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Abstract: A new method is proposed for obtaining the maximum power output of a
doubly-fed induction generator (DFIG) wind turbine to control the rotor- and grid-side
converters. The efficiency of maximum power point tracking that is obtained by the
proposed method is theoretically guaranteed under assumptions that represent physical
conditions. Several control parameters may be adjusted to ensure the quality of control
performance. In particular, a DFIG state-space model and a control technique based on
the Lyapunov function are adopted to derive the control method. The effectiveness of the
proposed method is verified via numerical simulations of a 1.5-MW DFIG wind turbine using
MATLAB/Simulink. The simulation results show that when the proposed method is used,
the wind turbine is capable of properly tracking the optimal operation point; furthermore,
the generator’s available energy output is higher when the proposed method is used than it is
when the conventional method is used instead.

Keywords: doubly-fed induction generator; Lyapunov function-based control; maximum
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1. Introduction

Generally, generator wind turbines are divided into two groups: fixed-speed wind turbines
(FSWT) and variable-speed wind turbines (VSWT). For FSWTs, a squirrel-cage induction generator
(SCIG) [1] is often employed to operate at a fixed rotor speed and is often directly connected to the
grid. In contrast, since VSWTs operate at variable rotor speeds, the generator is often connected to the
grid via a converter system for synchronization [2,3]. For VSWTs based on synchronous generators
(SG), permanent magnetic synchronous generators (PMSG) or SCIGs, a full converter must be
installed [2]; however, for VSWTs that use a doubly-fed induction generator (DFIG), a partial converter
must be installed at the rotor side [3].

The essential objective for VSWTs is to obtain maximum power output to maximize energy
conversion efficiency. To acquire maximum power output, many methods have been proposed [2,4–9].
Generally, these methods are based on wind speed measurement [5,6] or wind speed sensor-less [7,8]
approaches. The maximum power point tracking (MPPT) ability of the wind turbine is achievable when
a precise wind speed measurement is available. Unfortunately, wind speed measurement is unreliable
because of the wind’s rapid fluctuation [10]. Other methods that do not use an anemometer, such as
the MPPT-curve method [8,9] and perturbation and observation (P&O) [4], cannot track the maximum
power point either exactly or quickly, because they operate basically on the generator’s output. Such
methods are mainly applied either to photovoltaic power systems where the inertia of the generator is
zero or to PMSG wind turbines with a DC/DC converter [2,4]. The MPPT-curve method indexes the
current rotor speed (or power output), as well as the wind turbine’s MPPT curve to determine a reference
power output (or rotor speed) [8,9]. It does not require any perturbation signal and is robust; however,
this method cannot track the maximum point quickly because of the high inertia of the generator wind
turbine system.

To control the wind turbine, traditional proportional-integral (PI) control is popularly used for many
purposes, such as rotor speed control, current control, power control, and so on [8,9,11]. However,
stability with PI control is not theoretically ensured [12,13]; thus, sliding mode control [14–16] has been
recently developed. Unfortunately, sliding mode control is only applicable to the power in the DFIG’s
stator side [14] or the rotor speed [15] via the rotor-side converter (RSC) and current components in the
grid side-converter (GSC) [16]. Hence, there is not currently a control method directly applicable to the
total power output of DFIG and DC voltage.

This paper proposes a new scheme to maximize the energy output of a DFIG wind turbine.
Additionally, new controllers for controlling the total power output will be applied to the DFIG’s
converters and the DC voltage, on the DC link will be designed based on Lyapunov function control.
The proposed MPPT scheme will be analyzed and verified via the simulation of a 1.5-MW DFIG wind
turbine using MATLAB/Simulink. Simulation results will be evaluated and compared to the results of a
wind turbine using the conventional MPPT-curve method with PI controllers.
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2. Model of a DFIG-Wind Turbine

Generally, a DFIG wind turbine [17] appears as shown in Figure 1.

Figure 1. Overall system of the doubly-fed induction generator (DFIG) wind turbine.

