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Abstract: In this study, γ-Al2O3 particles were dispersed in p-type Bi0.4Sb1.6Te3 through mechanical
alloying to form γ-Al2O3/Bi0.4Sb1.6Te3 composite powders. The composite powders were consolidated
using vacuum hot pressing to produce nano- and microstructured composites. Thermoelectric (TE)
measurements indicated that adding an optimal amount of γ-Al2O3 nanoparticles improves the
TE performance of the fabricated composites. High TE performances with figure of merit (ZT)
values as high as 1.22 and 1.21 were achieved at 373 and 398 K for samples containing 1 and
3 wt % γ-Al2O3 nanoparticles, respectively. These ZT values are higher than those of monolithic
Bi0.4Sb1.6Te3 samples. The ZT values of the fabricated samples at 298–423 K are 1.0–1.22; these ZT
characteristics make γ-Al2O3/Bi0.4Sb1.6Te3 composites suitable for power generation applications
because no other material with a similarly high ZT value has been reported at this temperature
range. The achieved high ZT value may be attributable to the unique nano- and microstructures
in which γ-Al2O3 nanoparticles are dispersed among the grain boundary or in the matrix grain, as
revealed by high-resolution transmission electron microscopy. The dispersed γ-Al2O3 nanoparticles
thus increase phonon scattering sites and reduce thermal conductivity. The results indicated that the
nano- and microstructured γ-Al2O3/Bi0.4Sb1.6Te3 alloy can serve as a high-performance material for
application in TE devices.

Keywords: γ-Al2O3/Bi0.4Sb1.6Te3; thermoelectric material; mechanical alloying; nano/microstructure;
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1. Introduction

Thermoelectric (TE) materials directly convert thermal energy into electrical energy and vice versa
and are considered clean energy converters [1]. For practical applications, the conversion efficiency
of TE materials is often characterized according to a TE figure of merit, ZT, which is a dimensionless
parameter and is conventionally defined as [1]:

ZT “ pα2σ{κqT (1)
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where Z, α, σ, κ, and T are figure of merit, Seebeck coefficient, electrical conductivity, thermal
conductivity and T absolute temperature, respectively. A high ZT indicates high energy conversion
efficiency. Clearly, an efficient TE material with high ZT requires high α, high σ, and low κ. However,
satisfying these criteria in a single crystalline bulk material is difficult because these three parameters
are interrelated. An increase in α normally implies a decrease in σ (because of carrier density) and an
increase in σ implies an increase in the electronic contribution to κ (i.e., the Wiedemann-Franz law);
hence, increasing ZT in typical TE materials is extremely difficult. Therefore, materials with ZT higher
than that of conventional materials are necessary in industry, and TE conversion efficiency can and
must be enhanced by increasing or maintaining the Seebeck coefficient and electrical conductivity
and reducing thermal conductivity. However, material classes that contain effective TE properties
are rare [2–6].

Over the past 30 years, alloys based on Bi2Te3 compounds have been extensively studied
and optimized for their use as TE materials. Recently, numerous attempts have been made
to increase the ZT of Bi2Te3-based TE materials [7–14]. An effective method is to increase the
electrical conductivity and reduce the lattice thermal conductivity of TE materials by alloying,
doping, or introducing complex crystal structures. Through such approaches, several Bi2Te3-based
powders, such as CNTs/Bi0.4Sb1.6Te3, C60/(Bi,Sb)2Te3, BN/Bi0.4Sb1.6Te3, WO3/Bi0.4Sb1.6Te3, and
PbTe/(Bi,Sb)2Te3 [15–18], with various types of particles were consolidated into bulk shapes by using
different consolidation methods. The results indicated that the thermal conductivity of Bi0.4Sb1.6Te3

can be decreased by adding CNTs and C60 particles, which eventually increases ZT [15,16].
The thermal conductivity of BN/Bi0.4Sb1.6Te3 and WO3/Bi0.4Sb1.6Te3 reduces slightly from 1.5 to
1.2 W m´1K´1 when the volume fraction of BN and WO3 is increased from 0 to 7 vol %. However,
ZT decreases because adding BN and WO3 considerably deteriorates the electrical conductivity [17].
Improving ZT of bulk PbTe/(Bi,Sb)2Te3 samples was unsuccessful because adding PbTe particles
drastically reduces the Seebeck coefficient [18]. From the aforementioned results, enhancing ZT
clearly strongly depends on the optimal addition of second phase particles to Bi2Te3-based alloys.

