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Abstract: An energy management strategy (EMS) considering both optimality and real-time
performance has become a challenge for the development of hybrid electric vehicles (HEVs) in recent
years. Previous EMSes based on the optimal control theory minimize the fuel consumption, but
cannot be directly implemented in real-time because of the requirement for a prior knowledge of the
entire driving cycle. This paper presents an innovative design concept and method to obtain a power
management strategy for HEVs, which is independent of future driving conditions. A quadratic
performance index is designed to ensure the vehicle drivability, maintain the battery energy
sustainability and average and smooth the engine power and motor power to indirectly reduce fuel
consumption. To further improve the fuel economy, two rules are adopted to avoid the inefficient
engine operation by switching control modes between the electric and hybrid modes according
to the required driving power. The derived power of the engine and motor are simple linear
functions of current vehicle velocity and battery residual energy, as well as their desired values. The
simulation results over different driving cycles in Advanced Vehicle Simulator (ADVISOR) show
that the proposed strategy can significantly improve the fuel economy, which is very close to the
optimal strategy based on Pontryagin’s minimum principle.

Keywords: hybrid electric vehicle; linear quadratic optimal control; real-time control;
energy management

1. Introduction

As increasingly concerning on the deterioration in air quality and decrease in petroleum
resources, a great interest is shown in the development of safe, clean, and high-efficient
transportation. It has been well recognized that the electric vehicle (EV), hybrid electric vehicle
(HEV), and fuel cell electric vehicle (FCEV) are the most promising solution to the problem of land
transportation in the future [1]. Since showing improvement in fuel consumption with minimum
extra cost, HEVs are considered to offer the best promise in the short to mid-term [2]. In HEVs, the
internal combustion engine (ICE) provides driving power together with one or more reversible energy
storage systems (ESSes), such as a bank of batteries and ultra-capacitors, which are generally used
as an energy buffering unit to recycle braking energy and change engine operating points as well
as provide an extra degree of freedom for energy management strategies (EMSes). Undeniably, the
introduction of ESSes makes driving modes more flexible but EMSes more complicated. Therefore, it
is especially important to design an excellent EMS for HEV development and application [3,4].

As early as 1997, Jalil used a set of predefined rules based on the battery state of charge (SOC)
and power demand to assign the power to the engine, battery, or a combination of both, for a series
HEV to ensure the high efficiency of the engine and battery operation [5]. Such rule-based strategies
developed from heuristic ideas are widely used in HEVs [6–8] because they can be implemented
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in real-time, but making rules commonly depends on engineering experience, known mathematical
models, large numbers of experimental results, etc., having limited benefits for fuel economy.
In order to improve the fuel economy of rule-based methods, Schouten and Duan directly adopted
fuzzy rules instead of deterministic ones to improve the operation efficiency of vehicle system in
2002 and 2003 [9,10]. Zhao added a fuzzy algorithm to modify the rules in 2013 [11]. However, the
fuel-saving potential of HEVs cannot be fully exploited because the membership functions and rules
of a fuzzy controller are designed based on human expertise and heuristics. To further reduce fuel
consumption, fuzzy controllers were modified by offline optimizing membership functions and rules
through a particle swarm optimization algorithm [12], a genetic algorithm [13], or a machine learning
algorithm [14]. Alternatively, a learning vector quantization neural network [15] or a fuzzy neural
network [16] is used in a fuzzy EMS to identify the driving cycle style periodically.

By contrast with above heuristic-based strategies, EMSes based on optimal control theory, such
as dynamic programming (DP) and Pontryagin’s minimum principle (PMP) have been investigated
quite intensively in recent years. For a prior known driving cycle, DP discretizes continuous states
and control values into finite grids and decomposes the overall dynamic optimization problem
into a sequence of sub-problems. The cost function of each sub-problem is the fuel consumption
from current step to last step. By calculating backwards along the horizon based on Bellman’s
Principle of Optimality, DP generated an optimal EMS of HEVs, but with a large computational
load that exponentially increases as the state variables increase in number [17–20]. Theoretically, if
the whole driving cycle is known in advance and the performance index is defined as an integral
of fuel consumption rate, the EMS obtained from DP will minimize the total fuel consumption.
However, such an optimal solution is only suitable for the known driving cycle rather than other
ones. The requirement for future driving demands to be known in advance leads to a real-time
problem, so DP always acts as a benchmark to assess other EMSs [21,22]. To apply the optimal
results of DP in real-time, many attempts have been made, such as extracting rules from optimal
results [23,24], modeling the power demand as a random Markov chain [25,26] or predicting future
driving conditions [27–29].

As another popular theory-based method, PMP formulates the optimal control problem of HEVs
as a two-point boundary value problem of nonlinear differential equations. In this method, the whole
driving cycle still needs to be known in advance but the computation load is much less than DP [30].
A study on the comparison between PMP and DP demonstrated that the optimal results generated
by PMP are very close to DP [31], so PMP can also be a benchmark. Furthermore, Kim, Cha, and
Peng had proved in 2011 that under the assumption that the battery SOC varies within a small range,
the Lagrange multiplier λ, which is also called as a co-state, is a constant [32]. On the other hand,
λ can be interpreted as an equivalent factor to equate the electrical usage of a battery to virtual fuel
consumption. When λ is a constant, the dynamic optimization problem is converted into a static
one, and the equivalent consumption minimization strategy (ECMS) is developed [33,34]. However,
λ is still very sensitive to driving cycles. Much work has been reported to solve the above problem,
such as developing a function to estimate equivalent factors through observing a number of optimal
results calculated from DP and PMP [35], designing a driving cycle recognizer using a neural
adaptive network [36], or adding an online algorithm to ECMS framework to periodically refresh
equivalent factors combined with the past and predicted vehicle speed and GPS data [37]. However,
if these modified theory-based methods are applied to real vehicles, they are sub-optimal, complex,
and time-consuming.