2.1. Wind Turbine

In the generator-wind turbine system [14], the dynamic equation is written as:

Jωr(t)
d

dt
ωr(t) = Pm(t)− Pe(t) (1)

where ωr and Pm are the rotor speed and mechanical power of the wind turbine, respectively; Pe is
the electrical power of the generator and J is the inertia of the generator-wind turbine system. The
mechanical power is expressed by:

Pm(t) =
1

2
ρπR2Cp(λ(t), β(t))V 3

w(t) (2)

where R is the blade size; ρ is the air density; Vw is the wind speed; Cp is the power coefficient; β is the
pitch angle of the blade system and λ is the tip speed ratio defined by:

λ(t) =
Rωr(t)

Vw(t)
(3)

The maximum mechanical power Pmax is defined as:

Pmax(t) =
1

2
ρπR2Cpmax(β)V 3

w(t) (4)

An example of Cp(λ, β) [18] and Pm when β = 0 is shown in Figure 2.
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(a) (b)

Figure 2. Characteristics of the wind turbine when β = 0: (a) Cp versus λ;
(b) Pmax versus ωr.

Figure 2a indicates that when β = 0, there exists a maximum point Cpmax := maxλCp(λ, 0) = 0.48

attained by λopt = 8.123. As can be seen in Figure 2b, the wind turbine works in the optimal power
control region when the rotor speed is between the minimum speed ωrmin and the rated speed ωrrated or
when the wind speed is between the minimum speed Vwmin and the rated speed Vwrated. In this region, it
is desirable for the wind turbine to operate on the locus of the maximum power point Pmax. This locus,
named the MPPT-curve, is described by:

Pmppt(t) = koptω
3
r(t) (5)

where:
kopt =

1

2
ρπR5Cpmax

λ3opt
(6)

The objective of this paper is to propose an MPPT-scheme and a controller, such that the wind turbine
operates on the MPPT curve as ωrmin ≤ ωr(t) < ωrrated.

In fact, maxλCp(λ, β) is decreased when β increases [19], and maxλCp(λ, β) only reaches to
maxλ,β Cp(λ, β) at β = βmin, where βmin is the minimum value of the pitch angle in its operation
range and βmin is normally zero. In other words, to obtain maxλ,β Cp(λ, β), the pitch angle β is normally
set at βmin. Hence, without loss of generality, the following assumption is used in this research.

Assumption 1. The pitch angle β is kept at βmin = 0 as ωrmin ≤ ωr(t) < ωrrated.

2.2. DFIG

In the dqframe, the DFIG can be described as [19,20]:{
vs(t) = Rsis(t) + Ls

d
dt
is(t) + Lm

d
dt
ir(t) + ωsΘ(Lsis(t) + Lmir(t))

vr(t) = Rrir(t) + Lr
d
dt
ir(t) + Lm

d
dt
is(t) + ωss(t)Θ(Lmis(t) + Lrir(t))

(7)

where vs =
[
vsd vsq

]T
is the stator-side voltage; vr =

[
vrd vrq

]T
is the rotor-side voltage;

is =
[
isd isq

]T
is the stator-side current; ir =

[
ird irq

]T
is the rotor-side current and Θ =

[
0 −1

1 0

]
.
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ω, R, L and s represent rotational speed, resistance, inductance and rotor slip, respectively; subscripts
r, s and m stand for rotor-side, stator-side and magnetization. Note that ωs is normally constant. The
rotor slip of the DFIG is defined by:

s(t) = 1− ωr(t)

ωs
(8)

The power output of the generator is described by:

Pe(t) = Ps(t) + Pr(t) = (1− s(t))Ps(t) =
ωr(t)

ωs
Ps(t) (9)

where Ps and Pr are the stator-side and rotor-side power, respectively.

Assumption 2. The stator flux is constant, and the d-axis of the dq-frame is oriented with the stator flux
vector. Hence,

Ψs(t) =

[
Ψsd(t)

Ψsq(t)

]
≡

[
Ψsd

0

]
= Lsis(t) + Lmir(t) (10)

Then,

Ls
d

dt
is(t) + Lm

d

dt
ir(t) = 0 (11)

Moreover, the resistance of the stator winding can be ignored, i.e., Rs = 0.

