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Abstract: Based on charge-discharge cycle tests for commercial nickel-metal hydride (Ni-MH)
batteries, a nonlinear relationship is found between the discharging capacity (Cdischarge, Ah) and
the voltage changes in 1 s occurring at the start of the charging process (∆Vcharge, mV). This
nonlinear relationship between Cdischarge and ∆Vcharge is described with a curve equation, which
can be determined using a nonlinear least-squares method. Based on the curve equation, a curve
model for the state-of-health (SOH) prediction is constructed without battery models and cycle
numbers. The validity of the curve model is verified using (Cdischarge, ∆Vcharge) data groups
obtained from the charge-discharge cycle tests at different rates. The results indicate that the curve
model can be effectively applied to predict the SOH of the Ni-MH batteries and the best prediction
root-mean-square error (RMSE) can reach upto 1.2%. Further research is needed to confirm the
application of this empirical curve model in practical fields.

Keywords: nickel-metal hydride (Ni-MH) battery; state-of-health (SOH); curve fitting; nonlinear
least-squares method; prediction

1. Introduction

Nickel-metal hydride (Ni-MH) batteries have been applied in portable electronics and electric
or hybrid-electric vehicles (EVs and HEVs) owing to their relatively good storage and power, higher
safety, and excellent environmental acceptability [1–4]. With regard to these applications, the failure
of Ni-MH batteries, resulting from irreversible capacity degradation and loss of performance in
cycle service [5,6], is a key issue that warrants close attention. The state-of-health (SOH) status
of a battery, which defines the current battery performance relative to its unused condition, is a
powerful indicator of battery performance [7] and is usually used to predict the end-of-life and aging
of batteries [8,9]. However, the definition of battery SOH is still somewhat equivocal [10] because
different battery parameters can be used as the indicators of battery performance. This ambiguity
makes the determination of battery SOH a difficult task.

Generally, three definitions of battery SOH have been reported, including SOH values
based on battery impedance [11,12], battery capacity [9], and comprehensive battery parameters
such as impedance, capacity, open circuit potential (OCV), charging or discharging current, and
temperature (T) [13–17]. Apparently, the SOH based on comprehensive battery parameters reflects
the present battery performance more accurately, but it also makes the estimation more complicated.
The SOH values based on battery impedance and capacity are considered to reflect the capability of
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the battery to provide a certain power and to store energy, respectively. Both of the SOH values are
widely applied in EVs and HEVs. In this case, all the methods for the estimation of battery impedance
and battery capacity can be used as a basis for the SOH estimation. However, the estimations of
battery impedance and battery capacity are also not easy to do, especially online estimation [18,19].

The reported methods for the estimation of battery SOH can be generally divided into
two categories: physics-based model estimations and non-physics-based model estimations.
Physics-based model estimations are based on electrical or electrochemical cell models [20–27]. In
order to improve the estimation accuracy, some algorithms, such as adaptive observers [28], extended
Kalman filter (EKF) [29,30], and relevance vector machines (RVMs)—particle filters (PFs) [31], are
usually employed. The main problem for this kind of estimation is that the battery electrical or
electrochemical models may not be unique and it is difficult to verify their validity. If the used
cell model is not appropriate, the estimation accuracy may be lower and difficult to improve. In
addition, the used algorithms are relatively complicated, which make it difficult to use them for
online estimation.

In the non-physics-based model estimations, some learning algorithms, such as neural
networks [32–34], support vector machines (SVMs) [35,36], RVMs [37], and fuzzy logic [38,39],
are applied, in which the measured impedance parameters [12,32] and other characteristic battery
parameters (e.g., discharge current [33], temperature, and state-of-charge (SOC) [34]) are employed as
input variables. These methods can learn the battery behavior based on monitored data and thus do
not demand battery physics models, but they need lots of training data and depend on the availability
of a historic data set. In this case, it is difficult to use them for online estimations. Another kind of
non-physics-based model estimation uses various curve equations between the practicable capacity
and aging cycles [40–44], in which the parameters of the equations can be obtained by data fitting
algorithms, and further they can be adjusted online by using a particle filtering (PF) approach [43] or
by combining sets of training data based on Dempster-Shafer theory (DST) and the Bayesian Monte
Carlo (BMC) method [44]. This method also needs a lot of accelerated aging test data to determine
the curve equations, but it does not need complicated mathematic computations. In addition, the
number of aging cycles of a used battery may be unknown in practical applications.

