 9.81 m· s−2 is the gravitational acceleration, D (m) is the pipe diameter, ρ (kg· m−3) is the water
density, τw (N· m−2) is the shear stress at the pipe wall, l is the spatial coordinate along the pipeline
and t is the temporal coordinate. According to the Darcy–Weisbach equation [25], we have:

τw =
ρ f ||Q||Q

8A2 (3)

Here, f is the Darcy–Weisbach friction factor. If the flow rate Q from left to right is defined as a
positive direction, then we have Equation (4) by substituting Equation (3) into Equation (2).

1
A

∂Q
∂t

+ g
∂H
∂l

+
f Q2

2gDA2 = 0 (4)

Apparently, Q and H in Equation (1) and Equation (4) couple with each other according to the
viewpoint of control theory. From Equation (1) and Equation (4), the water-hammer model [26] is
formulated as:

L [h(t)]
L [q(t)]

= −2 · Tw

Tr
· tanh(

Trs
2

+
Tr H f

2Tw
) (5)

where h (per unit) is the water head relative deviation of the pipe inlet and outlet, q (per
unit) is the flow rate relative deviation of the pipe inlet and outlet, Tr (s) is the penstock
water reflection time, Tw (s) is the water inertia time, H f is the hydraulic loss, s is the
complex variable in the Laplace domain and L [·] denotes the Laplace transfer. Tw (s) is
defined as LQr

gAHr
, where A (m2) is the cross-section area of the pipe, Hr (m) is the rated head,

Qr (m3· s−1) is the rated flow rate and L (m) is the pipe length.

2.2. Tunnel

In Figure 2, the water tunnel joins the reservoir and surge tank together. Provided that the
incompressible conditions are generally satisfied in the tunnel L1, Equation (6) can be deduced from
Equation (5) under the assumption of the inelastic water hammer effect.

L [h1(t)]
L [q1(t)]

= −Tw1s− H f 1 (6)

where h1 (per unit) is the head deviation of the tunnel input and output, q1 (per unit) is the flow rate
deviation of the tunnel input and output, H f 1 is the hydraulic loss in the tunnel and Tw1 (s) is the
water inertia time of the tunnel, defined as L1Qr

gA1 Hr
.

2.3. Penstock

In Figure 2, the penstock joins the surge tank and tail water lake together. Provided that the
incompressible conditions are generally satisfied in the penstock, Equation (7) can also be deduced
from Equation (5) under the assumption of the inelastic water hammer effect.

L [h2(t)]
L [q2(t)]

= −Tw2s− H f 2 (7)

where h2 (per unit) is the head deviation of the penstock input and output, q2 (per unit) is the flow
rate deviation of the penstock input and output, H f 2 is the hydraulic loss in the penstock and Tw2 (s)
is the water inertia time of the penstock, defined as L2Qr

gA2 Hr
.
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2.4. Surge Tank

Usually, the length of surge tank is much shorter than the length of the penstock and tunnel, so
that hydraulic losses at the orifices of the surge tank are neglected. The surge tank Equation (8) can
be derived from the continuity of flow at two junctions.

Ts
dhs

dt
= qs (8)

where hs (per unit) is the water head deviation of the surge tank, qs (per unit) is the flow deviation of
the surge tank and Ts =

As Hr
Qr

(s) is the filling time of the surge tank.

2.5. Wicket Gate and Servomechanism

Gate movement is driven by a hydraulic system. The transfer function between the control signal
u and the wicket gate servomotor stroke y can be expressed by a first-order equation, written as:

L [y(t)]
L [u(t)]

=
1

Tys + 1
(9)

here, Ty (s) is the response time of the wicket gate servomotor.