By substituting Equations (10) and (11) and Rs = 0 into Equation (7), we have:

vs(t) =
[
0 ωsΨsd

]T
=
[
0 Vs

]T
(12)

because Vs = ‖vs(t)‖. From Equations (10) and (12), we have:

Lsis(t) + Lmir(t) =
1

ωs

[
Vs 0

]T
(13)

By substituting Equation (13) into the second part of Equation (7), we have:

d

dt
ir(t) = A1(t)ir(t) +

1

σ
vr(t)− d1(t) (14)

where:

σ = Lr −
L2
m

Ls
, Ṽs =

Lm
Ls

Vs, (15)

A1(t) = − 1

σ

[
Rr −σωss(t)

σωss(t) Rr

]
, d1(t) =

Ṽs
σ
s(t)

[
0

1

]
(16)

Lemma 1. A state-space representation of the active power Ps and the reactive power Qs on the stator
side is given by:

d

dt
x1(t) = A1(t)x1(t)−

Ṽs
σ
vr(t) + c1(t) (17)
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where:

x1(t) =

[
Qs(t)

Ps(t)

]
, c1(t) = −A1(t)

Lsωs

[
V 2
s

0

]
+ Ṽsd1(t) =

V 2
s

σLs

 Rr

ωs
Lrs(t)

 (18)

In addition, under Assumption 2, a state-space representation of the DFIG (from Equation (7)) is
described by:

d

dt
x(t) = A(t)x(t) +B(t)vr(t) + d(t) (19)

where:

x(t) =

[
Qs(t)

Pe(t)

]
(20)

A(t) = C(t)−1
(
A1(t)C(t)− Ċ(t)

)
=


−1− Rr

σ

ω2
s

ωr(t)
s(t)

−ωr(t)s(t)
d
dt
ωr(t)− ωs

Rr

σ
ωr(t)

 (21)

B(t) = − Ṽs
σ
C−1(t) C(t) =

1 0

0
ωs
ωr(t)

 (22)

d(t) = C(t)−1c1(t) =
V 2
s

σLsωs

[
Rr

Lrωr(t)s(t)

]
(23)

Proof. The power in the stator side are given as [20]:

x1(t) =

[
Qs(t)

Ps(t)

]
=

[
−isq(t) isd(t)

isd(t) isq(t)

][
vsd(t)

vsq(t)

]
(24)

By substituting Equations (12) and (13) into Equation (24), we have:

x1(t) = Vsis(t) = −Ṽsir(t) +
1

Lsωs

[
V 2
s

0

]
(25)

Then, from Equations (25) and (14), (17) changes as follows:

d

dt
x1(t) = −Ṽs

d

dt
ir(t) = −A1(t)Ṽsir(t)−

Ṽs
σ
vr(t) + Ṽsd1(t)

= A1(t)x1(t)−
Ṽs
σ
vr(t)−

A1(t)

Lsωs

[
V 2
s

0

]
+ Ṽsd1(t)

By applying a transformation:
x1(t) = C(t)x(t) (26)

to Equation (17), we have:

d

dt
x1(t) = Ċ(t)x(t) + C(t)

d

dt
x(t) = A1(t)x1(t)−

Ṽs
σ
vr(t) + c1(t) (27)
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Hence, Equation (19) changes to be:

d

dt
x(t) = C(t)−1

(
A1(t)C(t)− Ċ(t)

)
x(t)− Ṽs

σ
C(t)−1vr(t) + C(t)−1c1(t) (28)

Here, it is easy to check Equations (23) and (21) by using:

Ċ(t) =

1 0

0 − ωs
ωr(t)2

d
dt
ωr(t)

 (29)

2.3. Converter

The overall converter system is shown in Figure 1, where the RSC and GSC are linked by a
DC circuit [3,20]. This DC circuit, called the “DC link”, consists of a capacitor. Normally, the GSC
is connected to the grid via a filter (represented by a resistor Rf , an inductor Lf in series and a power
factor correction pfin parallel) [20]. This RfLf circuit can be described in the dqframe as:

vg(t) = vs(t) +Rf ig(t) + Lf
d

dt
ig(t) + LfωsΘig(t) (30)

where vg =
[
vgd vgq

]T
is the voltage output of the GSC; ig =

[
igd igq

]T
is the current output of the

GSC and Rf and Lf are the resistance and inductance, respectively, of the RfLf circuit.