The purpose of this work is to find a simple model for the SOH prediction of Ni-MH batteries to
avoid the problems mentioned above, such as the uncertainty of battery physics models, complicated
algorithms, comprehensive parameters, and unknown cycle numbers. Therefore we tried to construct
a simple curve model without electrical or electrochemical battery models and cycle numbers.

In this work, the SOH is defined as Equation (1) due to the presence of charge-discharge efficiency:

SOH “ Cdischarge{Crated (1)

where Cdischarge (Ah) is the discharging capacity of fully charged Ni-MH batteries and Crated (Ah) is
the rated capacity. As the Crated for one type of Ni-MH battery is a constant value, the SOH prediction
is reduced to the prediction of Cdischarge. Based on the analysis of a lot of charge-discharge cycle test
data for commercial Ni-MH batteries, the voltage change in 1 s occurring at the start of the charging
process (∆Vcharge, mV) was selected as the characteristic parameter, and a curve equation between
Cdischarge and ∆Vcharge was determined to construct a curve model for the Cdischarge prediction. Then
the prediction precision of this curve model was verified by using some typical charge and discharge
data for the Ni-MH batteries.

2. Experimental

Commercial AA-type Ni-MH cells (Pisenr, Sichuan, China, Crated = 1.8 Ah and rated
voltage = 1.2 V) were used in this study. All charge-discharge tests were conducted using a
computer-controlled charge-discharge instrument (BTS-3008-5V3A, Xinwei, Guangzhou, China) at
room temperature (20 ˘ 5 ˝C). The charge-discharge data, including current (I), potential (V),
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time (t), and cycle number (n), were recorded automatically with the sampling frequency of 1 Hz.
The charge-discharge rates have significant influence on battery performance, so three different
charge-discharge rates (0.5C, 1.0C, and 1.6C) were selected to simulate low, medium, and high
charge-discharge rate conditions. The charge-discharge test program is described as follows:

The Ni-MH cells with initial SOC at 0% were fully charged at a constant current (Icharge: 0.5C,
1.0C, and 1.6C), then after an interval of 600 s, they were discharged at the same constant current
(Idischarge: 0.5C, 1.0C, and 1.6C) to the cutoff voltage (0.9 V). After an interval of 1800 s, the next
cycle of charge-discharge test was started. When the Cdischarge of the test cells fell to 80% of the
initial capacity, the charge-discharge tests were terminated [45]. The failure capacity is still defined as
0.8Crated in this paper for convenient applications.

3. Results and Discussion

3.1. Curve Modeling for Cdischarge

Figure 1 gives the typical I-t and V-t curves of two cycles for a Ni-MH battery in the
charge-discharge test at 1.0C. In each cycle there are four abrupt voltage changes (∆V) occurring
at the start/end of the charging and discharging processes, respectively. According to the equivalent
circuit of the test cell [8,46], these four ∆V values in each cycle generally reflect the internal resistance
(Rinternal) of the test cell in different states, and there is little difference among their values. However,
the measurement of ∆V is much easier than the test of Rinternal, so it is selected as studied parameter.
Before the start of the charging process, the completely discharged test cell was in a relatively stable
state after the recovery of 1800 s, so in this paper we select the ∆V in 1 s at the start of the charging
process (∆Vcharge, mV) as the characteristic parameter to verify its relationship with the aging state of
the test cell, as shown in Figure 1.
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Figure 1. Typical I-t and V-t curves in the charge-discharge test at 1.0C for Ni-MH batteries (AA-type,
1.8 Ah, 1.2 V).

Through the analysis of the I-t and V-t data for each test battery, we obtained Cdischarge and
∆Vcharge in each cycle. In order to observe the relationship of these three parameters, we made a
three-dimensional (3D) diagram of (Cdischarge-∆Vcharge-n) for all the test Ni-MH batteries. Figure 2a
shows a typical 3D diagram for a Ni-MH battery in the charge-discharge test at 1.0C and its
two-dimensional (2D) projection diagrams (Cdischarge-n, ∆Vcharge-n, Cdischarge-∆Vcharge).