2.6. Hydro-Turbine

In references [5,27], the linearized small-signal model of ideal Francis turbines is formulated by:

m = exx + eyy + ehh

q = eqxx + eqyy + eqhh
(10)

where m (per unit) is the turbine torque relative deviation, q (per unit) is the turbine flow rate
relative deviation, h (per unit) is the turbine water head relative deviation, x (per unit) is the
turbine speed relative deviation and y (per unit) is the wicket gate servomotor stroke relative
deviation. In Equation (10), the six coefficients for Francis turbines are determined by ex = ∂(M/Mr)

∂(X/Xr)
,

ey = ∂(M/Mr)
∂(Gt/Gmax)

, eh = ∂(M/Mr)
∂(H/Hr)

, eqx = ∂(Q/Qr)
∂(X/Xr)

, eqy = ∂(Q/Qr)
∂Gt/Gmax

and eqh = ∂(Q/Qr)
∂(H/Hr)

; here, Mr (kN· m) and
Xr (r/min) are the rated turbine torque and rated speed, and Gmax (mm) is the maximum equivalent
gate position. The coefficients in Equation (10) can be calculated at each operating point.

2.7. Generator and Grid

Provided that there is no other generation source except a plant in one grid, i.e., a single-machine
infinite-bus power system, the small-signal model of the generator and grid component [5] has
the form of:

L [x(t)]
L [m(t)−mg0]

=
1

Tas + eg
(11)

here, Ta (s) is the generator unit mechanical time, and eg is the rotational loss coefficient. Ta is

determined by JgX2
r

3580Pr
× 10−3, where Jg (kN· m2) is the generator unit inertia torque, Pr (kW) is the

generator-rated power output and Xr (r/min) is the rated speed.
The differential Equations (6)–(9), Equation (11) and the algebraic Equation (10) form the

individual component model of hydropower plants with an upstream surge tank driven by a Francis
turbine. By interconnecting these components together, a block diagram of the governing system is
displayed in Figure 3. In Figure 3, the green solid line denotes the hydro-turbine part, the yellow
solid line denotes the penstock part, the pink solid line denotes the surge tank part, the red solid line
denotes the generator and grid part, the blue solid lines denotes the wicket gate and servomechanism
part and the dashed line will be mentioned below.
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Figure 3. Block diagram of the hydropower plants with an upstream surge tank.

3. Control Design

With the development of sensor and measuring technology, many methods have been raised
to obtain internal information from an industrial process. This extends the ability of control design.
As far as the governing system of hydropower plants with an upstream surge tank is concerned,
we have obtained the system model as a fourth-order ordinary differential equation (except the
dashed-line part in Figure 3). The model indicates that four independent state variables can depict
the governing system in state space from the viewpoint of modern control theory. In Figure 3, it
is obvious that the governing system is partly observed. The measurable variables are y, q, h, m
and x. However, they are a linear correlation in Equation (10), which indicates that only three
independent and measurable variables among them are available in the governing system. Here
arises the challenging problem of how to develop a controller by the limited number of measurable
and independent state variables.

3.1. Design of the Reduced-Order Sliding Mode Controller

Due to the advantages that SMC possesses, we intend to design a sliding mode controller for the
governing system. In this subsection, a reduced-order sliding mode controller is gradually taken into
account via the independent and measurable state variables y, m and x.

To force the steady value of x to zero, the integral of x is defined as an additional state x4 with a
known gain KE [28]. The expression of the state is written as:

x4 = KE

∫ ∞

0
xdt (12)

The additional-state component is shown by the dashed line in Figure 3. Then, the sliding surface
takes the form:

S = cTx (13)

here, x = [x1 x2 x3 x4]
T , x1 = x, x2 = m, x3 = y, c = [c1 c2 c3 c4]

T and ci (i = 1, 2, 3, 4) is constant.
Generally speaking, the SMC law includes two parts: the switching control law and the

equivalent control law [17]. The switching control law is employed to drive the system states moving
towards the predefined sliding surface. The equivalent control law guarantees the system states keep
sliding on the surface and converge to the desired value along the surface. We still adopt such an idea
to design the reduced-order sliding mode controller and define the control law u as:

u = ueq + usw (14)

here, usw is the switching control, and ueq is the equivalent control law. Their expressions are deduced
below. In Equation (14), ueq and usw are model-based, so that we have to obtain a simplified model
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described by the three independent and measurable state variables. This is also the reason that we
name the controller “reduced-order sliding mode”.