In summary, the rule-based strategies are suitable for real-time applications but with limited
fuel economy while the optimal theory-based strategies have the real-time problem caused by two
main reasons. One is that the future driving cycle (or vehicle speed commands) should be known
prior to deciding the control parameters (for example, the co-state of PMP). Another is that their
calculation is relatively large. In this paper, we apply linear quadratic optimal control theory to
solve the power management problem of HEVs for the first time, overcoming the shortcomings of
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existing theory-based strategies with little loss in fuel economy. The proposed power management
strategy is termed as the quadratic performance index strategy (QPIS), whose engine power and
motor power are simple linear functions of current vehicle velocity and battery residual energy as
well as their desired values, and independent of future driving conditions. The fuel economy of QPIS
is significantly improved from two aspects: one is to average and smooth the engine and motor power
to indirectly reduce fuel consumption through a designed quadratic performance index; another is to
avoid the inefficient engine operation by switching control modes based on requested driving power.
The simulation results over various driving cycles show that with the same weight coefficients of
quadratic performance index, the QPIS has excellent control performance on vehicle drivability, SOC
sustainability, especially the fuel consumptions of QPIS are very close to that of PMP.

The remainder of this paper is organized as follows. Section 2 introduces a nonlinear vehicle
model as the controlled plant and linearizes this nonlinear model for deriving QPIS. The main
innovation of this paper is presented in Section 3, including constructing a quadratic performance
index combing with rules and deriving the control law. In Section 4, comparative simulations in
Advanced Vehicle Simulator (ADVISOR) over different driving cycles, road slopes, and vehicle total
masses are performed and the results confirm the good performance of QPIS. Finally, conclusions are
summarized in Section 5.

2. Vehicle Model

In general, the electromechanical coupling systems of HEVs are classified into three categories:
torque coupling, speed coupling, and power coupling systems. The QPIS proposed in this paper
is suitable for power-coupling HEVs, whose configurations are depicted in Figure 1, satisfying the
assumptions as follows.

,ice iceT 

,ess essT 
essP

iceP
Engine

Motor

Battery

CVT Final drive

Battery

Sun gear

Planerary carrier

Ring gear

GeneratorEngine Motor

,ice iceT  ,gen genT  ,mot motT 

essP

iceP

(a) (b)

Clutch

Figure 1. Schematic diagrams of HEVs. (a) HEV equipt with a CVT; (b) HEV equipt with a planetary
gear mechanism.

(a) A continuously-variable transmission (CVT) adopted in Figure 1a or a planetary gear
mechanism adopted in Figure 1b (such as the Toyota Prius and Ford Escape Hybrid) makes it possible
for the engine to always operate on an optimal operating line as the bold solid one plotted in Figure 2.
Every engine operating point of optimal operating line is confined to a specific output torque and
speed and has the minimum fuel consumption [32]. In other words, for a given engine power Pice,
we can determine an optimal engine operating point

“

T*
ice,ω*

ice
‰

based on this optimal operating line.
Thus control variables of energy management for HEVs are reduced from the torque and speed to
only the power.

(b) Through reasonably choosing battery capacity, the battery SOC mainly varies in a narrow
region, for example, 0.6–0.8, so the charge-discharge characteristics of battery are almost invariable.
In other words, the open-circuit voltage and equivalent internal resistance of battery can be regarded
as constants [32].
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(c) The motor driving system has sufficient capability of short-time overload (overtorque or
overpower), adequate field-weaking range, and wide high-efficiency area. The motor efficiency is
not sensitive to engine operating points.

(d) Because the dynamic response time of engine or motor is much shorter than that of vehicle
accelerating or decelerating and battery charging or discharging, the dynamic process of engine and
motor can be neglected and only static efficiency models need to be considered [22].

In this study, a pedal position is interpreted as a velocity demand v˚. The proposed algorithm
can calculate the engine power P*

ice and motor power P*
ess based on current velocity, desired velocity

v˚, current SOC, and desired SOC. For the vehicle in Figure 1a, the optimal operation point
“

T*
ice,ω*

ice
‰

can be determined by P*
ice, then we can jointly regulate the engine throttle and transmission ratio of

CVT to make the engine run on the optimal operating line and satisfy T*
ice ˆω

*
ice “ P*

ice. Meanwhile,
the motor speed ω*

ess is determined by the CVT ratio and P*
ess “ T*

ess ˆω
*
ess can be satisfied by

regulating the motor torque T*
ess. For the vehicle in Figure 1b, the ring gear is connected to the final

drive, so current vehicle velocity dictates the speed of the motor and ring gear. By jointly regulating
the generator speed and engine throttle, the engine can run on the optimal operating line and satisfy
Pice “ P*

ice. At the same time, we can regulate the motor torque to ensure the sum of the motor
and generator power is equal to P*

ess. In the following, we take the hybrid system in Figure 1a as an
example to derive the QPIS. The main parameters of the vehicle originated from ADVISOR are listed
in Table 1.

Table 1. Vehicle parameters.

Vehicle unit Parameter

Engine FC_SI41emis
Displacement: 1.0 L

Maximum power: 41 kW @ 5700 rpm
Maximum torque: 81 Nm @ 3477 rpm

Battery ESS_NIMH Capacity: 6 Ah
Voltage: 308 V

Motor MC_PRIUS_JPN Maximum power: 31 kW

Transmission efficiency 0.71–0.93

Rotating mass coefficient 1.1

Frontal area 2.0 m2

Aerodynamic drag coefficient 0.335

Rolling resistance coefficient 0.009

Vehicle total mass 1287 kg
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2.1. Nonlinear HEV Model for Simulations

The MAP of Engine FC_SI41emis and its optimal operating line are shown in Figure 2. The
corresponding optimal fuel consumption line is plotted in Figure 3, which shows the relation between
Pice and the fuel consumption rate

.
m. The fuel consumption of control algorithms in simulations is

the integral of
.

m over the whole driving cycle.
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where iceP  is the engine power and essP  is the motor power. 

Multiplying Equation (1) by v , we will get the vehicle dynamic model: 

 
2

3
ice ess

1 d 1
cos sin

2 d 2
p

r D f t

v
m mgf v mgv C A v P P

t
         (3)

The energy storage system is a 6Ah Ni-MH battery. The battery power batP  satisfies: 

   2
bat4d SOC

d 2

V V V RPE

t R

 
   (4)

where E  is the total energy of battery; SOCE   is the residual energy of battery; V and R  are the 

open-circuit voltage and equivalent internal resistance, respectively [32]. 