From Figure 2a it can be seen that (Cdischarge; ∆Vcharge; n) data points form a curve in the 3D space
without obvious discrete point; suggesting that there would be nonlinear relationships between these
three parameters. From the different 2D diagrams in Figure 2b–d; it can be seen more clearly that
Cdischarge-n; ∆Vcharge-n and Cdischarge-∆Vcharge curves all display good nonlinear relationships. The
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results in Figure 2b,c can be explained appropriately [41] and the nonlinear relationships between
Cdischarge-n and ∆Vcharge-n can be used to predict the state of Ni-MH batteries. However; sometimes
the number of cycles for a Ni-MH battery is unknown. In this case; the nonlinear relationship between
Cdischarge and ∆Vcharge; as shown in Figure 2d; is important for a curve model without cycle numbers.
If we can obtain the relationship between Cdischarge and ∆Vcharge for a Ni-MH battery; we can obtain
its Cdischarge through the measurement of its ∆Vcharge and then estimate its SOH with Equation (1).

Finally, we identified that Equation (2) can be used to describe the nonlinear relationship
between ∆Vcharge (mV) and Cdischarge (Ah):

Cdischarge “
a

1` expr´kˆ p∆Vcharge ´ cqs
(2)

where a (Ah), k (mV´1) and c (mV) are constants related to test batteries. We found that k was
negative with a small absolute value (|k|) and related to the charge-discharge rate. In the initial
cycles, ∆Vcharge << c and therefore, if |k| is not very small, there is, exp [´k ˆ (∆Vcharge ´ c)] Ñ 0
and a « Cdischarge. So a can be considered as a parameter related to the initial Cdischarge of the test
battery when |k| is not very small, which may be near its rated capacity. When ∆Vcharge = c,
Cdischarge = 0.5a. Thus, c can be considered as a parameter related to the ∆Vcharge when Cdischarge
is at its 50% initial value.
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Figure 2. 3D diagram for a Ni-MH battery in the charge-discharge test at 1.0C (AA-type, 1.8 Ah, 1.2 V):
(a) 3D diagram and (b), (c) and (d) projection of the 3D diagram.

The raw data in Figure 2d was fitted with Equation (2) by a nonlinear least-squares method,
and the fitted curve indicates that it fits the raw data well. In order to verify the validity of
Equation (2), different (Cdischarge, ∆Vcharge) raw data obtained from different Ni-MH batteries with
different charge-discharge rates were fitted with Equation (2) by the nonlinear least-squares method.
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Figure 3 shows some typical (Cdischarge, ∆Vcharge) raw data at different charge-discharge rates and
their fitted curves with Equation (2). Table 1 lists the fitting parameters of a, c, and k for different
Ni-MH cells at different rates, in which R2 is a correlation coefficient and Prange is the selection range
of initial values for each fitting parameter when using the nonlinear least-squares method to solve
their values.

The results in Figure 3 and Table 1 prove that Equation (2) can well describe the relationship
between Cdischarge and ∆Vcharge. From Table 1, it can be seen that at 0.5C and 1.0C the parameter a is
approximate to the rated capacity of the test Ni-MH batteries (1.8 Ah), while at 1.6C it becomes larger
than the rated capacity because of the too small |k| value. It should be noted that at 1.6C the too
small |k| value makes |´k ˆ (∆Vcharge ´ c)| << 1 and then, there is exp [´k ˆ (∆Vcharge ´ c)] « 1 ´
[k ˆ (∆Vcharge ´ c)]. In this case, the nonlinear relationship between Cdischarge and ∆Vcharge described
with Equation (2) becomes an approximate linear relationship especially with an increase in ∆Vcharge,
as shown in Figure 3.
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Table 1. Fitting parameters of a, c, and k for different Ni-MH cells at different rates.

