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Abstract: Heating, ventilating and air-conditioning (HVAC) systems are typical non-linear
time-variable multivariate systems with disturbances and uncertainties. In this paper, an
approach based on a combined neuro-fuzzy model for dynamic and automatic regulation
of indoor temperature is proposed. The proposed artificial neural network performs indoor
temperatures forecasts that are used to feed a fuzzy logic control unit in order to manage the
on/off switching of the HVAC system and the regulation of the inlet air speed. Moreover, the
used neural network is optimized by the analytical calculation of the embedding parameters,
and the goodness of this approach is tested through MATLAB. The fuzzy controller is driven
by the indoor temperature forecasted by the neural network module and is able to adjust the
membership functions dynamically, since thermal comfort is a very subjective factor and
may vary even in the same subject. The paper shows some experimental results, through a
real implementation in an embedded prototyping board, of the proposed approach in terms
of the evolution of the inlet air speed injected by the fan coils, the indoor air temperature
forecasted by the neural network model and the adjusting of the membership functions after
receiving user feedback.

Keywords: thermal comfort; fuzzy logic controller; artificial neural networks; HVAC
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1. Introduction

In the few last years, the scientific community has carried out some works finalized to improve indoor
environmental quality (IEQ) in order to ensure the health and the comfort of the occupants inside a
building. The IEQ refers to the building performance in providing an indoor environment to its occupants
that meets the expectations of maintaining the occupants’ health, well-being and productivity [1].
Moreover, the lifestyle of modern society leads to spending much time in indoor environments (offices,
houses, rooms for games and sports, and many more). For this reason, the indoor quality of the air is
considered an important well-being factor. In fact, a pleasant and comfortable environment can increase
productivity or learning. On the contrary, a poor indoor comfort has negative effects, both on users and
on buildings’ energy efficiency [2,3].

Today, environmental impact has gained more and more interest in terms of well-being in all its
facets: acoustic comfort [4], visual comfort [5], thermal comfort [6], IEQ [7] and the productivity
and safety of the occupants in a confined place [8,9]. As mentioned above, temperature is one of
the parameters that contributes to the comfort of the individual within the occupied building. For
this reason, temperature control is a methodology that must be carefully analyzed for the individual’s
comfort. For this purpose, it is possible to define thermal comfort as “the condition of mind that expresses
satisfaction with the thermal environment and is assessed by subjective evaluation” [10]. Moreover, the
ANSI/ASHRAE (American National Standards Institute / American Society of Heating, Refrigerating
and Air Conditioning Engineers) 55-2010 standards define the thermally-acceptable environmental
conditions for the occupants of indoor environments [11] and suggest the temperatures and the air flow
rates for different types of buildings and different environmental circumstances. For example, a single
office in a building has an occupancy ratio per square meter of 0.1. In summer, the suggested temperature
is between 23.5 ◦C and 25.5 ◦C; and the airflow velocity is 0.18 m/s. In winter, the recommended
temperature is between 21.0 ◦C and 23.0 ◦C, with an airflow velocity of 0.15 m/s [12].

However, for the control of thermal comfort, it is necessary to obtain a good compromise. In fact,
in order to obtain indoor comfort, it is also necessary to take into account external parameters, such as
temperature, relative humidity, radiation, etc. However, these are not the only parameters that have an
influence on the comfort of the individual, because it is necessary to consider internal heat gains, thermal
insulation, natural ventilation, air infiltration and, also, the work being done by the occupants [13].

HVAC (heating, ventilating and air conditioning) systems deal with heating, ventilation and air
conditioning. They have the purpose of regulating the air conditions inside structures, usually of
large dimensions, such as industrial buildings, hospitals and office locations. Heating, ventilation
and air-conditioning are closely related, since they aim at achieving thermal comfort for building
occupants, ensuring acceptable air quality and minimizing the operating, installation and maintenance
costs. Moreover, due to the increase of fossil fuel costs and, consequently, the environmental problems
derived from them, the energy consumption of HVACs has become a very important issue. However,
this challenge must be achievable without compromising comfort and the indoor air quality. For these
reasons, it is necessary to propose new approaches in order to improve the efficiency of HVAC systems,
in terms of energy consumption, while maintaining the building environmental wellness. Some literature
works (i.e., [14]) show that the achieving of thermal comfort can lead to high energy consumption,
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especially in the case that the system tries to obtain an optimal combination of the different variables
(air temperature, air velocity, relative humidity, radiant temperature) that influence indoor comfort. On
the other hand, some attempts that want to reduce energy consumption can act to the detriment of
thermal comfort, producing adverse effects on human health. For these reasons, it is important to ensure
the proper functioning of such systems, in order to obtain the desired level of environmental comfort,
developing a suitable control system that is able also to promptly report possible faults or malfunctions.

Modern HVAC systems [15] can manage the power consumption more efficiently. However, in
buildings with older HVAC systems that cannot be significantly modified, energy-efficient heating
and cooling systems are not a realistic goal without sacrificing comfort. Using an intelligent
controller in HVAC systems, significant improvements in energy efficiency can be obtained without
major modifications to an existing heating and cooling system. Simple controllers or control
modules can be easy to install, to operate and to remove and are an attractive enhancement for an
environmentally-friendly home. In order to identify an approach that can be useful, as said previously,
it is necessary to start from the analysis of a generic HVAC system. In fact, an HVAC system is a
complex, non-linear, multi-input multi-output system with several variables (air temperature, air velocity,
humidity, etc.) and is influenced by disturbances and uncertainties, such as external air temperature or
occupants’ activities.

Several works focus on both the research of a mathematical model, in order to accurately describe
an HVAC system [16,17], and the analysis of the parameters and the characteristics that need to be
considered in the development phase [18,19]. Considering both the features and the problems listed
previously, the application of intelligent control strategies can be a promising solution for achieving
better results in HVAC systems compared to conventional control methods.