Recently, Kim et al. reported the high ZT value of 1.5 was obtained at 323 K for p-type
Bi0.5Sb1.5Te3 alloy after doping 0.3 vol % α-Al2O3 nanoparticles [19]. Li et al. also found that with
the introduction of the 1.0 vol % γ-Al2O3 particles into n-type Bi2Se0.3Te2.7 thermoelectric alloy,
Bi2Se0.3Te2.7 exhibits the highest ZT value of 0.99 at about 400 K, being 35% improvement compared
to the monolithic Bi2Se0.3Te2.7 alloy [20]. These results indicated the thermoelectric properties of
both p-type and n-type bismuth-antimony-tellurium alloys can be improved with addition of Al2O3

particles. However, literature survey indicates the enhancement of p-type Bi0.4Sb1.6Te3 alloy with the
addition of γ-Al2O3 particles has never been reported. Therefore, the γ-Al2O3 and Bi0.4Sb1.6Te3 were
chosen in present study and the fabrication of γ-Al2O3/Bi0.4Sb1.6Te3 composites were performed by
mechanical alloying (MA) and vacuum hot pressing. The detailed microstructure and TE properties
of samples with varying γ-Al2O3 content were investigated. The results showed that the ZT values
of the Bi0.4Sb1.6Te3 alloy can be enhanced through the optimal addition of γ-Al2O3 particles.

2. Experimental Procedure

Bi0.4Sb1.6Te3 materials with varying contents of γ-Al2O3 powder were prepared using a
high-energy shaker ball mill installed inside an Ar-purified glove box in which the oxygen and
moisture contents in an argon atmosphere were maintained at less than 1 ppm. To prepare
Al2O3/Bi0.4Sb1.6Te3 powders, a mixture of the elemental metallic powders Bi (99.999%), Sb (99.999%),
Te (99.999%), and γ-Al2O3 (approximately 99%, with particle size ranging from 0.2 to 7.5 µm
with a mean particle size (d(0.5)) of approximately 1.39 µm) was mechanically alloyed using an
SPEX 8016 shaker ball mill. The duration of the overall milling process was 2 h. The as-milled
γ-Al2O3/Bi0.4Sb1.6Te3 composite powders were consolidated in a vacuum hot pressing machine to
prepare γ-Al2O3/Bi0.4Sb1.6Te3 disks with diameter and thickness of 17 and 10 mm, respectively.
Vacuum hot pressing was performed at 573 K under a pressure of 0.7 GPa for 30 min. The
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as-milled powders and hot-pressed composite disks were examined using X-ray diffraction (XRD),
differential scanning calorimetry, scanning electron microscope (SEM), and transmission electron
microscopy (TEM). The TE properties were measured in the direction parallel to the hot-pressed
direction. The hot-pressed bulk samples were then cut and polished into 8 ˆ 6 ˆ 6 mm bars.
The thermoelectric properties of the hot-pressed samples were investigated using ALTEC-10001
(ITE, Ukraine). This equipment can simultaneously measure the Seebeck coefficient (α), electrical
resistivity (σ), and thermal conductivity (κ) of thermoelectric materials from room temperature
to 500 ˝C. The measurement is performed automatically, as well as the analysis of the measurements
results, which excludes errors in operators work. ZT was calculated according to Equation (1).