Rates a/Ah c/mV k/mV´1 R2

0.5C
Prange 1.5–2.0 200–400 ´0.02–0 -

1.8131 317.58 ´0.0146 0.9862

1.0C

Prange 1.5–2.0 200–400 ´0.03–0 -
1.7828 320.26 ´0.0172 0.9882
1.7420 310.20 ´0.0164 0.9851
1.7680 223.30 ´0.0188 0.9796
1.7839 286.11 ´0.0166 0.9800
1.9433 313.77 ´0.0078 0.9865
1.7962 381.17 ´0.0078 0.9869

1.6C
Prange 2.0–3.0 200–400 ´0.015–0 -

2.4479 258.21 ´0.0057 0.9898
2.6365 239.15 ´0.0048 0.9890
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Apparently, the values of the a, c, and k change with the charge-discharge rate. Table 1 shows
that when the charge-discharge rate increases from 0.5C to 1.0C, the change of these three parameters
is small, while at 1.6C the change of a and k is obvious. It may be speculated that the values of the
three parameters just fluctuate slightly when the charge-discharge rate is in a certain range, such as
0.5C–1.0C. If so, this curve model should also be used in practical fields that the charge-discharge rates
are not constant during applications. Further research will be conducted to verify the application of
this curve model in practical fields. In this paper we just focus on the curve model itself and its SOH
prediction accuracy.

3.2. State-of-Health (SOH) Prediction of Ni-MH Batteries Based on the Curve Model for Cdischarge

When the relationship between Cdischarge and ∆Vcharge of one battery is built as Equation (2), the
Cdischarge can be predicted by measuring the ∆Vcharge of the battery and then the SOH can be obtained
with Equation (1). So we used the (Cdischarge, ∆Vcharge) raw date in Table 1 to check whether the curve
model for Cdischarge can be used for the SOH prediction.

Theoretically, only three groups of (Cdischarge, ∆Vcharge) data are needed to solve the three
parameters in Equation (2). However, the measured raw data usually have some discrete points, as
shown in Figures 2 and 3 so more groups of (Cdischarge, ∆Vcharge) data are needed and the prediction
error is inevitable. In order to evaluate the prediction error, the root-mean-square error (RMSE) is
defined as Equation (3):

RMSE “
c

ÿn

1
rCdischarge,j ´ Ctest

discharge,js
2
{n, j “ 1, . . . , n (3)

where Ctest
discharge,j is the test value for sample j; Cdischarge,j is the predicted value for sample j; and n is

the total number of samples.
The prediction method is described as follows:
(1) A certain number of (Cdischarge, ∆Vcharge) data groups in continuous charge-discharge test

cycles were selected to fit the parameters in Equation (2) using a nonlinear least-squares method to
obtain Equation (2) for the test Ni-MH battery;

(2) The predicted Cdischarge values were calculated with Equation (2) using the tested ∆Vcharge
values apart from those used in Step 1; and (3) the predicted RMSE was checked with Equation (3)
using the predicted Cdischarge values and the corresponding tested Cdischarge values. Through the
predicted RMSE we can judge how large the prediction error is and whether the prediction is valid.

Using different numbers of (Cdischarge, ∆Vcharge) data groups in different parts of the
Cdischarge-∆Vcharge curve, as shown in Figure 4, may result in different prediction results. In this paper,
the first cycle Cdischarge of a selected (Cdischarge, ∆Vcharge) data group (C0

discharge) is described with the
SOH value of the test battery, and a relative capacity drop (RCd) is defined to describe the variation
range of Cdischarge in the selected (Cdischarge, ∆Vcharge) data group, as presented in Equation (4):

RCd “
C0

discharge ´ Cn
discharge

C0
discharge

(4)

where Cn
discharge is the last cycle Cdischarge of the selected (Cdischarge, ∆Vcharge) data group. Apparently,

the RCd value determines the last (Cdischarge, ∆Vcharge) data of the selected data group. Because we
used all the (Cdischarge, ∆Vcharge) data in continuous test cycles, a larger RCd value means more data in
the selected data group. In this case, the SOH and RCd values for a selected data group can determine
its position on the Cdischarge–∆Vcharge curve and also indicate the corresponding battery states.