Assumption 3. Power loss in converters and the RfLf circuit is neglected [19,21].

Under Assumption 3, the DC link is described as [21]:

d

dt
Vdc(t) =

1

CVdc(t)
(Pr(t)− Pg(t)) (31)

where C is the capacitance of the capacitor; Vdc is the DC voltage on the DC link and Pg is the active
power output of the GSC [20].

Assumption 4. The dq frame in which the d axis is oriented with the voltage vector vs, so vsd(t) = Vs

and vsq(t) = 0.

Under Assumption 4, the active power output of the GSC connected to the grid is described by:

Pg(t) = vsd(t)igd(t) + vsq(t)igq(t) = Vsigd(t) (32)

Lemma 2. Under Assumption 4, a state-space representation of the GSC connected to the grid is
described as:

d

dt
ig(t) = A2ig(t) +

1

Lf
vg(t)−

1

Lf

[
Vs

0

]
(33)

A2 = −Rf

Lf
I − ωsΘ (34)

where I is the identity matrix.
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Proof. From Equation (30), it is easy to obtain:

d

dt
ig(t) = −

(
Rf

Lf
I + ωsΘ

)
ig(t) +

vg(t)− vs(t)
Lf

(35)

From Assumption 4, we have Equation (33). This completes the proof.

3. Controller Design and Maximum Power Strategy

Assumption 5. We can measure ir, is, ig, vs, Vdc and ωr. In addition, we can manipulate vrd, vrq, vgd
and vgq and know parameters Rs, Rr, Ls, Lr and Lm.

Assumption 6. The dq/abc transformation block, the PWM and the IGBT-valves in converters
operate properly.

3.1. Rotor-Side Control

The objective of RSC is to maintain, at the desired references, the reactive power in the stator side Qs

and the total active power output Pe of the DFIG.

xTr =
[
Qsref Peref

]T
(36)

From Equations (9), (14) and (25), to adjust Qs and Pe corresponding to ird and irq, vrd and vrq must
be regulated, respectively. To perform this task, previous studies employed PI controllers [9], [22]. In
this study, a new control law is proposed.

Lemma 3. (RSC control) Under Assumptions 2 and 5, when we can measure d
dt
ωr(t) for any desired

reference xr (from Equation (36)), if we use any positive definite matrix P ,

vr(t) = −B(t)−1
(
A(t)x(t) + Pex(t)−

d

dt
xr(t) + d(t)

)
(37)

ex(t) = xr(t)− x(t) (38)

for the DFIG (from Equation (19)), then it is ensured that:

lim
t→∞

ex(t) = 0 (39)

Proof. By applying Equations (37) to (19), we have:

d

dt
x(t) = −Pex(t) +

d

dt
xr(t) (40)

which is equivalent to:

d

dt
ex(t) = −Pex(t) (41)

It is obvious that when we define a Lyapunov function V (ex) = eTx ex, its time derivative becomes:

d

dt
V (ex) = 2ex(t)

T d

dt
ex(t) = −2ex(t)

TPex(t) < 0 (42)

for any ex(t) 6= 0. Hence, ex(t) converges to zero.
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From Lemma 3, if the rotor voltage vr is designed as Equation (37), the power output of DFIG will
converge to its reference value (given Equation (36)).

3.2. Maximum Output Power Control

The main objective of this section is to propose a new MPPT scheme that improves the conventional
MPPT-curve method [22] so that Pm approaches the neighbor of Pmax as ωrmin ≤ ωr(t) < ωrrated, as
shown in Figure 2b. From Equation (4) and Figure 2a, Pm(t) only reaches the neighbor of Pmax as
λ approaches the neighbor of λopt. Therefore, in this study, a new strategy is proposed, such that λ
approaches the neighbor of λopt.