As shown in Figure 3, the wicket gate and servomechanism component is depicted by a
first-order equation with the state x3; the generator and grid component is also depicted by a
first-order equation with the state x1; and the turbine component is depicted by an algebraic equation.
To get a reduced-order model depicted by the limited state variables, we have to analyze the
remaining components, i.e., the tunnel, the surge tank and the penstock. In Figure 3, the transfer
function of the three components can be written as:

G0
2(s) =

L [h(t)]
L [q(t)]

= −
Tw1s + H f 1

(Tw1s + H f 1)Tss + 1
− Tw2s− H f 2 (15)

We know that the function of the surge tank is to absorb the sudden rises of pressure, as well
as to quickly provide extra water during a brief drop in pressure. The position of the surge tank is
usually nearer to the power plant than to the reservoir. This fact indicates that Tw1 is usually larger
or much larger than Tw2 in Equation (15). Thus, one method to reduce the order of Equation (15) is to
use the steady value of the unit step response of the first term on the right of Equation (15) instead of
its original expression, and other two terms are kept unchanged. Along the route, the reduced-order
expression of the three components can be described by a first-order equation with the state x2 as:

G0
2r(s) =

L [hr(t)]
L [qr(t)]

= −Tw2s− H f 2 − H f 1 (16)

note that the simplified model Equation (16) is only for the following control design. The original
model Equation (15) will be still held as the controlled plant. Finally, the reduced-order model of the
governing system in state space can be depicted as:

ẋ = Ax + Bu + Fd(t)

y = CTx
(17)

here, x = [x1 x2 x3 x4]
T is the state vector, and d(t) is the signal of the load disturbance; the state

matrix A, input vector B, output vector C and disturbance vector F are shown in Appendix A.
According to the SMC methodology, only the equivalent control ueq works when the system

states keep sliding on the sliding surface. Differentiate S with respect to time t in Equation (13); let
Ṡ = 0; and substitute the nominal model of Equation (17) into Ṡ = 0. Then, we can obtain:

ueq = −(cTB)−1cTAx (18)

In order to ensure that the total control law Equation (14) makes the sliding surface Equation (13)
asymptotically stable, we define a Lyapunov function as:

V(t) =
1
2

S2 (19)

differentiate V with respect to t and substitute Equations (13), (14), (17) and (18) into V̇. Then,
we have:

dV
dt

= SṠ = S[cT ẋ]

= S[cT(Ax + Bu + cTFd(t) )]

= S{cT [Ax + B(ueq + usw) + cTFd(t)]}
= S[cT(Ax + Bueq) + cTBusw + cTFd(t)]

= S[cTBusw + cTFd(t)]

(20)
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Let cTBusw = −κS− ηsgn(S) where κ and η are positive constants and sgn(·) is a sign function;
the switching control law usw is obtained as:

usw = −(cTB)−1[κS + ηsgn(S)] (21)

From Equation (14), the control law u is finally deduced as:

u = ueq+usw = −(cTB)−1[cTAx + κS + ηsgn(S)] (22)

Further, Equation (20) becomes:

dV
dt

= S[−κS− ηsgn(S) + cTFd(t)]

≤ −κS2 − η|S|+ |S| · |cTFd(t)|
≤ −κS2 − [η − |cTFd(t)|] · |S|

(23)

Define DM = sup |cTFd(t)|. If η > DM is satisfied, we have dV
dt ≤ −κS2 − (η −DM)|S| < 0

in Equation (23), so that the reduced-order governing system Equation (17) possesses the asymptotic
stability under the control law Equation (22) in the sense of Lyapunov. However, the control law
Equation (22) will be applied to the original system. Consequently, it is necessary to analyze whether
the reduced-order sliding mode controller is able to stabilize the original system or not.
Theorem 3.1: If Equation (24) is satisfied, then the reduced-order sliding mode control law
Equation (22) is able to stabilize the original system, as well.

||1− G2

G2r
||∞ ≤ (|| G(s)

1− G(s)
||∞)−1 (24)

here, G2(s) = eqy
G0

2(s)
1−eqhG0

2(s)
eh + ey, G2r(s) = eqy

G0
2r(s)

1−eqhG0
2r(s)

eh + ey, G(s) = G1(s)G2r(s)G3(s)G4(s),

G1(s) = 1
Tys+1 and G3(s) = 1

Tas+eg−ex
, G4(s) = −KE

s .