3. Results and Discussion

Figure 1 shows the XRD patterns of the Bi0.4Sb1.6Te3 composite samples with 1 and 3 wt % γ-Al2O3

additions after 2 h of milling. The diffraction peaks cited from the database of the (Bi0.2Sb0.8)2Te3

(JCPDS 072-1836) were also plotted with vertical lines in Figure 1 for comparison. All diffraction
peak positions and (hkl) values were highly consistent with the standard diffraction data of the pure
(Bi0.2Sb0.8)2Te3 phase (JCPDS 072-1836), implying that the (Bi0.2Sb0.8)2Te3 phase can be successfully
prepared through high-energy ball milling of γ-Al2O3/Bi0.4Sb1.6Te3 composite powders. However,
as seen in Figure 1, the Bragg peaks of γ-Al2O3 are barely detectable in the XRD patterns of the
composite powders of the alloy mixed with γ-Al2O3 particles after 2 h of milling, which may be
attributable to the low volume fraction of γ-Al2O3 particles and their small crystalline size. Similar
to the observations regarding the preparation of Al2O3/NiAl intermetallic–matrix composite in this
study, Lin et al. [21] reported that for 5 vol % Al2O3 additions in mechanically alloyed NiAl alloys, no
Al2O3 phase could be detected using XRD after 10 h of milling.
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The Bi0.4Sb1.6Te3 composite powders were subsequently consolidated into disks using vacuum
hot pressing process; the corresponding XRD patterns are shown in Figure 2. All reflection peaks
are attributable to the (Bi0.2Sb0.8)2Te3 phase. Compared with the as-milled composite powders,
the peaks of the consolidated samples are narrow because of strain relaxation and grain growth
in the Bi0.4Sb1.6Te3 nanograin powders. SEM was used to examine the cross-sectional view
of γ-Al2O3/Bi0.4Sb1.6Te3 disks after vacuum hot pressing (Figure 3). Although several γ-Al2O3

nanoparticles tend to agglomerate each other, most fine γ-Al2O3 particles were distributed uniformly
within the Bi0.4Sb1.6Te3 matrix. The size distribution ranged from 0.3 µm to less than 50 nm, which
is the resolution limit of the microscope. The composition of the particles was determined to be that
of pure γ-Al2O3 through energy-dispersion X-ray spectrometry analysis. Significant pores were not
observed in the cross-sectional view (Figure 3) at 20,000ˆmagnification, indicating that highly dense
Bi0.4Sb1.6Te3 bulk samples can be successfully fabricated using vacuum hot pressing. The densities of
the Bi0.4Sb1.6Te3 bulk sample measured using the Archimedean method were 6.70 and 6.71 g/cm3

for 1 and 3 wt % γ-Al2O3/Bi0.4Sb1.6Te3 samples, respectively, yielding corresponding relative
densities of 93.2% and 93.6%. To observe the microstructure within the γ-Al2O3/Bi0.4Sb1.6Te3

composites, Bi0.4Sb1.6Te3 with 1 wt % γ-Al2O3 additions (Figure 3) was examined using TEM;
a TEM bright-field image is shown in Figure 4. Two types of γ-Al2O3 distributions were observed
in the composites; most γ-Al2O3 nanoparticles smaller than 10 nm in size were homogeneously
dispersed along the grain boundary. A small quantity of the γ-Al2O3 nanoparticles with irregular
shapes and sizes ranging from 60 to 400 nm were embedded within the Bi0.4Sb1.6Te3 matrix. A similar
microstructure was reported for the nanocomposites of CoSb3/TiO2 [13] and ZrNiSn/ZrO2 [14].
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Figure 4. TEM images of the consolidated 1 wt % γ-Al2O3/Bi0.4Sb1.6Te3 samples. (white particles: γ-Al2O3).