Figure 3. Optimal fuel consumption line.

If the vehicle is running at the velocity v, the driving force F can be calculated by:

δm
dv
dt
`mg frcosθ`mgsinθ`

1
2
ρCD A f v2 “ Fηp

t (1)

where δ is the rotating mass coefficient; m is the vehicle total mass, including the passengers and
cargo; g is the gravitational acceleration constant; fr is the rolling resistance coefficient; θ is the road
slope; ρ is the air density; CD is the aerodynamic drag coefficient; A f is the vehicle frontal area, and
ηt is the transmission efficiency, which is the function of vehicle velocity, load torque and CVT ratio,

p “

#

1, Preq ą 0
´1, Preq ď 0

and Preq is the requested power, which satisfies:

Preq “ Pice ` Pess (2)

where Pice is the engine power and Pess is the motor power.
Multiplying Equation (1) by v, we will get the vehicle dynamic model:

1
2
δm

dv2

dt
`mg frvcosθ`mgvsinθ`

1
2
ρCD A f v3 “ pPice ` Pessqη

p
t (3)

The energy storage system is a 6Ah Ni-MH battery. The battery power Pbat satisfies:

d pE ¨ SOCq
dt

“ ´

V
´

V ´
a

V2 ´ 4RPbat

¯

2R
(4)

where E is the total energy of battery; E ¨ SOC is the residual energy of battery; V and R are the
open-circuit voltage and equivalent internal resistance, respectively [32].
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As assumptions stated above, a permanent magnet motor is selected, whose efficiency map is
shown in Figure 4. The motor power Pess can be expressed as:

Pbat “ Pess{η
k
m (5)

where ηm is the motor efficiency, which is the function of motor torque and motor speed,

k “

#

1, Pbat ą 0

´1, Pbat ď 0
(Pbat ą 0 indicates that the battery is discharging and Pbat ď 0 indicates that

the battery is charging).
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2.2. Linear HEV Model for QPIS

To utilize linear quadratic optimal control theory to derive control functions of QPIS, we should
establish a linear model of HEV. The dot line shown in Figure 5 depicts the relationship between v
and the power to overcome resistance Pr “ mg frvcosθ` mgvsinθ` 1

2ρCD A f v3, when θ “ 0. The
correlation between v and Pr should be fitted as a parabola, f v2 (the solid line, which is available in
the involved power range), to obtain the linear model, so we can replace Pr with f v2 ( f “ 15.57).
In addition, ηt should be replaced by average efficiency, ηt “ 0.862. Then the vehicle dynamic model
can be expressed as Equation (6) with x1 “ v2 as the state variable:

1
2
δm

dv2

dt
` f v2 “ pPice ` Pessqη

p
t (6)
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For the battery, when the SOC changes within the interval [0.6,0.8] and Pbat varies in the interval

[´15 kW,0], the battery charging efficiency calculated by
´

Pbat{
´

V
´

V ´
a

V2 ´ 4RPbat

¯

{2R
¯¯´ 1

ranges in r0.8988, 1s. When the SOC changes within the interval [0.6,0.8] and Pbat varies in the interval
[0,15 kW], the battery discharging efficiency calculated by Pbat{

´

V
´

V ´
a

V2 ´ 4RPbat

¯

{2R
¯

ranges

in [1,0.7664]. Then the average efficiency of battery can be computed, i.e., ηk
bat “

#

0.8976, Pbat ą 0
1

0.9459 , Pbat ď 0
.

For the motor, the efficiency map is symmetric about the horizontal axis as shown in Figure 4, based
on which the average efficiency of motor is ηm “ 0.8.

Thus, the linear relation between the state variable x2 “ E ¨ SOC and Pess is:

d pE ¨ SOCq
dt

“ ´
Pess

ηk
batη

k
m

(7)

In the above linearization process, the linear vehicle dynamic model (6) is obtained when
θ “ 0. However, in fact, vehicles usually run on slopes, which degrades the vehicle drivability
and SOC sustainability. To overcome the influences caused by road slopes, two integral actions,
x3 “

r ´

pv˚q2 ´ v2
¯

dt and x4 “
r

E ¨ pSOC˚ ´ SOCqdt, are added to the HEV model as two extended
state variables. As known from linear quadratic optimal control theory, the control law is the feedback
of system states, so the control variables of QPIS contain not only the feedback of current states (v and
E ¨SOC) but also the integrals of the deviations of actual states from commands (v˚ and E ¨SOC*). Such
integral actions can eliminate the influences of various driving conditions on the control performance
of QPIS, especially overcome the influences of road slopes effectively.

Selecting x “

»

—

—

—

–

x1

x2

x3

x4

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

v2

E ¨ SOC
r ´

pv˚q2 ´ v2
¯

dt
r

E ¨ pSOC˚ ´ SOCqdt

fi

ffi

ffi

ffi

fl

as state variables and u “

«

u1

u2

ff

“

«

Pice

Pess

ff

as control variables, and combining Equations (6) and (7), we can establish the linear HEV

system as:
.
x “ Ax` Buu` Brz˚ (8)

where A “

»

—

—

—

–

´
2 f
δm 0 0 0

0 0 0 0
´1 0 0 0
0 ´1 0 0

fi

ffi

ffi

ffi

fl

, Bu “

»

—

—

—

—

–

2ηp
t

δm
2ηp

t
δm

0 ´ 1
ηk

batη
k
m

0 0
0 0

fi

ffi

ffi

ffi

ffi

fl

, and Br “

»

—

—

—

–

0 0
0 0
1 0
0 1

fi

ffi

ffi

ffi

fl

are the coefficient

matrixes of the system; z˚ “

«

x˚1
x˚2

ff

“

«

pv˚q2

E ¨ SOC˚

ff

are the commands; v˚ is the desired vehicle

velocity decided by the pedal position, and SOC˚ is the desired battery SOC (a constant that the
SOC changes around to efficiently use and protect the battery). It should be noted that the aim of
linearizing the original nonlinear vehicle model is just to utilize linear quadratic optimal control
theory to obtain the QPIS. The HEV model to be controlled by the strategies involved in the
simulations is the same nonlinear one introduced in Section 2.1.