Proof. See Appendix B.

Comment: (1) Though the reduced-order sliding mode controller can make the original system
stable, the sliding mode just takes place in the reduced-order system. The reduced-order system is
in a subspace of the original one. In this sense, the reduced-order sliding mode control system is not
as robust as the full-state feedback sliding mode control system, because the sliding mode just exists
in a subspace of the original system. (2) To regulate the error of each state to zero in state space, we
have to foresee the desired value of each state. In fact, it is difficult to know the desired values of
all states in the governing system although the current values of all states are measurable. Thus, the
additional state is introduced to force all states to tend to be stable. Owing to the existence of the
integral term on the sliding surface, the reduced-order sliding mode controller belongs to the integral
SMC in this sense.

3.2. GA-Based Parameter Optimization

The parameters of the sliding surface in Equation (13) are related to the system performance.
However, it is a time-consuming task to select them by trial and error tuning, since the response
curves are very sensitive to them. The genetic algorithm (GA) is a searching strategy inspired by
natural evolution behavior [29]. Each individual consisting of a set of parameters to be tuned can be
represented by a chromosome. A simple GA includes individual selection, mutation and crossover
steps. The selection from the whole population is based on each individual’s fitness. A roulette
selection strategy is adopted in the following comparison. The mutation causes a complete opposite
change on the gene bit randomly. The crossover exchanges part of the information between two
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individuals. After the genetic operation, new individuals are generated to form a new population.
The fitness mapping is a key problem for the genetic learning process. The reciprocal of the
integral squared error (ISE) of all state variables in the reduced-order model is selected as the
individual fitness:

J =
1∫ ∞

0 [x2
1(t) + x2

2(t) + x2
3(t) + x2

4(t)]dt
(25)

A good individual corresponds to a big fitness. As the genetic operation goes on, the individual
maximum fitness and the population average fitness are increased steadily. We find that the
parameters can be searched out by the simple GA, but they vary greatly with different crossover
probability, mutation probability and population size. The parameters often converge to different
results in different experiments, which may not be an optimized solution. Some improvements are
proposed on the basis of the simple GA. Large crossover probability and small mutation probability
will ensure population diversities and prevent premature convergence of maximum individual
fitness, so that the crossover fraction and mutation fraction are set to 0.95 and 0.05, respectively.
Elitist individual reservation is applied to ensure that the maximum fitness continues to increase,
and the reservation will prevent the fluctuation of the maximum fitness caused by large crossover
probabilities. On the other hand, when the sliding mode takes place in Equation (17), we have:

ẋ = Ax + Bueq = [A−B(cTB)−1cTA]x (26)

All of the eigenvalues of A− B(cTB)−1cTA should have negative real parts on the aspect of
system stability. The condition is treated as a constraint, and κ and η are fixed to accelerate the
searching process.

3.3. Design of the Fuzzy Inference System

Fusing the prior knowledge about the SMC, we know that a large value of κ is needed if the
system states are far from the sliding surface. On the other side, a small κ is needed. On account of the
reachability condition of the SMC [17], the sliding surface variable S times its first-order derivative
dS
dt is chosen as the input variable, and the change of k, i.e. ∆κ, is chosen as the output variable.
The if-then rule base of this fuzzy inference system is designed as:

• If SṠ is PB, then ∆κ is PB.
• If SṠ is PM, then ∆κ is PM.
• If SṠ is Z, then ∆κ is Z.
• If SṠ is NM, then ∆κ is NM.
• If SṠ is NB, then ∆κ is NB.

where NB, NM, Z, PM, PB are negative big, negative medium, zero, positive medium and positive
big, respectively. The membership functions of linguistic labels NB, NM, Z, PM, PB for sṡ and ∆κ

are shown in Figure 4a, where m0 and m1 are constant. Figure 4b shows the output surface of the
designed fuzzy inference system using the input sṡ and the output ∆κ. The final value of κ regulated
by the fuzzy logic is determined by:

κ = κ0 + ∆κ (27)

here, κ0 is a basic value.
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(a) (b)

Figure 4. (a) Membership functions of the linguist labels; (b) Output surface of the fuzzy
inference system.