Figure 5 shows the TE properties of the γ-Al2O3/Bi0.4Sb1.6Te3 composite samples characterized
at temperatures ranging from 298 to 473 K. The Seebeck coefficient variations as a function of
temperature are depicted in Figure 5a. All samples had positive Seebeck coefficients, suggesting
that they are p-type conductive. As shown in Figure 5a, the Seebeck coefficient values of the
γ-Al2O3/Bi0.4Sb1.6Te3 bulk composite samples decreased with increasing γ-Al2O3 content. For most
samples, the Seebeck coefficient initially increases rapidly at 300–375 K, which is consistent with
the Mott formula [22], but after peaking, it starts decreasing with rising temperatures because of
the thermal excitation of extrinsic charge carriers at high temperatures. The maximum value of the
Seebeck coefficient is 242, 234 and 229 µV/K at 373 K for 0, 1 and 3 wt % γ-Al2O3/Bi0.4Sb1.6Te3

samples, respectively. Figure 5b shows the temperature dependence of electrical conductivity. The
samples exhibited a metallic dependence: conductivity gradually decreased as temperature increased
from 300 to 473 K. Electrical conductivity of γ-Al2O3/Bi0.4Sb1.6Te3 composite decreases as γ-Al2O3

particles increases. The highest electrical conductivities at 300 K were observed for 1 and 3 wt %
γ-Al2O3/Bi0.4Sb1.6Te3 samples, with values of 1080 and 895 Ω´1 cm´1, respectively. The power
factor (PF) of TE materials is usually calculated as PF = α2σ; Figure 5c is a graph of the PF of
Bi0.4Sb1.6Te3 bulk composite samples versus the temperature. All samples showed positive values in
the whole temperature range of measurement, indicating p-type semiconducting behavior. The 1 wt %
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γ-Al2O3/Bi0.4Sb1.6Te3 samples exhibited the highest PF (5.4 mWm´1¨K´2 at 298 K). The temperature
dependence of thermal conductivity is shown in Figure 5d. The 3 wt % γ-Al2O3/Bi0.4Sb1.6Te3 samples
have significantly lower thermal conductivity than the 1 wt % γ-Al2O3/Bi0.4Sb1.6Te3 samples in the
whole temperature range. The lowest value of thermal conductivity for this sample was 1.12 W/mK,
which was obtained at 373 K.Energies 2015, 8 7 
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For the 1 wt % γ-Al2O3/Bi0.4Sb1.6Te3 sample, a high ZT value can be obtained within the entire
temperature range because of high PFs and low thermal conductivity; ZT at 300 K is 1.17 and increases
with increasing temperature, peaking at 1.22 at 323 and 348 K, before subsequently decreasing to
0.86 at 473 K. For the 3 wt % γ-Al2O3/Bi0.4Sb1.6Te3 composite sample (Figure 6), ZT at 300 K is 1.0
and increases with increasing temperature, peaking at 1.21 at 373 and 398 K, before subsequently
decreasing to 0.93 when the temperature increases to 473 K.

Several studies have reported the preparation of nanocomposite Bi0.4Sb1.6Te3 bulk samples [15–17,22–26]
through BM and hot pressing or spark plasma sintering (SPS). TE properties and preparation
methods are listed in Table 1. The ZT values of the consolidated Bi0.4Sb1.6Te3 alloys as a function of
temperature are plotted in Figure 7, and the results of this study are included for comparison.

Energies 2015, 8 8 

 

 

For the 1 wt % γ-Al2O3/Bi0.4Sb1.6Te3 sample, a high ZT value can be obtained within the entire 

temperature range because of high PFs and low thermal conductivity; ZT at 300 K is 1.17 and increases 

with increasing temperature, peaking at 1.22 at 323 and 348 K, before subsequently decreasing to 0.86 

at 473 K. For the 3 wt % γ-Al2O3/Bi0.4Sb1.6Te3 composite sample (Figure 6), ZT at 300 K is 1.0 and 

increases with increasing temperature, peaking at 1.21 at 373 and 398 K, before subsequently decreasing 

to 0.93 when the temperature increases to 473 K. 

Several studies have reported the preparation of nanocomposite Bi0.4Sb1.6Te3 bulk samples [15–17,22–26] 

through BM and hot pressing or spark plasma sintering (SPS). TE properties and preparation methods 

are listed in Table 1. The ZT values of the consolidated Bi0.4Sb1.6Te3 alloys as a function of temperature 

are plotted in Figure 7, and the results of this study are included for comparison. 