Firstly, the effect of the number of used (Cdischarge, ∆Vcharge) data groups, which is described
by RCd, on the prediction of Cdischarge is investigated. Figure 4 shows a 3D diagram of
(Cdischarge-∆Vcharge-n) for a Ni-MH battery in the charge-discharge test at 1.0C and the predicted
results obtained with SOH = 97.38% and different RCds (0.5%, 1.0%, and 1.5%), in which the
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corresponding cycle numbers of the selected data range and the prediction RMSE values are also
listed. In Figure 4, the three data groups are selected from 90–138 cycles (48 data), 90–166 cycles
(77 data), and 90–184 cycles (95 data), respectively. The first cycle of the three date groups is the same,
so they have the same SOH value (97.38%). Their RCd values are calculated with Equation (4) using
the Cdischarge of the 90th cycle (i.e., C0

discharge) and C138
discharge, C166

discharge, and C184
discharge, respectively. It is

seen that the prediction RMSE value decreases with an increase in RCd, suggesting that using more
(Cdischarge, ∆Vcharge) data groups may decrease the prediction error.
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Figure 4. 3D diagram of (Cdischarge-∆Vcharge-n) for a Ni-MH battery in the charge-discharge test at
1.0C and the prediction curves obtained with SOH = 97.38% and different relative capacity drops
(RCds) (0.5%, 1.0%, and 1.5%).

The SOH value of the selected data group, i.e., the position of the starting point of the selected
data group, may also influence the prediction result. So we selected data groups at different SOH
with various RCds (0.5%, 1.0%, 1.5%, and 2.0%) to fit the parameters in Equation (2) and calculated
the corresponding prediction RMSE values, as shown in Figure 5.

In Figure 5, the average RMSE value at each SOH is presented and shown with a star symbol,
while the general average RMSE value (RMSE) is also given and shown with a horizontal dashed
line. The RMSE value obtained by using data groups at SOH = 94.89% with RCd = 0.5% deviates
significantly from other RMSE values, which may be due to the fluctuation of the raw data groups,
so it was eliminated from the calculation of the average RMSE values.
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Figure 5. Prediction root-mean-square error (RMSE) for a Ni-MH battery in the charge-discharge test
at 1.0C using (Cdischarge, ∆Vcharge) data groups at different SOH with various RCds.

From Figure 5, it can be seen that when SOH = 97.82%, the prediction RMSE decreases obviously
with an increase in RCd, which is consistent with the result in Figure 4. But when the SOH value
decreases to 97.12%, 96.77%, 94.89%, and 94%, at each SOH the prediction RMSE does not decrease
with an increase in RCd, suggesting that using more data groups does not necessarily help improve
the prediction precision. In addition, the prediction RMSE does not show some regular change with
a decrease in the SOH, but generally it seems that when the SOH is in an intermediate range (97.12%
and 96.77%), the prediction RMSE is relatively lower.

Figure 6 shows the selected (Cdischarge, ∆Vcharge) raw data in Figure 5 and the prediction data
with the best RMSE (1.2%) and the RMSE (1.7%) near the RMSE in Figure 5 (1.75%).

From Figure 6, we can clearly see that the prediction data well accords with the raw data,
especially when Cdischarge > 1.44 Ah, i.e., before the failure capacity (0.8Crated), indicating that the
prediction accuracy of this curve model is satisfied. It should be noted that the initial part of the
raw data in Figure 6 (SOH > 97.12%) has some volatility. So using this part of the raw data for the
Cdischarge prediction may result in higher prediction error (i.e., large RMSE) and using more data
groups (i.e., large RCd) may improve the prediction precision, as shown in Figure 5 at SOH = 97.82%.
When the SOH decreases to 97.12%–96.77%, the fluctuation of the raw data decreases, as shown in
Figure 6; this may result in lower prediction RMSE, as shown in Figure 5.