Therefore, in this work, a control system based on a soft computing technique is proposed. The soft
computing techniques fit themselves well to the adjustment of an existing HVAC system, since they have
been proposed for the construction of new generation artificial intelligence (high machine intelligence
quotient, human-like information processing) and for solving non-linear and mathematically unmodeled
systems. In addition, soft computing techniques can be implemented at low cost. The proposed control
system takes into account the place where it operates and the weather-climate parameters that can
influence the comfort of the individual directly or indirectly. The soft computing techniques used in this
work consist of a fuzzy logic controller (FLC) and an artificial neural network (ANN), since their inputs
and outputs are real variables mapped with a non-linear function. For this reason, these soft computing
techniques can be appropriate for several engineering problems, especially for complex problems, where
classical control methods do not achieve comparatively favorable results. The ANN has been chosen,
because it can be a valuable tool for the prediction of weather and climate parameters, while the use of
rule-based controllers (FLC) enables the implementation of multi-criteria control strategies. In fact, the
use of smart setting and tuning techniques for these controllers can improve the energy savings and the
indoor comfort of building occupants. For this reason, the FLCs, based on linguistic rules instead of
inflexible reasoning, can be the right choice to describe HVAC systems and to increase thermal comfort.
Anyhow, it is necessary to forecast weather and climate parameters, and then, this can be done by a
neural network that is well suited for this purpose.
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1.1. Motivation

The main aim of this paper is to show the advantages of the proposed neuro-fuzzy approach in order
to meet the requirements of the thermal comfort of the users. Literature works have shown that neural
networks can be both a support for the prediction of weather and climate parameters and can influence
the comfort of the individual [20]. Considering the artificial neural network model proposed in this
work, an analysis will be done in order to point out the importance of designing the temperature forecast
model efficiently, especially with respect to the selection of the order of the regressor for each of the
external and internal used parameters. Moreover, an analysis on the embedding parameters of the neural
network will be carried out in this paper. In fact, if the embedding dimension and time delay are chosen
properly, the state can be reconstructed without a change in the dynamical properties. In particular,
after proper selection of the embedding dimension and the time delay, the state is reconstructed in
the form of delay coordinates. The reconstructed state can be used to perform one-step prediction,
which involves finding an appropriate mapping function from the state to time series values. The output
(forecasted climate values) of the neural network will be used to feed a fuzzy logic controller, which
has the goal of keeping acceptable indoor conditions from the thermal comfort point of view through
the dynamic adjustment of the membership functions. In fact, the real innovation introduced in this
paper is represented by the dynamic fuzzy logic controller that is able to guarantee not only the thermal
comfort in an environment in which there are several occupants, but thanks to its ability to dynamically
change the membership functions, also ensures the optimum comfort in the case when there is a single
occupant in the environment; whereby, it is useful to note that this paper introduces a new approach
(not an application) to manage and to optimize HVAC systems. Moreover, the development of the
proposed approach on an embedded prototyping board will be presented.

The paper is organized as follows. In Section 2, the main related works in order to deduce the
innovations introduced with this work are shown. In Section 3, the system architecture and the proposed
approach are described, while the neural network and the fuzzy logic controller are introduced in
Section 4 and Section 5, respectively. In Section 6, the performance obtained by the proposed approach
is shown, and finally, in Section 7, the paper is summarized, reporting the conclusions.

2. State-of-the-Art

Air temperature control inside buildings is not easy, if the purpose is the maintaining of thermal
comfort conditions. The thermostat is a device used to regulate the indoor temperature parameters. It is
low cost and reusable. However, considering its very reduced functionalities, it is not suitable in order
to meet some typical requirements, with the purpose of obtaining improved comfort parameters [21].
Moreover, it is necessary to consider the increasing of the power consumption, due to the setting choices
of the users inside the building. Therefore, it is necessary to develop smart strategies for thermal control
in order to obtain internal comfort automatically.

Several literature works deal with assessing, creating and maintaining indoor comfort conditions
for building occupants [22]. The IEQ is influenced by several factors: parameters, such as the
thermal-physical properties of building materials and the architectural features of the building (layout,
orientation, transparency ratio, shape factor, solar irradiation). However, these are not the only
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parameters that have an influence on the comfort of the individual. In fact, it is necessary to consider
also the internal heat gains, the thermal insulation, the natural ventilation, the air infiltration and also the
work done by the occupants [13]. Moreover, the IEQ is influenced by individual characteristics and by
physiological parameters, such as age, clothing and physical activity [23].

In recent years, several studies focused on soft computing technique applications, whose objective is
to evaluate, to decide, to monitor and to measure in several application fields, emulating and using human
ability to perform the above activities on the basis of experiences. Soft computing techniques have been
proposed for the construction of new generation artificial intelligence and for solving non-linear and
mathematically unmodeled systems. For this reason, soft computing techniques are applied in various
fields, such as wireless sensor networks [24], flight controllers [25] and industrial networks [26], and
they have found also several applications in HVAC systems. Since the inputs and the outputs of fuzzy
logic controllers (FLCs) are real variables mapped with a non-linear function, they are appropriate for
various engineering problems, especially for complex problems where classical control methods do not
achieve comparatively favorable results. It is necessary to note that the human sensation of thermal
comfort is subjective and can vary among occupants and over time.

Artificial neural networks (ANNs) have been widely used to forecast indoor and outdoor air
temperature in building applications, sometimes coupled with fuzzy logic systems [27]. However, an
adequate literature on the coupling of fuzzy logic and a neural network in order to guarantee comfort
evaluation is missing.