 

Figure 7. Temperature dependence of ZT of the Bi0.4Sb1.6Te3-based bulk specimens 

prepared through various methods. 

In this study, ZT of the γ-Al2O3/Bi0.4Sb1.6Te3 sample at 298–473 K were 0.86–1.22 (1 wt % γ-Al2O3) and 

0.93–1.21 (3 wt % γ-Al2O3), with an average value of 1.10 for both samples. Compared with other studies, 

the ZT obtained in this study at high temperatures are higher. Advances in ZT can be achieved through 

considerable reductions in thermal conductivities through phonon scattering. Incorporating 

nanoparticles into TE materials to act as additional phonon scattering sites inside the grain boundary or 

matrix regions has recently been demonstrated effectively increase ZT [27–29]. According to this 

approach, for nano- and microstructured TE composite materials shown in Figure 4, the dispersed  

γ-Al2O3 nanoparticles are expected to create an additional grain boundary and interfacial area, which 

increases phonon scattering and decreases thermal conductivity. To further verify this argument, the 

temperature dependence of lattice thermal conductivity (κl) and electronic thermal conductivity (κe) of 

present γ-Al2O3/Bi0.4Sb1.6Te3 samples are shown in Figure 8. κl was calculated by subtracting the 

electronic thermal conductivity κe from κ, and κe is calculated by the Wiedemann–Franz relation,  

κe = LσT (where L = 2.0 × 10−8 V2/K2 is Lorenz number, σ is electrical conductivity, and T is absolute 

temperature) [30]. 

Figure 7. Temperature dependence of ZT of the Bi0.4Sb1.6Te3-based bulk specimens prepared through
various methods.

In this study, ZT of the γ-Al2O3/Bi0.4Sb1.6Te3 sample at 298–473 K were 0.86–1.22 (1 wt % γ-Al2O3)
and 0.93–1.21 (3 wt % γ-Al2O3), with an average value of 1.10 for both samples. Compared with
other studies, the ZT obtained in this study at high temperatures are higher. Advances in ZT can
be achieved through considerable reductions in thermal conductivities through phonon scattering.
Incorporating nanoparticles into TE materials to act as additional phonon scattering sites inside the
grain boundary or matrix regions has recently been demonstrated effectively increase ZT [27–29].
According to this approach, for nano- and microstructured TE composite materials shown in Figure 4,
the dispersed γ-Al2O3 nanoparticles are expected to create an additional grain boundary and
interfacial area, which increases phonon scattering and decreases thermal conductivity. To further
verify this argument, the temperature dependence of lattice thermal conductivity (κl) and electronic
thermal conductivity (κe) of present γ-Al2O3/Bi0.4Sb1.6Te3 samples are shown in Figure 8. κl was
calculated by subtracting the electronic thermal conductivity κe from κ, and κe is calculated by the
Wiedemann–Franz relation, κe = LσT (where L = 2.0 ˆ 10´8 V2/K2 is Lorenz number, σ is electrical
conductivity, and T is absolute temperature) [30].
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Table 1. TE properties and preparation methods of typical Bi0.4Sb1.6Te3-based nanocomposites.

Nanocomposite Highest ZT ZT(>400 K) Methoda,b Ref.

Bi0.4Sb1.6Te3 1.15 at 350 K 0.2~0.4 BM + HP (200 MPa/430 C/2 h) [24]

Bi0.4Sb1.6Te3 1.14 at 323 K 0.2~0.74 BM (300 rpm/10 h) + SPS (50 MPa/420 C/10 min) [25]

Bi0.4Sb1.6Te3 1.15 at 350 K 0.63~0.9 BM (1200 rpm/5 h) + SPS (60 MPa/420 C/5 min) [23]

Bi0.4Sb1.6Te3 1.0 at 300 K - BM (400 rpm/2 h) + SPS (50 MPa/450 C/5 min) [26]