3. Power Management Strategy Based on Quadratic Performance Index

To compare with the proposed strategy in this paper, PMP is briefly introduced at first. In fact,
applying PMP to solve the minimum fuel consumption problem of HEVs is to search for the motor
power Pess ptq to minimize the fuel consumption under a specific driving cycle. Since the driving cycle
is known previously, the requested power Preq ptq can be calculated based on vehicle parameters when
the vehicle is running along the vehicle velocity line of driving cycle. In this way, for the given Preq ptq,
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which satisfies the Equation (2), the above minimum fuel consumption control problem is to calculate
Pess ptq to minimize the integral performance index as:

J “
w t f

t0

.
m pPice ptqqdt (9)

where
.

m pPiceq is the fuel consumption rate of the engine when its output power is Pice. The
relationship between

.
m pPiceq and Pice is plotted in Figure 3 based on the assumption (a) in Section 2.

Meanwhile, Pess ptq satisfies Equations (4) and (5), the terminal constraint condition:

SOC
´

t f

¯

“ SOC pt0q (10)

and the maximum and minimum constraints of Pice and Pess.
According to PMP, the necessary condition that the solution of above optimal control problem

should satisfy is to minimize the Hamiltonian:

H “
.

m
`

Preq ´ Pess
˘

+λ ¨
d pE ¨ SOCq

dt
“

.
m
`

Preq ´ Pess
˘

´ λ ¨
V
´

V ´
a

V2 ´ 4RPess{ηk
m

¯

2R
(11)

for each sampling instant [32]. In Equation (11), λ ă 0 is called co-state and satisfies the
co-state equation

.
λ “ ´

BH
B pE ¨ SOCq

(12)

Since
.

m and
V
´

V´
?

V2´4RPess{η
k
m

¯

2R are not the functions of SOC, (i.e., the assumption (b) in
Section 2), λ is a constant [32]. Known from the Introduction, λ can be interpreted as an equivalent
factor to equate the electrical usage of a battery to the virtual fuel consumption. Therefore, an
empirical value of equivalent factor can be chosen as the initial co-state. For example, 30 kWh of
battery energy corresponds to 10 L gasoline; then we can calculate the empirical value that equals
´6.935 ˆ 10´5 as the initial co-state. For a specific driving cycle and a set co-state, Pess ptq can be
calculated by minimizing Equation (11) in its feasible range for each sampling instant t. If SOC

´

t f

¯

of the battery controlled by Pess ptq satisfies
ˇ

ˇ

ˇ
SOC

´

t f

¯

´ SOC pt0q
ˇ

ˇ

ˇ
ď 0.05, Pess ptq is the result that we

desire in this paper. If SOC
´

t f

¯

´ SOC pt0q ą 0.05 (or SOC
´

t f

¯

´ SOC pt0q ă ´0.05), a new co-state,
whose absolute value is smaller (or greater) than the absolute value of empirical co-state, is chosen
to repeat the above calculation process. Obviously, to achieve optimal fuel economy, λ are different
for different driving cycles. Moreover,

.
m and dpE¨SOCq

dt in Equation (11) are both nonlinear; thus, it
is a relatively large calculation to minimize the Equation (11) in the feasible range of Pess ptq for each
sampling instant t. In the following, an EMS is obtained based on the quadratic performance index
to overcome the disadvantages of PMP with little loss in fuel economy.

3.1. Power-Split Strategy Based on Quadratic Performance Index

For the system (8), we try to find a linear state feedback control u “ Lx to ensure the system

stability. If z˚ “

«

x˚1
x˚2

ff

“

«

pv˚q2

E ¨ SOC˚

ff

is set to be constant, after the dynamic regulation process

is completed, the vehicle velocity is
?

x1 “ v˚, the battery residual energy is x2 “ E ¨ SOC˚, the
engine power is u1 “ f pv˚q2 {ηp

t , the motor power is u2 “ 0, and the corresponding outputs of the
integral regulator, x3 and x4, are constant and satisfies uss “ Lxss. We define these steady states and
control inputs as xss and uss, the deviation of actual states from steady ones as rx “ x´ xss, and the
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deviation of actual control inputs from steady ones as ru “ u´ uss. Since t Ñ8 , rx Ñ 0 , and ru Ñ 0 ,
the performance index about rx and ru:

rJ “
1
2

w t f

t0

”

rxTQrx` ruTRru
ı

dt (13)

should be finite, and the solution to minimize the above quadratic performance index can be obtained
based on the regulator theory of optimal control theory. The control law has the form of state
feedback as:

ru “ L ptq rx “ ´R´1BT
u K ptq rx (14)

where K ptq “ K ptqT is the solution of differential Riccati equation; and L ptq “ ´R´1BT
u K ptq is the

state feedback matrix. Known from the quadratic optimal control theory, if t f is large enough, K ptq

convergences to its terminal value only when t approaches t f , and in the most time of
”

t0, t f

ı

, K ptq is
constant and satisfies the algebraic Riccati equation:

KA` ATK´ KBuR´1BT
u K`Q “ 0 (15)

In this way, ru “ Lrx and uss “ Lxss, the control variable to minimize rJ is a form of state feedback:

u “ ru` uss “ Lrx` Lxss “ Lx (16)

Additionally, the system stability can be ensured because A ` BuL is a stable matrix based on
linear quadratic optimal control theory.