4. Simulation Results

Lubuge hydropower plant, with a rated head of 312.0 m and a maximum net head 372.5 m, is on
Huangni River where Yunnan and Guizhou provinces border Guangxi Zhuang Autonomous Region,
China. The installments of this plant are 4× 153 MW Francis turbines. The diversion system consists
of a pressure tunnel of 9387 m in length and 8 m in diameter, a surge tank of 12 m in inner diameter
and 63.9 m in height, two penstocks of 470 m in length and 4.6 m in diameter and four branches of
3.2 m in diameter. Since the branches are very short, we simplify the branch model as hydraulic
losses. The data of the plant are employed to simulate load rejection. The data are determined by
Pr = 153 MW, Hr = 312.0 m, Qr = 53.5 m3, Xr = 333.3 r/min, L1 = 9387 m, A1 = 49.6 m2,
As = 113.04 m2, L2 = 470 m, A2 = 16.61 m2, Jg = 4.0 × 104 kN·m2. The mathematic model in
Section 2 is able to depict the operating condition in which one turbine is fed by one penstock.
Under such an operating condition, H f 1 = 0.036 and H f 2 = 0.027. The time constants Ta, Ty, TW1,
TW2 and Ts are 8.113, 0.500, 3.312, 1.244 and 659.224 s, respectively. Turbine coefficients under the
operating points of Case 1 and Case 2 are determined in Table 1. A value of 0.200 is picked for KE, the
gain of the additional state. The parameter vector of the sliding surface on the operating point of Case
1 is optimized by the improved GA as c = [500 35 63 600]T . The parameters of the fuzzy inference
system are set as m0 = 2 and m1 = 1

3 . Since min ∆κ = −1, κ0 and η are selected as one and 0.5 from
the viewpoint of the system stability in Equation (23).

Table 1. Turbine coefficients on two steady-state operating points.

Coefficients ex ey eh eqx eqy eqh eg

Case 1 −1.000 1.000 1.500 0.000 1.000 0.500 0.210
Case 2 −0.260 0.322 0.722 0.000 0.573 0.325 0.210

To verify the validity of the reduced-order model, comparisons by Bode plots are shown in
Figure 5. In Figure 5a, the simplified components of the tunnel, surge tank and penstock are able to be
treated as the asymptotical plot of the original ones. At middle frequencies, the plots of the simplified
system are smoother in Figure 5a. It can be treated as the mean of the original components at these
frequencies. Figure 5b shows the simplified and original plots of the whole governing system. In
Figure 5b, the two plots are almost the same type as each other. This indicates that the reduced-order
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model is valid with desired accuracy to depict the original governing system. Further, Equation (24)
is satisfied.

(a) (b)

Figure 5. Bode plots. (a) The simplified components; (b) The whole governing system.

4.1. Load Rejection

Load rejection in an electric power system means a sudden load trip in the system, which causes
the generation side to be over frequency. Figure 6 illustrates the comparison of 10% load rejection on
the operating point of Case 1 among the GA-based fuzzy reduced-order SMC governor, the robust
PID governor tuned by internal mode control (IMC) and the PID governor tuned by trial and error.
The PID governors have the form u(t) = Kpx(t) + Ki

∫
x(t)dt + Kd ẋ(t). The gains via IMC tuning

are determined by Kp = 4.3086, Ki = 0.8938 and Kd = 2.8925 [30]. Another set of gains Kp = 0.89,
Ki = 0.30 and Kd = 2.00 are selected by trial and error [31].