Assumption 7. The wind turbine operates in the optimal power control region, as shown in Figure 2b,

and λmin ≤ λ(t) ≤ λmax, where λmin =
Rωrmin

Vwrated
. In addition, there exists a constant γ, such that∣∣ d

dt
Vw(t)

∣∣ ≤ γ.

For the wind turbine (from Equations (1)–(4)) and Cp(λ) (shown in Section 4), we have Remark 1,
as follows.

Remark 1. From (1) and (3) and from the definition of kopt, we have:

Pm(t)− koptω3
r(t) =

ρπR5ω3
r(t)

2

(
Cp(λ(t))

λ3(t)
− Cpmax

λ3opt

)
= −ζ(t) (λ(t)− λopt) (43)

where:

ζ(t) =
ρπR5

2λ3opt

ω3
r(t)

λ(t)− λopt

(
Cpmax − Cp(λ(t))

λ3opt
λ3(t)

)
(44)

is positive, continuous and bounded in λmin ≤ λ(t) ≤ λmax.

Theorem 1. Under Assumption 7, suppose that we use a positive constant α < J , kopt (given in
Equation (6)), and Peref (given in Equation (36)) for the RSC control (given in (37)) as:

Peref(t) = koptω
3
r(t)− αωr(t)

d

dt
ωr(t) (45)

If there exists a positive constant 0 < χ < 2ζ(t), such that:

P̃ := 2P −

0 0

0 χ−1
λ(t)

ηω2
r(t)

 > 0 (46)

for the definite matrix P > 0 in Equation (37) and all t, then there exists a time t0 > 0, such that for
eλ(t) = λ(t)− λopt,

|eλ(t)| ≤ 2(J − α)γmax
ω2
r(t)

(2ζ(t)− χ)Vw(t)
(47)

for all t ≥ t0.
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Proof. First, let ex(t) =
[
eQ eP

]T
= xr(t)− x(t). We define a Lyapunov candidate as:

V (ex, eλ) = ex(t)
Tex(t) + e2λ(t) (48)

The time derivative of the Lyapunov function is:

V̇ (ex, eλ) = 2ex(t)
T d

dt
ex(t) + 2eλ(t)

d

dt
λ(t) (49)

Since λ(t) = Rωr(t)/Vw(t), we have:

d

dt
λ(t) =

λ(t)

ωr(t)

d

dt
ωr(t)−

λ(t)

Vw(t)

d

dt
Vw(t) (50)

From Equation (1) and eP (t) = Peref(t)− Pe(t), we have:

d

dt
ωr(t) =

1

Jωr(t)
(Pm(t) + eP (t)− Peref(t)) (51)

By substituting Peref from Equations (45) into (51), we get:

d

dt
ωr(t) =

1

ηωr(t)
(Pm(t)− koptω3

r(t) + eP (t)) (52)

where η = J − α > 0. By substituting Equations (43) into (52), we have:

d

dt
ωr(t) =

1

ηωr(t)
(eP (t)− ζ(t)eλ(t)) (53)

From Equations (53) and (50), we have:

2eλ(t)
d

dt
λ(t) = δ1(t)

(
2eP (t)eλ(t)− 2ζ(t)e2λ(t)

)
− 2λ(t)

Vw(t)
eλ(t)

d

dt
Vw(t) (54)

where δ1(t) :=
λ(t)

ηω2
r(t)

> 0. Since:

2eP (t)eλ(t) ≤ χ−1e2P (t) + χe2λ(t) (55)∣∣∣∣ ddtVw(t)

∣∣∣∣ ≤ γ (56)

−2λ(t)eλ(t)

Vw(t)

d

dt
Vw(t) ≤ 2λ(t)|eλ(t)|

Vw(t)
γ (57)

we have:

2eλ(t)
d

dt
λ(t) ≤ χ−1δ1(t)e

2
P (t)− δ2(t)e2λ(t) + δ3(t)|eλ(t)| (58)

where:
δ2(t) := (2ζ(t)− χ)δ1(t) > 0

and:
δ3(t) :=

2λ(t)γ

Vw(t)
≥ 0
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From Equations (42) and (58), (49) becomes:

V̇ (ex, eλ) ≤ −2eTx (t)Pex(t) + χ−1δ1(t)e
2
P (t)− δ2(t)e2λ(t) + δ3(t)|eλ(t)| (59)

Obviously,

−2eTx (t)Pex(t) + χ−1δ1(t)e
2
P (t) = −eTx (t)P̃ ex(t) < 0

Hence,

V̇ (ex, eλ) ≤ −δ2(t)|eλ(t)|
(
|eλ(t)| −

δ3(t)

δ2(t)

)
≤ −δ2(t)|eλ(t)| (|eλ(t)| −∆3) (60)

where:

∆3 = max
δ3(t)

δ2(t)
= 2ηγmax

ω2
r(t)

(2ζ(t)− χ)Vw(t)
(61)

Then, V (ex, eλ) decreases when:

|eλ(t)| > ∆3 = 2ηγmax
ω2
r(t)

(2ζ(t)− χ)Vw(t)
(62)

This completes the proof of Theorem 1.

From Theorem Equation (1), if the reference power Peref in Equation (36) is calculated as
Equation (45), the tip-speed ratio λ of the wind turbine will converge to the neighbor of λopt and, hence,
Pm will approach its maximum value.

3.3. Grid-Side Control

From Equation (3), if Vdc on the DC link is kept at a constant value, all power output generating in the
rotor side will be delivered to the connected grid. Moreover, if the igq− component is maintained at zero,
the power loss in the RfLf circuit will be minimized. Consequently, the conversion energy efficiency
of the DFIG-wind turbine will be maximized. Without loss of generality, in this section, the objective
of GSC is to maintain Vdc(t) and igq(t) at desired references Vdcref(t) and igqref(t), respectively. From
Equations (31)–(33), we need to adjust vg.

Theorem 2. For any desired reference Vdcref(t) and igqref(t), for GSC (given in Equation (33)), we use:

vg(t) = Lf

(
d

dt
igr(t) +Q(t)ei(t)− A2ig(t)

)
+

[
Vs

0

]
(63)

igr(t) =

 1

Vs

(
Pr(t)− CVdc(t) ddtVdcref(t)

)
− kev(t)

igqref(t)

 (64)

ev(t) = Vdcref(t)− Vdc(t) (65)

ei(t) = igr(t)− ig(t) (66)
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and if there exists a constant k > 1/2 and a positive definite matrix Q(t), such that:

Q(t)− 1

Vdc(t)

[
1 0

0 0

]
> 0 (67)

it is ensured that:
lim
t→∞

ev(t) = 0 and lim
t→∞

(igqref(t)− igq(t)) = 0

Proof. By substituting Equations (63) into (33), we have:
d

dt
ig(t) =

d

dt
igr(t) +Q(t) (igr(t)− ig(t)) (68)

By defining ei(t) =
[
ei1(t) ei2(t)

]T
= igr(t)− ig(t), Equation (68) means:

d

dt
ei(t) = −Q(t)ei(t) (69)

Furthermore, by defining ev(t) = Vdcref(t)− Vdc(t), from Equation (31), we have:
d

dt
ev(t) =

d

dt
Vdcref(t)−

1

CVdc(t)
(Pr(t)− Vsigd(t)) (70)

where we use Pg(t) = Vsigd(t). To use Equation (70), we can show:

ei1(t) = −CVdc(t)
Vs

d

dt
ev(t)− kev(t) (71)

When we introduce a Lyapunov function:

V (ev, ei) =
C

Vs
e2v(t) +

1

2
eTi (t)ei(t) (72)

and its time derivative is expressed as:

V̇ (ev, ei) =
2C

Vs
ev(t)

d

dt
ev(t) + eT(t)

d

dt
ei(t) = − 2

Vdc(t)
ev(t) (e5(t) + kev(t))− eTi (t)Q(t)ei(t)

= −2k − 1

Vdc(t)
e2v(t)−

1

Vdc(t)
(ev(t) + ei1(t))

2 +
1

Vdc(t)
e2i1(t)− eTi (t)Q(t)ei(t)

Hence, if Equation (67) holds, then V̇ (ev, ei) < 0 for all nonzero ev and ei. This completes the proof
of Theorem 2.