For the system (8), the changes of Bu in value caused by the energy flow direction (indicated
by p and k) lead to the variation of K. For the simplification of this algorithm, Bu is rewritten as the
product of two matrices:

Bu “

»

—

—

—

—

–

2ηp
t

δm
2ηp

t
δm

0 ´ 1
ηk

batη
k
m

0 0
0 0

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

–

2
δm

2
δm

0 ´1
0 0
0 0

fi

ffi

ffi

ffi

fl

»

–

η
p
t η

p
t ´

1
ηk

batη
k
m

0 1
ηk

batη
k
m

fi

fl (17)

Setting B1u “

»

—

—

—

–

2
δm

2
δm

0 ´1
0 0
0 0

fi

ffi

ffi

ffi

fl

, η “

»

–

η
p
t η

p
t ´

1
ηk

batη
k
m

0 1
ηk

batη
k
m

fi

fl and u1 “ ηu is the engine and motor

power excluding the loss power of transmission, motor, and battery, the system (8) can be rewritten as:

.
x “ Ax` B1uu1 ` Brz˚ (18)

where B1u is constant so that the variation of K caused by Bu can be avoided.
Accordingly, the performance index is rewritten as:

rJ “
1
2

ż t f

t0

”

rxTQrx` ru1TR1ru1
ı

dt (19)

where Q “

»

—

—

—

–

γ1 0 0 0
0 γ2 0 0
0 0 γ3 0
0 0 0 γ4

fi

ffi

ffi

ffi

fl

ě 0 and R1 “

«

γ5 0
0 γ6

ff

ą 0 are the matrixes of weight

coefficients. We can quicken the regulating process of state and control variables by increasing the
corresponding weight coefficient of the deviation term in rJ. The calibration of weight coefficients
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needs to ensure vehicle drivability, prevent large fluctuations of SOC, cut peaks and fill valleys of
engine power, and smooth the engine power to indirectly reduce fuel consumption.

For the optimal control problem of the system (18) and performance index (19), the solution has
the form of Equation (16):

u1 “ L1x (20)

where L1 “ ´R1´1B1TuK1 is the matrix of state feedback and K1 satisfies:

K1A` ATK1 ´ K1B1uR1´1B1TuK1 `Q “ 0 (21)

Then, the engine power and motor power can be calculated by:

u “ η´1u1 “ ´η´1R1´1B1TuK1x (22)

where η “

»

–

η
p
t η

p
t ´

1
ηk

batη
k
m

0 1
ηk

batη
k
m

fi

fl changes with p and k, based on Preq and Pbat, respectively, i.e.,

p “

#

1, Preq ą 0

´1, Preq ď 0
and k “

#

1, Pbat ą 0

´1, Pbat ď 0
.

3.2. Two Control Modes

To further improve the fuel economy, two rules are designed to switch control modes (electric
mode and hybrid mode) based on Preq for avoiding inefficient engine operation. The selection of
a switch point between the two control modes is combined with engine characteristics, vehicle
parameters, and the principle of benefiting fuel economy. In this paper, the switch point is Preq “ P0,
which is decided by comparing the energy conversion efficiency of a vehicle propelled separately by
an engine and a motor. That is, when Preq “ P0, the efficiency of vehicle propelled solely by an engine
is equal to the product of the efficiency of a vehicle propelled solely by a motor and the efficiency
of the battery charged by an engine [38]. The two control modes are realized by choosing different
weight coefficients of the quadratic performance index as follows:

(1) If Preq ď P0: the battery should provide the total driving power to avoid inefficient engine
operation or recover the braking energy that will be stored in the battery. Thus, we should set γ5 Ñ8

to make Pice approach to zero, and γ2 “ 0, γ4 “ 0 to temporarily not consider the constraint of SOC
unless SOC reaches the maximum or minimum value.

(2) If Preq ą P0: the engine and battery should provide requested power together. The battery
shares the driving energy to restrain fluctuations of Pice. Now the constraint of SOC should be
necessarily involved in the performance index for battery energy sustainability.

In general, the weight coefficients of two control modes can be calibrated by a test, where the
desired SOC is 0.7 and the desired vehicle velocity line is shown in Figure 6. In the calibration,
to tune the weight coefficients of Q is similar to design a proportional integral (PI) controller: γ1

and γ2 correspond to proportional gains, γ3 and γ4 correspond to integral gains. In other words,
increasing γ1 and γ3 results in faster response and smaller tracking errors of v, but paying the price
of larger fluctuations of SOC and more power provided by the engine and motor that may exceed
their feasible bounds. Similarly, increasing γ2 and γ4 quickens the response of SOC and maintains
SOC nearer to 0.7 with a little influence on trajectories of v, Pice and Pess, but weakens the buffering
effect of the battery. Additionally, the fluctuations ranges of Pice (or Pess) can be restricted within the
feasible bounds by appropriately increasing γ5 (or γ6) with a slight increment of tracking errors of v.
According to the above changing laws about the control effect over weight coefficients, we can tune
the weight coefficients of two control modes by compromising between the tracking errors of states
and fluctuation ranges of control variables until obtaining a relatively better result of vehicle velocity
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error, final SOC, and fuel economy. In this paper, the calibrated weight coefficients and corresponding
K1 and L1 are given in Table 2. The test results with above weight coefficients are shown in Figure 6.

Table 2. Weight coefficients and state feedback matrixes of two rules.

Operational
condition Weight coefficients K

1

L
1

Preq ď P0

Q1 “

»

—

—

–

109 0 0 0
0 0 0 0
0 0 4ˆ 1010 0
0 0 0 0

fi

ffi

ffi

fl

R11 “
„

1020 0
0 40



K11 “

»

—

—

–

2.36ˆ 108 0 ´8.95ˆ 108 0
0 0 0 0

´8.95ˆ 108 0 1.06ˆ 1010 0
0 0 0 0

fi

ffi

ffi

fl

L11 “
„

0 0 0 0
´8337.19 0 3.16ˆ 104 0



Preq ą P0

Q2 “

»

—

—

–

109 0 0 0
0 10´8 0 0
0 0 4ˆ 1010 0
0 0 0 5ˆ 10´7

fi

ffi

ffi

fl

R12 “
„

80 0
0 80



K12 “

»

—

—

–

2.36ˆ 108 598.77 ´8.95ˆ 108 ´3.17
598.77 1.69 ´16.32 ´0.0089

´8.95ˆ 108 ´16.32 1.06ˆ 1010 0.10
´3.17 ´0.0089 0.10 9ˆ 10´5

fi

ffi

ffi

fl

L12 “
„

´4172.34 ´0.01 1.58ˆ 104 5.59ˆ 10´5

´4164.85 0.01 1.58ˆ 104 ´5.59ˆ 10´5



Actually, the more the detailed operational conditions are divided, the better the control effect of
QPIS is obtained, but much more complex algorithms are needed, which will weaken the adaptability
of QPIS. Eventually, the concrete form of QPIS is:

#

u1 “ ´η
´1R1´1

1 B1TuK11x, Preq ď P0

u2 “ ´η
´1R1´1

2 B1TuK12x, Preq ą P0
(23)

The control system of QPIS is shown in Figure 7. It can be observed that the control variables
of QPIS are simple linear functions of current system states x and commands z˚ without future
driving conditions. This interesting feature makes QPIS simply structured and particularly suitable
for real-time optimization control. Furthermore, u1, and u2 are switched based on Preq, which is the
sum of Pice and Pess calculated by QPIS. To avoid frequent switches of control functions at switch
points, we necessarily add a hysteresis loop when Preq “ P0, of which the switch on and off points are
Pon “ 8 kW and Po f f “ 2 kW, respectively, and the engine power and motor power of u1 and u2 are
limited in their respective feasible ranges.Energies 2015, 8 14 
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4. Simulation Results and Discussion

To verify the control performance of proposed QPIS, simulations under different driving cycles,
road slopes, and vehicle total masses are conducted in ADVISOR, where the units are redesigned to
make ADVISOR, which is a simulator combined with forward and backward approaches, suitable
for forward simulation.

4.1. Various Driving Cycle

During the simulations, the weight coefficients of QPIS are the same ones given in Table 2. The
initial and desired SOC are set to 0.7. Figure 8 depicts the trajectories of vehicle velocity, battery
SOC, engine power and motor power obtained from QPIS under the NEDC cycle. It is found that
the desired velocity trajectory is properly tracked with a small average error ve (0.064 m/s). The
SOC trajectory stays near 0.7 with the deviation within 0.06. When Preq is increasing, but less than
Pon, the control function is u1. If Preq continues to increase and becomes greater than Pon, the control
function is switched to u2. In reverse, if Preq decreases, the points to switch control functions are Poff.
Throughout the driving cycle, the average value of Pess is about zero and the battery as an energy
buffer effectively recycles the braking energy and restrains large fluctuations of Pice.

To confirm that QPIS is independent of driving cycles, more simulations are performed under
five other driving cycles. The simulation results of QPIS over six driving cycles, compared with the
conventional vehicles, the default energy management strategy (DEMS) in ADVISOR and PMP are
summarized in Table 3, where FCcv is the fuel consumption of conventional cars. It is observed that
SOC

´

t f

¯

of DEMS and QPIS are unequal to SOC pt0q. To compare the DEMS and QPIS with PMP, the

deviation of SOC
´

t f

¯

from SOC pt0q is converted to virtual fuel consumption by an equivalent factor
s, which can be calculated by:

s “
E

D f Q fηeηmηcd
(24)

where E is the total energy of battery; D f is the fuel density; Q f is the low heating value; ηe is the
average efficiency of engine used to charge the battery; ηm is the average efficiency of motor; and
ηcd is the average of the battery charging and discharging efficiency. The results of fuel consumption
(FC) in Table 3 contain the converted fuel consumption. The DEMS, which is the electric assistant
control strategy based on predefined rules in ADVISOR, determines the control mode (including
motor regenerating, motor only, engine only, and hybrid mode) based on predefined threshold values,
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as well as actual states and driving commands. It is suitable for real-time control, but with limited
fuel economy.Energies 2015, 8 16 
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Figure 8. Simulation results of QPIS over NEDC cycle in ADVISOR 
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Table 3. Simulation results of DEMS, PMP, and QPIS over various driving cycles in ADVISOR.

Driving cycle FCcv
(L/100 km)

DEMS PMP QPIS

FC
(L/100 km) SOC (t f ) FC

(L/100 km) SOC (t f ) λ(g/J) FC
(L/100 km) SOC (t f )

CSHVR 6.9956 5.1110 0.6421 3.4589 0.6989 ´6.5929ˆ 10´5 3.6588 0.7017
UDDS 6.2529 5.2505 0.6423 3.8370 0.6935 ´6.4840ˆ 10´5 3.8616 0.7184

WVUINTER 4.9847 4.5921 0.6633 3.9466 0.6844 ´7.0056ˆ 10´5 4.1855 0.6905
FTP 6.1682 5.1168 0.6601 3.8318 0.6998 ´6.4466ˆ 10´5 3.9549 0.6853

NEDC 6.3946 5.3694 0.6667 4.0313 0.6867 ´6.8726ˆ 10´5 4.1185 0.6975
INDIA_URBAN 6.5888 5.2862 0.6401 3.4747 0.6950 ´6.7667ˆ 10´5 3.5842 0.7220

It is amazingly found in Table 3 that even if driving cycles are changed, the control effect of QPIS
with the same group of weight coefficients remains as excellent as the results under NEDC. Compared
to conventional cars, the three EMSes significantly reduce the fuel consumption. Especially, the
QPIS and PMP achieve higher fuel economy than DEMS. More importantly, the fuel consumption
improvement of QPIS over six driving cycles is quite close (just slightly lower, i.e., less than 4.8% at
worst and 0.4% at best) to that of PMP. It is demonstrated that QPIS, which inherits the advantages of
real-time performance of DEMS and the improvement in fuel economy of PMP, can be applied to the
power assignment for HEVs even if the future driving cycle is unknown.

4.2. Various Road Slopes and Vehicle Total Masses

The influences of θ and m on the control effect of QPIS are involved in this section because
vehicles usually run on slopes and the vehicle total mass may change in practice. In ADVISOR, θ can
be easily added to a driving cycle as a function of distance and m can be easily changed by setting
the vehicle parameter. Tables 4 and 5 show the results of DEMS, QPIS, and PMP when the HEV runs
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on UDDS cycle with different θ and m, respectively. It is found that, as θ or m increases, ve of QPIS
tends to slightly increase but remains small or stays unchanged (the average velocity error is about
0.103-0.104 m/s or 0.103-0.120 m/s), and the fuel consumption rises gradually. The battery SOC is
maintained around 0.7 with a little difference of the final value less than 0.06. The fuel economy of
QPIS and PMP are still close and much higher than that of DEMS. It is indicated that the QPIS have
good adaptability to road slopes and vehicle total masses.