Displayed in Figure 6, the reduced-order sliding mode governor possesses better performance
than the two PID governors from the viewpoint of speed deviations x. The wicket gate deviation y
under the action of the reduced-order SMC governor can respond the minute that the load changes.
Correspondingly, the flow deviation q is changed to regulate the power output so that the speed
deviation x can be eliminated as soon as possible. On the other hand, the performances of u and
m do not seem very good, since their overshoots are larger under the action of the reduced-order
SMC governor. Associated with the process of hydroelectric generation, this fact indicates that the
control signal u orders the turbine torque deviation m as soon and as much as possible to reject the
load disturbance mg0 once the disturbance is injected into the governing system. All of the system
states coordinate each other to make the whole governing system respond faster and better under
the action of the reduced-order SMC governor, as shown in Figure 6. Further, we can also explain
the reason that the presented control method possesses better performance from the viewpoint of
information. The reduced-order SMC governor makes full use of the measurable information of the
governing system to decide the final control input, whereas the two PID governors just employ the
proportional, integral and derivative of x to formulate the final control input, only utilizing a limited
part of the system information.
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Figure 6. Simulation results of 10% load rejection on the operating point of Case 1 by the
reduced-order sliding mode control (SMC) governor, compared to two PID governors.

4.2. Robustness Testing

To verify the robustness of the reduced-order SMC governor, the parameters on the operating
point of Case 2 are employed as testing data. Since the reduced-order SMC governor is designed
on the operating point of Case 1, this simulation can examine the controller’s robustness. In the
simulation, the controller parameters are kept unchanged from the operating point of Case 1, but
the turbine parameters are set as the operating point of Case 2. This study can illustrate the system
performance under the action of the reduced-order sliding mode governor when the operating points
are changed.

The results are displayed in Figures 7 and 8, respectively. Shown by the red solid line in Figure 7,
the reduced-order SMC governor still works, even though the operating point has been changed,
and the system performance is still acceptable to resist 10% load disturbance. This fact illustrates
that the reduced-order SMC governor is robust to resisting the change of operating points. Figure 8
plots the output of the designed fuzzy inference system (FIS) on the two operating points. On the
operating point of Case 1, the FIS output is smooth. When the operating point is shifted to another
one, the FIS output frequently switches to maintain the system performance as well as possible in
Figure 8. Although the FIS output has the chattering phenomenon, the control input u in Figure 7
is still smooth. This indicates that the FIS works as a soft switcher instead of the traditional hard
switcher of the control input u.
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Figure 7. Simulation results of robustness testing under different operating points.

Figure 8. Fuzzy inference system (FIS) output under different operating points.

5. Conclusions

This paper has presented a GA-based fuzzy reduced-order sliding mode controller to govern
the hydro-turbine speed for a hydropower plant with an upstream surge tank. To achieve this
purpose, the dynamic model of the governing system was firstly established. Since the state variables
of the governing system were partly observed, the method of reduced-order SMC was presented
by introducing an additional state variable. A sufficient condition for how to stabilize the original
system by the reduced-order controller was proven in terms of the small gain theorem. To optimize
parameters of the sliding surface, an improved GA was employed. To decrease chattering, an FIS
was designed to regulate the controller gain according to the reachability condition of the SMC.
Finally, simulation results illustrated the feasibility and robustness of the method. The application of
the method to a testbed is still in progress.
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Appendix

Appendix A. Reduced-Order Model

Define Γ = H f 1 + H f 2, Λ = − Tw2
Ty

(eqyeh − eqhey), ∆ = 1 + eqhΓ and Υ = − Tw2
Ta

eqhex. Then, A, B,
C and F in Equation (17) are determined by:

A =


−

eg

Ta

1
Ta

0 0

egΥ + ex∆ Υ− ∆ Λ + ey∆− eheqyΛ Λ

0 0 − 1
Ty

− 1
Ty

KE 0 0 0


B = [0 −Λ

1
Ty

0]T , C = [1 0 0 0]T , F = [
1
Ta
− Υ 0 0]T

Appendix B. Proof of Theorem 3.1

Proof. According to Figure 3, we can have the following block diagram of the governing system in
Figure A1a. Define ∆ = G2(s)−G2r(s) as the error between the original system and the reduced-order
one. Then, the block diagram in Figure A1b is obtained. We can simplify the block diagram shown in
Figure A1b by block diagram algebra. This precess is illustrated in Figure A2, where δ = ∆

G2r(s)
.