Bi0.4Sb1.6Te3 + 4 wt % Te 0.98 at 343 K 0.55~0.68 BM (400 rpm/12 h) + HP (60 MPa/290 C/1 h) + ECAE (753 K) [22]

Bi0.4Sb1.6Te3 + 1 wt % CNT 1.08 at 323 K 0.52~0.92 ZM + BM + HP (27.6 MPa/440 C/10 min) [15]

Bi0.4Sb1.6Te3 + 1.5 wt % C60 1.15 at 375 K 0.79~1.08 BM (500~2220 rpm/30 min) + sinter (5 kbar/400 C) +annealing (300 C/2 h) [16]

Bi0.4Sb1.6Te3 + 7 wt % BN 0.54 at 300 K - BM (1200 rpm/5 h) + HP (425 MPa/550 C/30 min) [17]

Bi0.4Sb1.6Te3 + 7 wt % WO3 0.75 at 300 K - BM (1200 rpm/5 h) + HP (425 MPa/550 C/30 min) [17]

Bi0.4Sb1.6Te3 + 1 wt % Al2O3 1.22 at 340 K 0.86~1.12 BM + HP (700 MPa/300 C/1 h) This work

Bi0.4Sb1.6Te3 + 3 wt % Al2O3 1.21 at 398 K 0.93~1.21 BM + HP (700 MPa/300 C/1 h) This work

a: BM: ball milling; SPS: spark plasma sintering; ECAE: equal channel angular extrusion; b: Experimental details are listed in parentheses.
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Figure 8. Temperature dependence of lattice thermal conductivity (κl) and electronic thermal
conductivity (κe) for the γ-Al2O3/Bi0.4Sb1.6Te3 bulk samples.

Accordingly, the lattice thermal conductivity κl decreased with the addition of γ-Al2O3 particles,
while the electronic thermal conductivity κe decreased less drastically than did the lattice thermal
conductivity. It is thus concluded that the decrease in thermal conductivity with increasing the
amount of γ-Al2O3 particles was mainly due to the reduction in lattice thermal conductivity.
Bi-Sb-Te alloys are categorized as low-temperature TE materials, and their use at temperatures higher
than 400 K is limited because of low TE performance. A satisfactory ZT value at high temperatures
is vital for power generation. Because no other Bi-Sb-Te material with a similarly high ZT in
this temperature range has been reported, Bi0.4Sb1.6Te3 bulk samples containing γ-Al2O3 particles
have considerable potential as a high-performance material for application in TE devices in the
temperature range 348–473 K.

4. Conclusions

Through MA and vacuum hot pressing, p-type γ-Al2O3/Bi0.4Sb1.6Te3 composites were
fabricated. No significant pores were observed in the hot-pressed samples, indicating that highly
dense Bi0.4Sb1.6Te3 bulk samples can be successfully prepared using the proposed approach. The
influence of the alumina content on TE properties was measured in the temperature range 300–473 K.
The measured Seebeck coefficient, electrical resistivity, and thermal conductivity indicate that adding
an optimal amount of γ-Al2O3 particles improves the TE performance of the γ-Al2O3/Bi0.4Sb1.6Te3

composites. High TE performance with ZT as high as 1.22 and 1.21 were achieved at 373 and
398 K for samples containing 1 and 3 wt % γ-Al2O3 particles. These ZT values are higher than
those of several reported monolithic Bi0.4Sb1.6Te3 samples prepared through BM and hot pressing
or SPS. The achieved high ZT value may be attributable to the unique nano- and microstructures
in which γ-Al2O3 nanoparticles were dispersed along the grain boundary or inside the matrix
grain, as revealed through high-resolution TEM. The dispersed γ-Al2O3 nanoparticles thus increase
phonon scattering sites and reduce thermal conductivity. The ZT values of these samples at
298–423 K are 1.0–1.22. Such ZT characteristics render γ-Al2O3/Bi0.4Sb1.6Te3 suitable for power
generation applications because other materials with similarly high ZT are yet to be reported in this
temperature range.
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