From Theorem 2, if vg is designed as Equation (63), where Vdcref and igqref are set at a constant and
zero, respectively, the power loss in the converter and RfLf will be minimized.

Control diagrams for the RSC and GSC are indicated in Figure 3.

(a) (b)

Figure 3. Control of DFIG: (a) rotor-side converter (RSC) controller; (b) grid side-converter
(GSC) controller.
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4. Performance Validation

This section compares the simulation results of the 1.5-MW DFIG wind turbine using the proposed
MPPT scheme with that of the same wind turbine using the conventional MPPT-curve method using
PI control [9,22]. MATLAB/Simulink was used for the simulation. The parameters used for the wind
turbine in the simulation are given in Table 1 [23].

Table 1. Parameters of the wind turbine.

Name Symbol Value Unit
The length of blade R 35.25 m
Rated rotor speed ωrrated 22 rpm
Minimum rotor speed ωrmin 11 rpm
Rated wind speed Vwrated 12 m/s

The power coefficient of the wind turbine [18] is:

Cp(λ, β) = 0.5176

(
116

λi
− 0.4β − 5

)
e
−

21

λi + 0.0068λ

where:

1

λi
=

1

λ+ 0.08β
− 0.035

β3 + 1

with air density ρ = 1.1225 kg/m3 [20] and system inertia J ≈ 4.45× 105 kg ·m2 [17]. A wind speed
profile (shown in Figure 4) was used, in which d

dt
Vw(t) ≤ γ = 0.44 m/s2. To test the proposed MPPT

strategy and controllers, the wind velocity was always below the rated wind speed, 12 m/s.

(a) (b)

Figure 4. Wind speed profile: (a) Vw(t) and (b) d
dt
Vw(t).

The rated rotor speed and the minimum one are ωrrated = 2.3 rad/s and ωrmin = 1.15 rad/s,
respectively. From the Cp(λ, β) equation and β = 0, we can obtain λopt = 8.123 and λmax = 13.4.
The minimum value of λ is defined by:

λmin =
Rωrmin

Vwrated
=

35.25× 1.15

12
= 3.4, and Vwmin =

Rωrmin

λopt
=

35.25× 1.15

8.123
= 5m/s



Energies 2015, 8 11731

The reference values settings for the RSC and GSC control (from (37) and Equations (63)), with
Qsref(t) = 0, Vdcref = 1150 V and igqref(t) = 0, are:

P =

[
2 0

0 2

]
, Q(t) =

0.4 +
1

Vdc(t)
0

0 1.05

 and k = 30

We used Peref for the RSC control (from Equation (45)) with α = 0.3 J and kopt = 0.85×105 kg ·m2.
We have:

max δ1(t) =
λmax

ηω2
rmin

=
13.4

3.12× 105 × 1.152
≈ 0 (73)

where η = J − α = 0.7 J = 3.12 × 105 kg · m2. With 5 m/s ≤ Vw(t) ≤ 12 m/s and
1.15 rad/s ≤ ωr(t) ≤ 2.3 rad/s, ζ versus ωr and Vw are shown in Figure 5a.

(a) (b)

Figure 5. (a) ζ and (b) δ3
δ2

versus ωr and Vw.

From Figure 5a, we can obtain min ζ(t) = 0.343 × 105; we choose χ = 1. With χ = 1, δ3
δ2

versus
ωr and Vw are shown in Figure 5b. From that figure, we obtain ∆3 = 0.866. Obviously, the condition in
Equation (46) is satisfied, and Equation (47) gives the bound of the tip-speed ratio λ as:

|λ(t)− λopt| ≤ ∆3 = 0.866

Hence, 7.257 ≤ λ(t) ≤ 9.989.
We compare the efficiency of the maximum power output in Figure 6. In Figure 6a, the power