Table 4. Simulation results of PMP and QPIS under UDDS cycle added different road slopes with the
driving distance from 0 to 500 m.

tanθ (%) FCcv
(L/100 km)

DEMS PMP QPIS

FC
(L/100 km)

SOC (t f ) FC
(L/100 km)

SOC (t f ) λ (g/J) FC
(L/100 km)

SOC (t f )

0 6.2529 5.2505 0.6423 3.8370 0.6935 ´6.4840 ˆ 10´5 3.8616 0.7184
5 6.4773 5.4736 0.6458 4.0754 0.7058 ´6.5332 ˆ 10´5 4.1784 0.7176

10 6.8242 5.7475 0.6473 4.3187 0.7096 ´6.5816 ˆ 10´5 4.4947 0.7108

Table 5. Simulation results of PMP and QPIS under UDDS cycle with different vehicle total mass.

m (kg) FCcv
(L/100 km)

DEMS PMP QPIS

FC
(L/100 km)

SOC (t f ) FC
(L/100 km)

SOC (t f ) λ (g/J) FC
(L/100 km)

SOC (t f )

1287 6.2529 5.2505 0.6423 3.8370 0.6935 ´6.4840 ˆ 10´5 3.8616 0.7184
1487 6.7623 5.7164 0.6485 4.1197 0.7006 ´6.3367 ˆ 10´5 4.1955 0.7049
1687 7.3431 6.1806 0.6528 4.4033 0.7151 ´6.2239 ˆ 10´5 4.5818 0.7061

5. Conclusions

Hybrid electric vehicles can effectively reduce fuel consumption because they adopt an engine
and motor to propel the vehicle together and cancel the engine idling. However, the fuel-saving
performance is directly related to EMSes. In theory, the optimal control must look ahead into
the future and back into the past. Therefore, the theory-based strategy of HEVs can only achieve
sub-optimal control under the condition that the future driving cycle is unknown. As stated in
the Introduction, many efforts have been made to solve this problem, such as recognizing driving
cycles, predicting driving conditions, and collecting information of future driving conditions by a
transportation information system. However, such methods have complex algorithms or a high cost.
In this paper, we consider the energy management problem of HEVs from a new perspective and
propose a power-split strategy based on a quadratic performance index by approximations in theory.
The proposed strategy has a negligible amount of calculation and does not depend on future driving
cycles; especially, its fuel economy is very close to the PMP-based optimal control. Simulation results
over six driving cycles in ADVISOR validate the above advantages of the proposed strategy, which is
worth deeper research.
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7. Cipek, M.; Pavković, D.; Petrić, J. A control-oriented simulation model of a power-split hybrid electric
vehicle. Appl. Energy 2013, 101, 121–133. [CrossRef]

8. Liu, S.H.; Du, C.Q.; Yan, F.W.; Wan, J.; Li, Z.; Luo, Y. A rule-based energy management strategy for a New
BSG hybrid electric vehicle. In Proceedings of the Global Congress on Intelligent Systems, Wuhan, China,
6–8 November 2012.

9. Schouten, N.J.; Salman, M.A.; Kheir, N.A. Fuzzy logic control for parallel hybrid vehicles. IEEE Trans.
Control Syst. Technol. 2002, 10, 460–468. [CrossRef]

10. Duan, Y.B.; Zhang, W.G.; Huang, Z. Simulation of fuzzy logic control strategy for HEV. Chin. Intern.
Combust. Engine Eng. 2003, 24, 66–69.

11. Zhao, G.Y.; Du, Z.Y.; Du, Z.Y.; Chen, W.Q. Energy management strategy for series hybrid electric vehicle.
J. Northeast. Univ. Natl. Sci. 2013, 34, 583–587.

12. Wu, J.; Zhang, C.H.; Cui, N.X. Fuzzy energy management strategy of parallel hybrid electric vehicle based
on particle swarm optimization. Control Decis. 2008, 23, 46–50.

13. Zhou, M.L.; Lu, D.K.; Li, W.M.; Xu, H.F. Optimized fuzzy logic control strategy for parallel hybrid electric
vehicle based on genetic algorithm. Appl. Mech. Mater. 2013, 274, 345–349. [CrossRef]

14. Murphey, Y.L.; Chen, Z.H.; Kiliaris, L.; Masrur, M.A. Intelligent power management in a vehicular system
with multiple power sources. J. Power Sources 2011, 196, 835–846. [CrossRef]

15. Wu, J.; Zhang, C.H.; Cui, N.X. Fuzzy energy management strategy for a hybrid electric vehicle based on
driving cycle recognition. Int. J. Automot. Technol. 2012, 13, 1159–1167. [CrossRef]

16. Tian, Y.; Zhang, X.; Zhang, L. Fuzzy control strategy for hybrid electric vehicle based on neural network
identification of driving conditions. Control Theory Appl. 2011, 28, 363–369.

17. Wang, R.; Lukic, S.M. Dynamic programming technique in hybrid electric vehicle optimization.
In Proceedings of the IEEE International Electric Vehicle Conference, Greenville, SC, USA, 4–8 March 2012.