Considering the influence of different charge-discharge rates on the prediction results, we
selected the (Cdischarge, ∆Vcharge) raw data at 0.5C and 1.6C to check the curve model using the
same method described above. Figure 7 shows the prediction RMSE for a Ni-MH battery in the
charge-discharge test at 0.5C using (Cdischarge, ∆Vcharge) data groups at different SOH with various
RCds, in which the average prediction RMSE values are also given as described in Figure 5. The
RMSE values at SOH = 98.97% are relative large, which may also result from the fluctuation in the
initial data groups, so they are eliminated from the calculation of the RMSE in Figure 7.
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Figure 7. Prediction RMSE for a Ni-MH battery in the charge-discharge test at 0.5C using (Cdischarge,
∆Vcharge) data groups at different state-of-health (SOH) with different RCds.

From Figure 7, it can be seen that at SOH = 98.97% the prediction RMSE is higher and does not
decrease with an increase in RCd, while at lower SOH values (98.02%–94.45%) the prediction RMSE
decreases with an increase in RCd. In general, it seems that when the SOH is in an intermediate range
(98.02% and 97.12%), the prediction RMSE is relatively lower, which is consistent with the results
in Figure 5.

Figure 8 presents the (Cdischarge, ∆Vcharge) raw data used in Figure 7 and the prediction data with
the best RMSE (1.2%) and the RMSE (2.1%) near the RMSE in Figure 7 (2.23%). Similarly, there is
fluctuation in the initial part of the (Cdischarge, ∆Vcharge) raw data and the prediction data well accords
with the raw data before the failure capacity.
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Figure 9 shows the prediction RMSE for a Ni-MH battery in the charge-discharge test at 1.6C,
in which the average prediction RMSE values are also given as described in Figure 5. Similarly, the
RMSE values at SOH = 95% are eliminated from the calculation of the RMSE value in Figure 9.

Figure 10 presents the (Cdischarge, ∆Vcharge) raw data used in Figure 9 and the prediction data
with the best RMSE (1.2%) and the RMSE (1.6%) near the RMSE in Figure 9 (1.53%). It can be seen
that there is an obvious increase in the Cdischarge value in the initial charge-discharge period, as shown
in Figure 10, so these data groups cannot be used for the prediction. As shown in Figure 9, only when
the SOH < 95%, the prediction RMSE decreases to a lower value and the prediction data also accords
well with the raw data before the failure capacity, as shown in Figure 10.

The results in Figures 4–10 indicate that the curve model based on Equation (2) can be effectively
applied to predict the SOH of the Ni-MH batteries, and the best prediction RMSE is around 1.2%. The
selected raw data groups for the prediction significantly influence the prediction RMSE. Generally, the
data groups in the early period of the charge-discharge test, which depends on the charge-discharge
rate, are not suitable for the SOH prediction because of data fluctuations. Increasing the RCd value,
i.e., using more data groups for the SOH prediction, does not necessarily help improve the prediction
precision, which may also be related to the data fluctuation. Generally, using data groups at the
SOH in an intermediate range and with the RCd value in the range of 1.5%–2.0% may result in lower
prediction RMSE.

12483



Energies 2015, 8, 12474–12487

Energies 2015, 8 12 

 

 

an intermediate range and with the RCd value in the range of 1.5%–2.0% may result in lower  

prediction RMSE. 

 

Figure 9. Prediction RMSE for a Ni-MH battery in the charge-discharge test at 1.6C using 

(Cdischarge, ΔVcharge) data groups at different SOH with various RCds. 

 

Figure 10. (Cdischarge, ΔVcharge) raw data used in Figure 9 and the prediction data with the best 

RMSE (1.2%) and the RMSE (1.6%) near the RMSE  in Figure 9 (1.52%). 

Apart from good prediction accuracy, this curve model is also simple and easy-to-use. These 

advantages are important for online applications. For any type of Ni-MH battery, we can use 

charge-discharge cycle tests to determine the three parameters (a, c, and k) in the curve model at 

different charge-discharge rates. Then, we can easily detect the SOH of the same type Ni-MH batteries 

without considering their aging history (e.g., cycle numbers). As shown in Table 1, the three parameters 

for different batteries change a little in a certain range of charge-discharge rates, such as 0.5–1.0C. In this 

Figure 9. Prediction RMSE for a Ni-MH battery in the charge-discharge test at 1.6C using (Cdischarge,
∆Vcharge) data groups at different SOH with various RCds.