A hybrid model, in order to control indoor thermal comfort in an HVAC system, is presented in [28].
The proposed model suggests a building structure and a fuzzy model in order to achieve indoor thermal
comfort. To evaluate indoor thermal comfort situations, the predicted mean vote (PMV) and percentage
of dissatisfaction indicators are used. The PMV is used to quantify the subjective evaluation of the
comfort sensation of the occupants of indoor environments. It is an index proposed by Fanger [29] in
order to predict the average vote of a large group of people on the thermal sensation scale. Several
factors influence the PMV parameter, such as the metabolic rate, clothing insulation, the air temperature
and humidity, the air velocity and the mean radiant temperature.

Computational intelligence tools, including fuzzy logic and artificial neural networks, are also used
in [30]. The authors propose a novel approach for the development of an automatic building diagnostic
software tool for health monitoring system. The proposed model can be used to monitor a component of
the HVAC system, detect fault conditions and trends and, then, classify the fault condition. The results of
simulations underline that the creation of a health monitoring system can involve several benefits, such
as helping to reduce maintenance efforts considerably, finding faults before critical failures occur and
avoiding suboptimal system performance, in regard to energy consumption and user satisfaction.

The approach proposed in this paper is inspired by [20], where ANN models have been used for
the control of thermal conditions combined with a fuzzy logic system. In fact, the authors show that
such systems, as well as having a good control of internal air temperature, also contribute to the energy
savings of the building. Specifically, in [20], the application of a combined neuro-fuzzy model for indoor
temperature dynamic and automatic regulation is proposed. The main aim of the authors was in pointing
out the effectiveness of the hybrid neuro-fuzzy approach and the importance of efficiently designing
the temperature forecast model, especially with respect to the selection of the order of the regressor
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for each of the external and internal parameters used. Anyhow, the approach proposed in [20] can be
improved considerably, for example, optimizing both the neural network, by calculating the embedding
parameters through the most appropriate methodology, and the FLC, by using more inference rules and
making it dynamic.

After analyzing these works that propose a neuro-fuzzy approach in HVAC systems, it is clear that
adequate research works in order to guarantee comfort evaluation are missing. For this reason, in the
following sections, the research works that apply neural network models and fuzzy logic controllers in
HVAC systems will be analyzed separately.

2.1. Neural Network Models in Comfort Indoor Applications

Scientific research offers several works related to the assessment and the maintenance of thermal
comfort conditions tested by occupants [22]. In many works, a neural network is used in order to
control the temperature inside buildings, with the purpose of maintaining adequate comfort conditions
for the users.

The authors of [31] introduce an innovative control strategy, used in an air handling unit (AHU), by
using a couple of neural networks; the second is called an auxiliary neural network. The networks are
implemented in order to ensure a better control of the AHU and to obtain better thermal comfort and
lower energy consumption.

In this context, the literature provides different models of neural network applications, such as, for
example, the implementation of a model based on an Elman recurrent artificial neural network for the
prediction of the electrical consumption supplied to the residential users located within a particular
area of the town of Palermo (Italy) for cooling in summer [32]. In recent years, in fact, the use of
electrical devices for air conditioning (as multi-split systems) and resulting electricity demand in the
civilian sector (residential and tertiary) have increased exponentially. The authors of [32] showed that
the use of an ANN and of meteorological data (model input) can provide information about the electricity
consumption of households, even in the absence of reliable data on the local spread of the AC devices.

In other studies [33], the neural network models have been also used to estimate the reference power
curve (on-line profile) in order to monitor the performance of a wind farm as a whole. In [33], the
authors have used and compared three different models of learning (a self-supervised neural network
called Generalized Mapping Regressor, a feed-forward multi-layer perceptron and a general regression
neural network) in order to estimate the relationship between the wind speed and the power generated in
a wind farm. This methodology has allowed the development of a non-parametric model of the power
curve that can be used as a reference profile for the on-line monitoring of the process of power generation
and for the prediction of the power of the wind park.

In other approaches, artificial neural networks have also been used in order to examine the
performance and the adaptability of predictive control strategies in residential buildings. They have been
developed based on the thermal properties of the building envelope [34], through predictive control based
on both ANN and non-ANN. The results show that the ANN-based models have the greater potentiality
to create favorable thermal conditions inside the examined buildings rather than a predictive model based
on non-ANN.
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In [35], a dynamic ANN model for the prediction of the energy consumption in an HVAC system
is presented. The aim is to maintain the temperatures in order to have an acceptable thermal comfort.
The reduction of the consumed energy is evaluated through a multi-objective optimization, by using a
particle swarm optimization algorithm.

The literature has demonstrated that ANNs are a useful tool to forecast temperatures and suggests
several challenges if combined with approaches that control specific parameters, in order to obtain
internal comfort and to reduce the discomfort, due to different comfort perceptions among different users.

2.2. Fuzzy Logic Controller Approaches

The authors of [36] want to demonstrate the efficacy in the fault occurrence of a power network
when fuzzy control is used in unified power flow controller systems. In order to show the efficacy of
the proposed controller, several simulations have been carried out, and the obtained results have been
compared with a conventional PID controller. Simulations results show that power system stability has
been significantly improved using the proposed approach, and it is clear that the fuzzy controller leads
to better results.

A new fuzzy control strategy, based on PID parameters tuning, to control HVAC systems is proposed
in [37]. In order to improve the design of a fuzzy controller, the proposed approach starts from the
mature technologies of the PID controller. The authors achieve a mathematical analytical expression of
the parameters between fuzzy controllers and the gain coefficients of PID controllers through an analysis
of the fuzzy controller’s structure. The proposed fuzzy controller is applied to control the temperature
in HVAC systems. The simulation test results show that the proposed fuzzy control strategy is effective
compared with the conventional PID control. Moreover, the proposed fuzzy control algorithm has less
overshoot, shorter setting time, better robustness, etc. The simulation and the experiment compare the
PID controller and the fuzzy controller, and the results show that the proposed novel design of the fuzzy
controller achieves good performance.