(a) (b)

Figure A1. Block diagram. (a) The original governing system; (b) The reduced-order governing
system with error.

Figure A2. Simplification of the reduced-order system with error by block diagram algebra.

From the precess of designing the reduced-order sliding mode governor, we have known that
the governor is able to asymptotically stabilize the reduced-order model, i.e., under the action of
u in Figure A1, G(s)

1−G(s) has input-output stability with respect to the input ε1 and the output ε2.
Equation (A1) can be obtained in the frequency domain.

ε2(s) = W(s)ε1(s) and ε1(s) = δ(s)ε2(s) (A1)
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here, W(s) = G(s)
1−G(s) . On account of the small gain theorem [32], a sufficient condition for stabilizing

the interconnected system in Figure A2 is:

||δ(s) ·W(s)||∞ ≤ 1 (A2)

this indicates that the reduced-order sliding mode governor possesses the ability to stabilize the
original system if Equation (A2) is satisfied. Further, Equation (A3) can be obtained according to
the Cauchy–Schwarz inequality:

||δ(s)||∞ ≤
1

||W(s)||∞
(A3)

thus, Equation (24) can be drawn from Equation (A3).

References

1. Cuellar, A.D.; Herzog, H. A path forward for low carbon power from biomass. Energies 2015, 8, 1701–1715.
2. Rahi, O.P.; Chandel, A.K. Refurbishment and uprating of hydro power plants—A literature review. Renew.

Sustain. Energy Rev. 2015, 48, 726–737.
3. Nagode, K.; Skrjanc, I. Modelling and internal fuzzy model power control of a Francis water turbine.

Energies 2014, 7, 874–889.
4. Kishor, N.; Saini, R.P.; Singh, S.P. A review on hydropower plant models and control. Renew. Sustain.

Energy Rev. 2007, 11, 776–796.
5. Fang, H.Q.; Chen, L.; Dlakavu, N.; Shen, Z.Y. Basic modeling and simulation tool for analysis of hydraulic

transients in hydroelectric power plants. IEEE Trans. Energy Convers. 2008, 23, 834–841.
6. Natarajan, K. Robust PID controller design for hydroturbines. IEEE Trans. Energy Convers. 2005, 20, 661–667.
7. Jiang, C.W.; Ma, Y.C.; Wang, C.M. PID controller parameters optimization of hydro-turbine

governing systems using deterministic-chaotic-mutation evolutionary programming (DCMEP).
Energy Convers. Manag. 2006, 47, 1222–1230.

8. Fang, H.; Chen, L.; Shen, Z. Application of an improved PSO algorithm to optimal tuning of PID gains for
water turbine governor. Energy Convers. Manag. 2011, 52, 1763–1770.

9. Husek, P. PID controller design for hydraulic turbine based on sensitivity margin specifications. Int. J.
Electr. Power Energy Syst. 2014, 55, 460–466.

10. Jones, D.; Mansoor, S. Predictive feedforward control for a hydroelectric plant. IEEE Trans. Control
Syst. Technol. 2004, 12, 956–965.

11. Kishor, N.; Singh, S.P. Simulated response of NN based identification and predictive control of hydro plant.
Expert Syst. Appl. 2007, 32, 233–244.

12. Mahmoud, M.; Dutton, K.; Denman, M. Design and simulation of a nonlinear fuzzy controller for a
hydropower plant. Electr. Power Syst. Res. 2005, 73, 87–99.

13. Jiang, J. Design of an optimal robust governor for hydraulic turbine generating units. IEEE Trans.
Energy Convers. 1995, 10, 188–194.

14. Qian, D.; Yi, J. L1 adaptive governor design for hydro-turbines. ICIC Express Lett. Part B Appl. 2013, 3,
1171–117.

15. Ding, X.; Sinha, A. Sliding mode/H∞ control of a hydro-power plant. In Proceedings of the American
Control Conference, San Francisco, CA, USA, 29 June–1 July 2011.