coefficient Cp is always maintained at its maximum value Cpmax = 0.48 when the wind speed varies
insignificantly. However, deterioration of Cp during a period of rapid change in wind conditions still
occurs. Due to the large inertia of the system when the wind velocity increases or decreases quickly, the
rotor speed of the turbine cannot respond instantaneously. The tip-speed ratio λ cannot keep its optimum
value λopt; and hence, the decrease in Cp is unavoidable. Compared to the conventional MPPT-curve
method, in the proposed method, Cp retains Cpmax promptly, mainly because its inertia seems to be
reduced from J to J − α; thus, λ retains λopt. When the MPPT-curve method is used, the minimum
value of Cp during the interval of rapid decrease in wind speed is 0.45; when the proposed method is
used, that value is 0.472.
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Figure 6b depicts that, with the proposed scheme, λ only varies in a narrow range,
7.257 < λ(t) < 8.989, which is theoretically ensured by Theorem 1. By contrast, with the conventional
scheme, λ vacillates in a larger range.

Concerning mechanical power, Figure 6c depicts the error between Pmax and Pm. Obviously, during
periods of stable wind conditions, there is no difference between the conventional and proposed methods.
However, when the wind velocity dramatically varies, the error in the proposed method is significantly
smaller than that in the other, mainly because the power coefficient Cp, with the conventional method, is
reduced significantly during sudden variations in wind conditions.

(a) (b)

(c) (d)

Figure 6. Simulation results using the proposed maximum mechanical power method:
(a) power coefficient; (b) operation range of λ; (c) error between Pmax and Pm; (d) electrical
energy output.

Figure 6d indicates that during the period of increasing wind velocity [20 s,40 s], a higher mechanical
energy part is stored in its mechanical system to accelerate the rotor speed by the proposed method
than that by the conventional MPPT-curve method. Hence, the electrical energy output in this period is
smaller. However, this mechanical energy part is released during deceleration of the rotor speed, as seen
in [60 s,75 s]. Obviously, by the proposed method, the total electrical energy output of the generator is
higher than that by the conventional one, as shown in Figure 6d, mainly because Pm, in the proposed
method, has a higher value. This affirms the improved efficiency of the proposed method.
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MPPT tracking ability is indicated in Figure 7 where the wind speed profile shown in Figure 4a is
used. As that figure shows, with the proposed method, the curve Pm versus Vw is approximate to the
ideal curve, Pmax versus Vw, while, with the conventional scheme, this is impossible (see Figure 7b). In
other words, the wind turbine with the proposed method can track the MPPT better than that with the
conventional one.

(a) (b)

Figure 7. Pm(t) versus Vw(t): (a) proposed scheme and (b) conventional
MPPT-curve method.

Concerning the proposed control laws and scheme, Figure 8a argues that both eQ(t) = Qsref(t)−Qs(t)

and eP (t) = Peref(t)−Pe(t) are approximately zero, which means thatQs and Pe always converge to their
reference values, Qsref and Peref , respectively; in other words, Lemma 3 is ensured. Likely, Theorem 2
is also guaranteed from Figure 8b because ev(t) = Vdcref(t) − Vdc(t) and ei2(t) = igqref(t) − igq(t) are
very small. In other words, the controllers suggested for the RSC and GSC have good performance.

(a) (b)

Figure 8. Error between reference signal and actual output in the controller: (a) RSC
(b) GSC.
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When a rapid wind profile as shown in Figure 9a is used, the simulation results are demonstrated in
Figures 9b–9d. Obviously, the wind turbine by the proposed method has better performance in the power
coefficient Cp, the mechanical power and the electrical energy output than by the conventional one.

(a) (b)

(c) (d)

Figure 9. Simulation results with the rapid wind profile: (a) wind speed profile; (b) power
coefficient; (c) error between Pmax and Pm; (d) electrical energy output.

5. Conclusions

This paper proposes an MPPT method for DFIG wind turbines. The proposed MPPT method ensures
that the wind turbine can track the maximum power operation point better than can a wind turbine with
the conventional MPPT-curve method, as verified via the simulation of a 1.5-MW DFIG wind turbine.
These simulation results indicate that Cp reached Cpmax, λ was varied around λopt and the electrical
energy output of the generator was higher than that achieved with the conventional method. Furthermore,
with the designed controllers, the error between desired values and actual ones converged to zero. Thus,
the proposed control method is proven to achieve stable operations.
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