A novel optimal Type-2 fuzzy proportional-integral-derivative controller is proposed in [38] for
controlling the air supply pressure in an HVAC system. Both the parameters of input and output
membership functions and the PID controller coefficients are optimized simultaneously. Simulation
results indicate that the proposed fuzzy PID controller has a faster response, a smaller overshoot and
a higher accuracy than PID under normal conditions and under existing uncertainties in the parameters
of the model. For this reason, the authors suggest that their approach can be extensively applied in the
HVAC industry.

In [39], the development of an algorithm for the air-conditioning control system, based on fuzzy
logic in order to provide optimal conditions for comfortable living inside a building, is described. The
proposed system is composed by two sensors for feedback control, one to monitor temperature and
another one to monitor humidity. On the contrary, the FLC handles the compressor motor speed and the
fan speed in order to maintain the room temperature at a desired one. In order to validate the proposed
approach, a simulation is carried out using MATLAB, and the results are promising, as they show the
benefits introduced by the application of an FLC in an HVAC system.
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The author of [40] presents an adaptive incremental fuzzy PI controller for an HVAC system capable
of maintaining comfortable conditions under varying thermal loads. Since the HVAC systems have
strong-coupling and non-linear characteristics, fixed PI controllers have poor control performance and
more energy consumption. For this reason, the proposed approach combines together fuzzy control and
PI control. In the proposed control scheme, the error of the system output and its derivative are taken as
two parameters necessary to adapt the proportional (P) and integral (I) gains of the PI controller based
on fuzzy reasoning according to practical control experiences. In order to evaluate the effectiveness
of the proposed control methods in the HVAC system, they are compared with a fixed well-tuned PI
controller, and the results demonstrate that the adaptive incremental fuzzy PI controller has more superior
performance than the latter.

In [41], an application of a fuzzy logic system to an air conditioner is presented. With the proposed
approach, it is possible to modify the functioning of the air conditioner and to reduce the electrical
energy intake of the air conditioner compressor/fan; in this way, all available resources can be used in an
efficient manner. The analysis carried out by the authors clearly underlines the advantages of fuzzy logic
in dealing with problems that are difficult to study analytically, but can be solved in terms of linguistic
variables intuitively. In fact, in the case of an air-conditioning system, the fuzzy logic helped to solve a
complex problem without getting involved in the intricate relationships between physical variables.

3. System Model

The proposed system is characterized by the architecture depicted in Figure 1. The main elements
of the system are an artificial neural network (ANN) and a fuzzy logic controller (FLC), described
in detail in Section 4 and Section 5 of this work, respectively. In the proposed approach, the effect
of weather parameters are taken into account in order to train an ANN model aiming at forecasting
indoor temperature. The output of the ANN is used to feed an FLC, which has the goal of keeping
acceptable indoor conditions from the thermal comfort point of view. “Acceptable” means that it is
possible to achieve the target values of comfort established in [11] or those that are subjective. In fact,
thanks to user feedback, dynamically, at runtime, it is possible to obtain the comfort conditions based
on the user experience. The outdoor temperature, the air relative humidity, the wind speed and the
recorded indoor temperature in previous time steps are used by the ANN in order to perform the indoor
temperature forecast and, thereby, drive the controller. The fuzzy control system is driven by the indoor
temperature forecasted by the ANN module. Moreover, the air conditioning system, through fuzzy
logic, automatically sets the preferred temperature by the occupier of the environment. This is possible
because the FLC learns about the user’s personal preference of comfort. In fact, the control system
automatically sets the dehumidification, the cooling or the heating, depending on the initial temperature
of the environment, to values of programmed comfort. Anyhow, this setting may vary if the user prefers
a situation with regard to comfort different from that programmed in the system. This is possible because
comfort, although defined in [11], is a very subjective factor, and may vary, even in the same subject. In
fact, for example, if a user moves himself from a very hot environment to another that has a temperature
in line with the target values proposed in [11], he might feel very cold. Therefore, the user could set the
system in order to adapt to its temporarily feeling cold (due to the change in temperature). Subsequently,
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the system could be re-set to default values or to others lower or higher than the target, again if the
user requests. The fuzzy control system is dynamic, because receiving user feedback regarding the
temperature (cold, hot) is able to bring the room temperature to the maximum value of personal comfort.
In this work, the default comfort temperature in the studied environment refers to the acceptability range
proposed in [11]. The proposed model has a cascade structure, where the non-linear indoor temperature
forecasting module is directly linked to the FLC module that acts on the HVAC.

Figure 1. System architecture.
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The FLC aims for indoor thermal comfort conditions, always maintaining the temperature within the
desired range. In HVAC systems, the application of fuzzy controllers involves the advantage that they
can be characterized by means of linguistic rules instead of using complex analytical expressions. In
order to demonstrate the advantages of the use of ANN forecasted parameters as input for an FLC, in
this work, a scenario of a typical indoor environmental situation has been chosen. As shown in Figure 1,
the activation of the FLC refers to the difference ∆T between the value Ti(k) of the predicted indoor
temperature at time k and the value Ti(k−n) of the indoor temperature measured at time (k−n), where
n = 60, 55, . . . , 5 min.