18. Perez, L.V.; Bossio, G.R.; Moitre, D.; Garcia, G.O. Optimization of power management in an hybrid electric
vehicle using dynamic programming. Math. Comput. Simul. 2006, 73, 244–254. [CrossRef]

19. Patil, R.M.; Filipi, Z.; Fathy, H.K. Comparison of supervisory control strategies for series plug-in hybrid
electric vehicle powertrains through dynamic programming. IEEE Trans. Control Syst. Technol. 2014, 22,
502–509. [CrossRef]

20. Zou, Y.; Sun, F.C.; Zhang, C.N.; Li, J.Q. Optimal energy management strategy for hybrid electric tracked
vehicles. Int. J. Veh. Des. 2012, 58, 307–324. [CrossRef]

21. Pisu, P.; Rizzoni, G. A comparative study of supervisory control strategies for hybrid electric vehicles.
IEEE Trans. Control Syst. Technol. 2007, 15, 506–518. [CrossRef]

22. Kum, D.; Peng, H.; Bucknor, N.K. Supervisory control of parallel hybrid electric vehicles for fuel and
emission reduction. J. Dyn. Syst. Meas. Control 2011, 133, 061010. [CrossRef]

23. Bianchi, D.; Rolando, L.; Serrao, L.; Onori, S.; Rizzoni, G.; Al-Khayat, N.; Hsieh, T.M.; Kang, P.J.
A rule-based strategy for a series/parallel hybrid electric vehicle: An approach based on dynamic
programming. In Proceedings of the Dynamic Systems and Control Conference, Cambridge, MA, USA,
12–15 September 2010.

24. Zou, Y.; Hou, S.J.; Li, D.G.; Wei, G.; Hu, X.S. Optimal energy control strategy design for a hybrid electric
vehicle. Discret. Dyn. Nat. Soc. 2013. [CrossRef]

25. Lin, C.C.; Peng, H.; Grizzle, J.W. A stochastic control strategy for hybrid electric vehicles. In Proceedings of
the American Control Conference, Boston, MA, USA, 30 June´2 July 2004.

26. Lin, X.Y.; Sun, D.Y.; Yin, Y.L.; Hao, Y.Z. The energy management strategy for a series-parallel hybrid electric
bus based on stochastic dynamic programming. Automot. Eng. 2012, 34, 830–835, 858.

12472

http://dx.doi.org/10.1016/j.rser.2013.08.097
http://dx.doi.org/10.1016/j.enconman.2010.09.028
http://dx.doi.org/10.1016/j.apenergy.2012.07.006
http://dx.doi.org/10.1109/87.998036
http://dx.doi.org/10.4028/www.scientific.net/AMM.274.345
http://dx.doi.org/10.1016/j.jpowsour.2010.07.052
http://dx.doi.org/10.1007/s12239-012-0119-z
http://dx.doi.org/10.1016/j.matcom.2006.06.016
http://dx.doi.org/10.1109/TCST.2013.2257778
http://dx.doi.org/10.1504/IJVD.2012.047390
http://dx.doi.org/10.1109/TCST.2007.894649
http://dx.doi.org/10.1115/1.4002708
http://dx.doi.org/10.1155/2013/132064


Energies 2015, 8, 12458–12473

27. Borhan, H.; Vahidi, A.; Phillips, A.M.; Kuang, M.L.; Kolmanovsky, I.V.; Cairano, S.D. MPC-based energy
management of a power-split hybrid electric vehicle. IEEE Trans. Control Syst. Technol. 2012, 20, 593–603.
[CrossRef]

28. Donateo, T.; Pacella, D.; Laforgia, D. A method for the prediction of future driving conditions and for the
energy management optimization of a hybrid electric vehicle. Int. J. Veh. Des. 2012, 58, 111–133. [CrossRef]

29. Van Keulen, T.; de Jager, B.; Serrarens, A.; Steinbuch, M. Optimal energy management in hybrid electric
trucks using route information. Oil Gas Sci. Technol. 2010, 65, 103–113. [CrossRef]

30. Kim, N.; Rousseau, A.; Lee, D. A jump condition of PMP-based control for PHEVs. J. Power Sources 2011,
196, 10380–10386. [CrossRef]

31. Zou, Y.; Liu, T.; Sun, F.; Peng, H. Comparative study of dynamic programming and Pontryagin’s minimum
principle on energy management for a parallel hybrid electric vehicle. Energies 2013, 6, 2305–2318.

32. Kim, N.; Cha, S.; Peng, H. Optimal control of hybrid electric vehicles based on Pontryagin’s minimum
principle. IEEE Trans. Control Syst. Technol. 2011, 19, 1279–1287.

33. Serrao, L.; Onori, S.; Rizzoni, G. ECMS as a realization of Pontryagin's minimum principle for HEV control.
In Proceedings of the American Control Conference, St. Louis, MO, USA, 10–12 June 2009.

34. Paganelli, G.; Delprat, S.; Guerra, T.M.; Rimaux, J.; Santin, J.J. Equivalent consumption minimization
strategy for parallel hybrid powertrains. In Proceedings of the IEEE Vehicular Technology Conference,
Birmingham, AL, USA, 6–9 May 2002.

35. Kim, N.; Cha, S.W.; Peng, H. Optimal equivalent fuel consumption for hybrid electric vehicles. IEEE Trans.
Control Syst. Technol. 2012, 20, 817–825.

36. Gurkaynak, Y.; Khaligh, A.; Emadi, A. Neural adaptive control strategy for hybrid electric vehicles with
parallel powertrain. In Proceedings of the IEEE Vehicle Power and Propulsion Conference, Lille, France,
1–3 September 2010.

37. Musardo, C.; Rizzoni, G.; Staccia, B. A-ECMS: An adaptive algorithm for hybrid electric vehicles energy
management. In Proceedings of the 44th IEEE Conference on Decision and Control, and the European
Control Conference, Seville, Spain, 12–15 December 2005.

38. Wu, J. Optimization of Energy Management Strategy for Parallel Hybrid Electric Vehicle. Ph.D. Thesis,
Department of Control Theory Control Engineering, Shandong University, Shandong, China, 2008.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open
access article distributed under the terms and conditions of the Creative Commons by
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

12473

http://dx.doi.org/10.1109/TCST.2011.2134852
http://dx.doi.org/10.1504/IJVD.2012.047385
http://dx.doi.org/10.2516/ogst/2009026
http://dx.doi.org/10.1016/j.jpowsour.2011.07.003

	Introduction 
	Vehicle Model 
	Nonlinear HEV Model for Simulations 
	Linear HEV Model for QPIS 

	Power Management Strategy Based on Quadratic Performance Index 
	Power-Split Strategy Based on Quadratic Performance Index 
	Two Control Modes 

	Simulation Results and Discussion 
	Various Driving Cycle 
	Various Road Slopes and Vehicle Total Masses 

	Conclusions 