16. Salhi, I.; Doubabi, S.; Essounbouli, N.; Hamzaoui, A. Application of multi-model control with fuzzy
switching to a micro hydro-electrical power plant. Renew. Energy 2010, 35, 2071–2079.

17. Qian, D.W.; Zhao, D.B.; Yi, J.Q.; Liu, X.J. Neural sliding-mode load frequency controller design of power
systems. Neural Comput. Appl. 2013 22, 279–286.

18. Erschler, J.; Roubellat, F.; Vernhes, J.P. Automation of a hydroelectric power station using variable-structure
control systems. Automatica 1974, 10, 31–36.

19. Ye, L.Q.; Wei, S.P.; Xu, H.B.; Malik, O.P.; Hope, G.S. Variable structure and time-varying parameter control
for hydroelectric generating unit. IEEE Trans. Energy Convers. 1989, 4, 293–299.

13456



Energies 2015, 8, 13442–13457

20. Jing, L.; Ye, L.Q.; Malik, O.P.; Zeng, Y. An intelligent discontinuous control strategy for hydroelectric
generating unit. IEEE Trans. Energy Convers. 1998, 13, 84–89.

21. Hydraulic Turbine and Turbine Control Models for System Dynamic Studies. Available online:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=141700 (accessed on 23 November 2015)

22. Qian, D.; Yi, J.; Liu, X. Design of reduced order sliding mode governor for hydro-turbines. In Proceedings
of the American Control Conference, San Francisco, CA, USA, 29 June–1 July 2011.

23. Kendir, T.E.; Ozdamar, A. Numerical and experimental investigation of optimum surge tank forms in
hydroelectric power plants. Renew. Energy 2013, 60, 323–331.

24. Chen, D.; Ding, C.; Ma, X.; Yuan, P.; Ba, D. Nonlinear dynamical analysis of hydro-turbine governing system
with a surge tank. Appl. Math. Model. 2013, 37, 7611–7623.

25. Ghidaoui, M.S.; Zhao, M.; McInnis, D.A.; Axworthy, D.H.; McInnis, D.A. A review of water hammer theory
and practice. Appl. Mech. Rev. 2005, 58, 49–76.

26. Sanathanan, C.K. Accurate Low Order Model for Hydraulic Turbine-Penstock. IEEE Trans. Energy Convers.
1987, 2, 196–200.

27. Doan, R.E.; Natarajan, K. Modeling and control design for governing hydroelectric turbines with leaky
Wicket gates. IEEE Trans. Energy Convers. 2004, 19, 449–455.

28. Tan, W. Unified tuning of PID load frequency controller for power systems via IMC. IEEE Trans. Power Syst.
2010, 25, 341–350.

29. Cheng, L.; Hou, Z.G.; Lin, Y.Z.; Tan, M.; Zhang, W.C.; Wu, F.X. Recurrent neural network for non-smooth
convex optimization problems with application to the identification of genetic regulatory networks.
IEEE Trans. Neural Netw. 2011, 22, 714–726.

30. Tan, W. Analysis and design of a double two-degree-of-freedom control scheme. ISA Trans. 2010, 49,
311–317.

31. Streeter, V.L.; Wylie, B.E. Fluid Mechanics; McGraw-Hill: New York, NY, USA, 1979.
32. Khalil, H.K. Nonlinear Systems, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open
access article distributed under the terms and conditions of the Creative Commons by
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

13457


	Introduction
	Dynamics of a Hydropower Plant with an Upstream Surge Tank
	Water Hammer
	Tunnel
	Penstock
	Surge Tank
	Wicket Gate and Servomechanism
	Hydro-Turbine
	Generator and Grid

	Control Design
	Design of the Reduced-Order Sliding Mode Controller
	GA-Based Parameter Optimization
	Design of the Fuzzy Inference System

	Simulation Results
	Load Rejection
	Robustness Testing

	Conclusions