In this paper, a comparison with the approach proposed in [20] will be done. Anyhow, it is necessary
to highlight that the approach proposed in this paper has characteristics significantly different from the
one proposed in [20]. First of all, the neural network proposed in this paper is optimized through a
different methodology. In fact, the method applied to calculate the embedding parameters, which will be
shown in Section 4.1, is purely analytical and leads to significantly higher performance. Furthermore,
the two works differ mainly for the fuzzy logic controller. In fact, from a deep study, both on the choice
and on the quantity of membership functions (MFs) [42–44], we have come to the conclusion that in
the proposed approach, it is necessary to use more MFs represented by Gaussian functional shapes [45],
rather than less MFs represented by triangular functional shapes [46]. In this way, the accuracy increases
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greatly, without degrading the computational performance, as shown in [47]. Moreover, considering
the thermal comfort within an environment, the authors of [20] do not consider the comfort of a single
occupant within the environment. In fact, the comfort measure can be subjective, depending on the user’s
feeling of being hot or cold. For this reason, the fuzzy logic controller, proposed in this paper, thanks
to its ability to dynamically change the MFs, achieves not only thermal comfort in an environment
in which there are several occupants, but also ensures the optimum comfort in the case when there
is a single occupant in the environment. In addition, the approach proposed in [20] has been only
simulated, while the one proposed in this paper has been implemented on a real prototyping board
(Figure 2). In fact, in order to validate the proposed controller, described in the following sections,
a real test-bed scenario has been deployed. The processing unit is the Microchip PIC24FJ256GB108
micro-controller [48], which integrates the control features of a micro-controller unit with the processing
and throughput capabilities of a digital signal processor. It is a 16-bit micro-controller with a maximum
processing power of 16 MIPS (Millions of Instructions Per Second). This micro-controller is ideal for
low power (< 100 nA standby current) and connectivity applications that benefit from the availability
of multiple serial ports (3xI2C, 3xSPI), 4xUARTS and 23 independent timers. Moreover, it is suitable
for embedded control and monitoring applications, due to the large amounts of RAM (16 kB) memory
for buffering and large (up to 256 kB) enhanced Flash program memory. The peripheral pin select
function aids in configuring the most efficient pin configuration of available I/O, and the charge time
measurement unit provides touch support for up to 64 individual buttons. Moreover, the analysis carried
out in Section 2 showed that adequate research works, in which neuro-fuzzy approach are applied in
HVAC systems, are missing. Therefore, it is clear that the approach proposed in this paper represents a
clear novelty among the various research works available in the literature.

Figure 2. Used prototyping board.

4. Forecasted Temperature by Using an ANN Model

This work implements an artificial neural network model with a non-linear-autoregressive
NNARX-type (neural network auto regressive external input model) structure, in order to obtain
forecasted indoor temperatures. The ANN model allows the emulation (by using MATLAB) of indoor
thermal comfort. Subsequently, the model coupled with an FLC is implemented in a real prototyping
board. The neural network has been built by using a multilayer perceptron (MLP) topology and has
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been trained by using several weather-climate outdoor and indoor data, measured and recorded in a
meteorological station located at Enna, a city in the center of Sicily. The used input data in the ANN are:

• dry bulb outdoor air temperature (Ta(◦C));

• relative humidity (RH(%));

• wind speed (WS(m/s));

• dry bulb indoor air temperature (Ti(◦C)).

The dry bulb indoor air temperature (Ti(◦C)) is the parameter used for the design of the fuzzy
controller. All data used for the development of the ANN are recorded during the period 2010–2011.
These data have been divided into two main groups, according to the months of detection, for the analysis
of thermal comfort conditions, in the summer and in the winter cases, respectively. The temperature of
thermal comfort will be reached when it falls within the acceptability range proposed by ASHRAE [11].
The input parameters (Ta, RH,WS, Ti) of the network are given in the NNARX model at the previous
time moments. Therefore, the NNARX model computes the expected indoor temperature at time t one
step ahead (t + 1). Subsequently, the difference (∆t) of the indoor temperature between t and t + 1

represents the input parameter of the FLC that, then, is able to run the fan coils in order to tune the inlet
air speed. The time instants of inputs parameters have not been determined arbitrarily, but using a special
formulation of embedding parameters, shown in Section 4.1. The equation used in order to develop the
ANN model is the following [49]:

ŷ(t|θ) = ŷ(t|t− 1, θ) = g(ϕ(t), θ) (1)

where ŷ is the y value at time t predicted by the model, θ is a vector containing the weights of the
neural network, g is the function realized by the neural network and g(ϕ) is the vector of regressors.
The selection of past used signals as regressors are carried out by using a new formulation of embedding
parameters described in the following section.

As previously said, the input parameters of the ANN have been divided into two groups in order to
simulate two different scenarios: indoor comfort in summer and winter. The network has been trained
using the Levenberg–Marquardt algorithm [50], and the NNARX model has been built with 30 neurons
in the hidden layer (HL) for winter scenario and 10 neurons in the HL for the summer scenario. The
training parameters used in the simulations are the following:

• performance goal: 5× 10−3;

• learning rate: 0.1;

• maximum failure number for validation: 20;

• Marquardt adjustment parameter: 0.05.

In this proposed ANN, the technique of early stopping is applied. This ensures good performance
and the best generalization of the implemented model, as well as avoiding the over-fitting phenomenon.
This technique envisages that the data set is split into three groups: training set (it computes the gradient
and then updates the weights and the bias of the network), validation set and test set. During the training
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process, the error on the validation set is calculated. Usually, both the validation set error and the training
set error decrease in the initial phase of training. When the over-fitting starts, the error on the validation
set typically begins to rise. If the validation set error continues to rise for a given number of epochs,
the training is stopped and returns the corresponding weights and bias to the minimum validation error.
In the considered case, 70% of the data have been used for the training set, 15% for the validation set
and the remaining 15% for the test set. Moreover, before starting the simulations, all data have been
normalized between the minimum and maximum of the data values. In the training set, the performance
of the network have been evaluated by mean squared error (MSE). The prediction performance of the
network have been evaluated in the test set, using the parameters shown in Table 1. Considering that Yi
is the value of the i -th actual observation and Ŷi is its forecasted value, the forecast error is calculated
as follows:

ei = Yi − Ŷi (2)

while pi is determined with the following equation:

pi =
Yi − Ŷi
Yi

× 100 (3)

Table 1. Error measures used to assess the forecasting performances of the neural network
auto regressive external input (NNARX) model.