Energies 2015, 8 12 

 

 

an intermediate range and with the RCd value in the range of 1.5%–2.0% may result in lower  

prediction RMSE. 

 

Figure 9. Prediction RMSE for a Ni-MH battery in the charge-discharge test at 1.6C using 

(Cdischarge, ΔVcharge) data groups at different SOH with various RCds. 

 

Figure 10. (Cdischarge, ΔVcharge) raw data used in Figure 9 and the prediction data with the best 

RMSE (1.2%) and the RMSE (1.6%) near the RMSE  in Figure 9 (1.52%). 

Apart from good prediction accuracy, this curve model is also simple and easy-to-use. These 

advantages are important for online applications. For any type of Ni-MH battery, we can use 

charge-discharge cycle tests to determine the three parameters (a, c, and k) in the curve model at 

different charge-discharge rates. Then, we can easily detect the SOH of the same type Ni-MH batteries 

without considering their aging history (e.g., cycle numbers). As shown in Table 1, the three parameters 

for different batteries change a little in a certain range of charge-discharge rates, such as 0.5–1.0C. In this 

Figure 10. (Cdischarge, ∆Vcharge) raw data used in Figure 9 and the prediction data with the best RMSE
(1.2%) and the RMSE (1.6%) near the RMSE in Figure 9 (1.52%).

Apart from good prediction accuracy, this curve model is also simple and easy-to-use. These
advantages are important for online applications. For any type of Ni-MH battery, we can use
charge-discharge cycle tests to determine the three parameters (a, c, and k) in the curve model
at different charge-discharge rates. Then, we can easily detect the SOH of the same type Ni-MH
batteries without considering their aging history (e.g., cycle numbers). As shown in Table 1, the three
parameters for different batteries change a little in a certain range of charge-discharge rates, such as
0.5–1.0C. In this case, it is possible to use their average values to construct a general model for the
applications with fluctuated charge-discharge rates. Moreover, if more than three (Cdischarge, ∆Vcharge)
data can be obtained during applications, the new values of the three parameters (a, c, and k) can be
calculated to modify the general curve model. Certainly, this application of the curve model is needed
further verification.

One of limitations for this curve model is that it’s relatively higher prediction error in a higher
SOH range especially at higher charge-discharge rates. In addition, it should be noted that in this
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work the (Cdischarge, ∆Vcharge) data obtained from the charge-discharge cycle test were employed to
construct the curve model and to verify its validity for the SOH prediction. In practical applications,
batteries may undertake nonuniform charge-discharge processes, such as intermittent charge or
discharge processes. Therefore, further research is needed to confirm whether this curve model can
continue to be used for any Ni-MH battery in practical applications.

4. Conclusions

Based on charge-discharge cycle tests for commercial Ni-MH batteries (Pisenr, 1.2 V, 1.8 Ah), a
curve model was constructed without battery models and cycle numbers for the SOH prediction and
its prediction precision was verified. The main conclusions were drawn as follows:

(1) Based on the analysis of charge-discharge data for the Ni-MH batteries, a nonlinear
relationship between the Cdischarge (Ah) and ∆Vcharge (mV) was found and described as
Cdischarge = a/[1+ exp[´k ˆ (∆Vcharge ´ c)]], where a (Ah), k (mV´1) and c (mV) are constants
related to charge-discharge rates. Based on this equation, the curve model for the SOH
prediction of Ni-MH batteries was constructed.

(2) The (Cdischarge, ∆Vcharge) data groups obtained from the charge-discharge cycle test at different
rates (0.5C, 1.0C, and 1.6C) were employed to verify the validity of the curve model for the SOH
prediction. It was found that the curve model based on the nonlinear relationship between the
Cdischarge and ∆Vcharge can be effectively applied to predict the SOH of the Ni-MH batteries.
The data groups used for the SOH prediction have significantly influence on the prediction
accuracy, and the best prediction RMSE can reach 1.2%.

(3) Generally, using (Cdischarge, ∆Vcharge) data groups with the SOH in an intermediate range and
with the RCd value in the range of 1.5%–2.0% may result in lower prediction RMSE.
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