Error Measure Formula

Mean squared error (MSE) mean(e2i )

Root square mean error (RMSE)
√
MSE

Mean absolute error (MAE) mean(|ei|)
Mean absolute percentage error (MAPE) mean(|pi|)

4.1. State Reconstruction: Embedding Parameters

According to Takens embedding theorem [51], the dynamical behavior of a state x = x(t) can be
reconstructed by means of a m-dimensional vector, such as:

[x(t); x(t− τ); . . . ; x(t− (m− 1)τ)] (4)

where τ is the delay time and m is the embedding dimension [52]. Even if their values are not uniquely
determined, these two parameters are crucial in the algorithm efficiency and result accuracy during the
reconstruction state. Considering the embedding dimensions, in the literature, two perspectives can be
distinguished [53]. In the first one, the embedding parameters may be considered as independent of each
other (according to Takens theorem). In this way, several different approaches can be proposed, such
as a GP algorithm [54], for m calculation, series correlation approaches [55], phase space extension
approaches [56], multiple autocorrelation and non-bias multiple autocorrelation [57], for τ evaluation.
The second perspective considers m and τ as closely related and then combined methods are proposed,
such as a small-window solution [58], the C-C (Correlation-Correlation integral) method [59] and
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automated embedding [60]. In this paper, a univariate time series {xi}Ni=1 is taken into account. The
time delay is determined by using the autocorrelation approach [61], while the embedding dimension is
calculated using the nearest neighbor technique [62].

As proposed in [61], the value of the time delay τ has been selected by examining the
autocorrelation function:

r(τ) =

∑N−τ
i=1 (xi − x) (xi+τ − x)∑N

i=1 (xi − x)2
(5)

where x is the mean value, i.e., x =
∑N

i=1 xi/N . A good compromise in the choice of the time delay is
setting r(τ) ≈ 0.97. It is possible to define:

Vn =
{
xn, xn−τ , . . . , xn−(m−1)τ

}
(6)

for all n = (m− 1)τ + 1, . . . , N . Moreover, considering J0 = (m− 1)τ + 1 and:

Vη(n) = argmin
{
‖Vn −Vj‖2 , j = J0, . . . , N j 6= n

}
. (7)

it is possible to determine the optimal embedding dimension m by minimizing the error function E(m),
that is:

E(m) =
1

N − J0

N∑
n=J0

∣∣xn − xη(n)∣∣ (8)

m = {E(m) : m ∈ N} (9)

These methods, used to calculate the embedding dimension and the time delay, have been chosen, as
they allow one to obtain good results with the univariate time series {xi}Ni=1 taken into account in this
paper. In this paper, a direct comparison with other approaches in the literature is not carried out, but
after a deep analysis of other methods in the literature, it has been deduced that, in the context considered
in this paper and if an univariate time series is taken into account, the autocorrelation function (for the
time delay) and the nearest neighbor technique (for the embedding dimension) are the most appropriate.

In Table 2, the embedding dimension (m) and the time delay (τ ), obtained for this study, for all of
the regressors are shown. The respective vectors ϕ(t) containing the regressors corresponding to the
NNARX model used for the winter and summer cases are, respectively:

ϕw(t) = [Ta(t− 3); . . . Ta(t− 18);Ti(t− 4); . . . Ti(t− 20);

WS(t− 3); . . .WS(t− 21);RH(t− 9); . . . RH(t− 45)]
(10)

ϕs(t) = [Ta(t− 7); . . . Ta(t− 21);Ti(t− 5); . . . Ti(t− 20);

WS(t− 6); . . .WS(t− 54);RH(t− 6); . . . RH(t− 24)]
(11)
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Table 2. Selected (optimal) values of the embedding parameters used for the NNARX model.

Regressors
Winter Scenario Summer Scenario

Ta Ti WS RH Ta Ti WS RH

m 6 5 7 5 3 4 9 4
τ 3 4 3 9 7 5 6 6

4.2. ANN Validation

This section shows the results obtained with the model NNARX, for both scenarios: summer and
winter. Some performances values are shown in order to obtain a metric of comparison between the
proposed NNARX model and the approach of Marvuglia et al. [20]. We expect some improvements
compared to the approach proposed in [20], because if we can reduce the prediction error, we can use a
neural network model that can obtain good input parameters for the fuzzy controller. It is necessary to
underline that a very low error (a variation of the order of tenths of a degree) may not affect the fuzzy
controller. However, it is also true that the approach described in [20] is based on 25 input (summer
scenario) and 27 inputs (winter scenario), and then, this makes it more difficult to implement on a real
device. Since our goal is to implement the coupled approach (ANN/FLC) on prototyping boards with
a micro-controller [48], the proposed approach aims to get the same or better performance than the
one of Marvuglia et al. [20], lowering the complexity of the algorithm using 20 inputs for the summer
scenario and 23 inputs for the winter scenario. This has been possible thanks to the method described in
Section 4.1. In fact, considering Table 2, the inputs of the neural network are given by the sum of the
embedding dimensions (m), specifically 20 = 3+4+9+4 for the summer scenario and 23 = 6+5+7+5

for the winter one. Furthermore, a higher number of inputs leads to a significant accumulation of data in
memory, and considering that the used prototyping board has reduced capacity in terms of memory, the
reduction in the number of inputs also improves memory management in the device.

Before comparing the two approaches, it is necessary to analyze the best performance of the
proposed approach among all trained networks. Subsequently, it is possible to compare the two
approaches. Tables 3 and 4 show the values obtained by performance evaluation in terms of error values
(MSE, RMSE, MAE, MAPE). The measures have been carried out by varying the number of
neurons in the HL from 10 to 100. In particular, in Table 3, the performance measures for the summer
scenario are shown, and in Table 4, the performance of the winter scenario is shown. The values shown in
Tables 3 and 4 are the best obtained from all trained networks. The results show that the best performance
has been obtained with nets with 50 neurons (summer scenario) and 40 neurons (winter scenario) in the
hidden layer. In both cases, the values of indoor temperature are referred to when the HVAC system
is off-line.
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Table 3. Performance in the summer scenario. HL, hidden layer.

Neurons in HL Training epochs
Performance

MSE RMSE MAE MAPE

10 140 4.780× 10−4 2.190× 10−1 4.291× 10−1 2.159

20 131 1.853× 10−5 4.300× 10−3 3.891× 10−1 1.685

30 81 5.060× 10−4 2.250× 10−2 3.502× 10−1 2.131

40 26 1.320× 10−4 1.150× 10−2 5.098× 10−1 2.642

50 31 2.062× 10−6 1.400× 10−3 3.144× 10−1 1.190

60 75 4.811× 10−4 2.190× 10−2 3.568× 10−1 2.371

70 66 1.800× 10−3 4.203× 10−2 5.160× 10−1 2.304

80 104 5.800× 10−3 7.600× 10−2 4.134× 10−1 2.675

90 25 1.190× 10−2 1.090× 10−1 5.355× 10−1 2.612

100 52 4.696× 10−4 2.170× 10−2 4.303× 10−1 2.463

Table 4. Performance in the winter scenario.

Neurons in HL Training epochs
Performance

MSE RMSE MAE MAPE

10 25 9.357× 10−5 3.100× 10−3 2.316× 10−1 3.045× 105

20 108 7.971× 10−8 2.823× 10−4 2.014× 10−1 4.024× 105

30 97 2.411× 10−5 4.900× 10−3 2.166× 10−1 1.075× 105

40 241 1.205× 10−8 1.098× 10−4 1.200× 10−1 1.007

50 83 3.572× 10−5 6.000× 10−3 1.920× 10−1 1.566

60 45 7.681× 10−7 8.764× 10−4 2.081× 10−1 1.701

70 19 1.639× 10−5 3.800× 10−3 1.789× 10−1 1.470

80 51 1.127× 10−7 3.357× 10−4 1.903× 10−1 1.562

90 13 2.300× 10−3 4.800× 10−2 2.890× 10−1 2.345

100 16 1.675× 10−4 1.290× 10−2 2.101× 10−1 1.699

Figures 3 and 4 show the following results:

• forecasting indoor temperatures (top);

• the corresponding forecasting errors (down).

The first refers to the real temperature and to the forecasted value obtained by using our approach
and the one proposed in [20], while the last represents the errors obtained by the difference between
real temperature and the best performance of forecasted indoor temperature using approach of both ours
and Marvuglia et al. [20]. Figure 4 shows the performance obtained in the winter scenario, whereas
Figure 3 refers to the summer one. In both scenarios, the temperature values are the ones recorded when
the HVAC system is off, i.e., they refer to the building envelope in natural evolution dynamics. The
approach proposed in this paper obtains a lower error (an average of about 0.2 degrees Celsius lower)
compared to the one proposed by Marvuglia et al. [20], using both a lower number of inputs and a higher
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number of neurons. This is not a problem, since, as shown in [64], the complexity of the system is not
directly proportional to the number of used neurons.

Figure 3. Measures of forecasting indoor temperatures (top) and forecasting error (down)
(summer scenario with 50 neurons in the hidden layer).

Figure 4. Measures of forecasting indoor temperatures (top) and forecasting error (down)
(winter scenario with 50 neurons in the hidden layer).
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5. Fuzzy Control System

The fuzzy control system handles the switching on or off of the HVAC system and the regulation of
the inlet air speed, called the ON/OFF speed. The heat gains are only indirectly considered through their
effect on the variation of the indoor temperature, which is recorded by the data logger. The controller
takes as input crisp values of Ti(k) and ∆Ti, which are converted into linguistic values by using a chosen
set of membership functions. The used linguistic values are:

• Very Cold (VC);

• Pretty Cold (PC);

• Slightly Cold (SC);

• Comfortable (COM);

• Slightly Hot (SH);

• Pretty Hot (PH);

• Very Hot (VH).

The membership functions used for Ti in the summer and winter scenarios and for the difference
∆Ti are shown in Tables 5, 6 and 7, respectively, while their graphical representation is depicted in
Figures 5, 6 and 7, respectively. The aim of the controller is to elaborate on these linguistic values
using an inference mechanism based on a set of if-then rules. These rules are combined in the FLC,
which returns a membership function, represented, in this paper, by Gaussian functional shapes [45].
A Gaussian membership function is specified by the following equation:

f(x, σ, c) = e

−(x− c)2

2σ2 (12)

where c represents the membership function center and σ determines the membership function width.
Using this function, it is possible to determine the linguistic output, which can assume one of the above
presented values. The Gaussian model takes crisp inputs and produces crisp outputs. It does so on the
basis of user-defined fuzzy rules on user-defined fuzzy variables. The operations of the Gaussian rules
can be described in four steps:

• mapping each of the crisp inputs into a fuzzy variable (fuzzification);

• determination of the output of each rule given its fuzzy antecedents;

• determination of the aggregate output(s) of all of the fuzzy rules;

• mapping of the fuzzy output(s) to crisp output(s) (defuzzification).
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Table 5. Membership function Ti used for the summer scenario. VC, Very Cold;
PC, Pretty Cold; SC, Slightly Cold; COM, Comfortable; SH, Slightly Hot; PH, Pretty Hot;
VH, Very Hot.

Linguistic Values Ti(k)(◦C) interval

VC < 19

PC 19÷ 20

SC 21÷ 24

COM 24.5÷ 24.5

SH 25÷ 29

PH 30÷ 35

VH > 35

Table 6. Membership function Ti used for the winter scenario.

Linguistic Values Ti(k)(◦C) interval

VC < 14

PC 15÷ 17

SC 18÷ 21

COM 22÷ 22

SH 23÷ 25

PH 26÷ 28

VH > 28

Table 7. Membership function ∆Ti.

Linguistic Values ∆Ti(k)(◦C) interval

VC < −9

PC (−9)÷ (−4)

SC (−3)÷ (−1)

COM 0÷ 0

SH 1÷ 3

PH 4÷ 9

VH > 9
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Figure 5. Membership functions for Ti in the summer scenario.

Figure 6. Membership functions for Ti in the winter scenario.

Figure 7. Membership functions for ∆Ti.
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Through the inference mechanism, it is possible to determine the correct output according to the
fuzzy inference rules presented in Table 8. For example, considering the summer scenario, if the
predicted value of Ti(k) is 26 ◦C, the membership function considers the linguistic value of SH, while
if ∆ Ti = −2 ◦C, the linguistic value refers to SC. In this way, the final inference value is SH. The next
step consists in the conversion of this value into crisp logic decisions suitable to drive the HVAC system
(defuzzification). The defuzzification process of the proposed FLC is based on Mizumoto’s functions
centroid and maximum [63].

Table 8. Fuzzy inference rules of FLC.

ON/OFF speed
Ti(k)

VC PC SC COM SH PH VH

∆Ti(k)

VC VH VH VH PH PH SH SH
PC VH VH PH PH SH SH COM
SC VH PH PH SH SH COM COM

COM PH SH SH COM COM COM SC
SH SH COM COM COM SC SC PC
PH COM COM SC SC PC PC VC
VH SC SC PC PC VC VC VC

Through the fuzzy logic, the HVAC system is able to set the preferred temperature by the occupier
of the environment. Another feature of the proposed FLC is that it learns about the user’s personal
preference of comfort. In fact, as depicted in Figure 1, the “user feedback” block allows the controller
to be dynamic, since, receiving the user’s feedback regarding the environment temperature (cold, hot),
it is able to bring the room temperature to the maximum value of personal comfort. The membership
functions previously proposed refer to the case of standard operation, while through the users’ feedback,
the rules can be changed dynamically. In this case, the Gaussian membership function is redefined by
the following equation:

f(x, σ, c) = e

−(x− c)2

2(σw)2 (13)

where w is specified according to Tables 9 and 10 for the summer and winter scenarios, respectively.
In this way, Equation (13) determines the new width of the membership function. It is necessary
to underline that the function of “user feedback” block is called only if the occupant of the room
provides feedback to the FLC, while in the other cases, the standard or the last defined membership
functions are loaded. Moreover, this function is called whenever users provide feedback (cold, hot) to
the HVAC system.
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Table 9. Variation of the w parameter for the summer scenario.

w VC PC SC COM SH PH VH

Feedback = cold

VC 1.9 1.7 1.5 1.3 0.9 0.6 0.3
PC 1.7 1.5 1.3 1.1 1 0.7 0.4
SC 1.5 1.3 1.1 1 1.1 0.8 0.5

COM 1.3 1.1 1 0.9 1.1 0.8 0.7
SH 1.1 1 0.9 0.8 1.2 0.9 0.6
PH 1.2 1.1 1 0.9 1.2 0.9 0.7
VH 1.4 1.2 1.1 1 1.2 1 0.9

Feedback = hot

VC 0.1 0.6 0.7 1.2 1.6 1.8 2
PC 0.6 0.8 0.8 1.1 1.8 2 1.7
SC 0.4 0.6 0.7 1 1.7 2 1.6

COM 0.2 0.4 0.5 0.9 1.6 1.9 1.5
SH 0.6 0.7 0.8 1 1.4 1.5 1.2
PH 0.4 0.8 0.9 0.9 1.2 1.3 1.3
VH 0.2 0.6 0.7 0.8 0.9 1 1.5

Table 10. Variation of the w parameter for the winter scenario.

w VC PC SC COM SH PH VH

Feedback = cold

VC 2 1.9 1.8 1.2 0.6 0.7 0.1
PC 1.8 1.9 2 1.4 0.8 0.9 0.4
SC 1.7 1.8 2 1.3 0.8 1 0.6

COM 1.5 1.8 2 0.9 0.4 0.6 0.2
SH 1.3 1.6 1.7 1 0.7 0.8 0.3
PH 1.2 1.4 1.5 1 0.8 0.9 0.5
VH 1.4 1.2 1 0.8 0.6 0.7 0.4

Feedback = hot

VC 0.7 0.8 0.9 1 1.1 1.1 1.2
PC 0.7 0.7 0.8 0.9 1.1 1.1 1.2
SC 0.6 0.6 0.8 0.8 1.1 1.2 1.2

COM 0.5 0.6 0.7 0.9 1.2 1.2 1.3
SH 0.4 0.5 0.7 0.8 1.2 1.3 1.4
PH 0.4 0.4 0.7 0.9 1.2 1.3 1.5
VH 0.3 0.5 0.6 1 1.3 1.4 1.6

For example, considering the summer scenario (Table 9), if the feedback is hot and the current
membership function is VH, then according to Equation (13), the new membership functions are
recalculated with the following values of w:

• w = 1.5 for VH membership function;

• w = 1 for PH membership function;

• w = 0.9 for SH membership function;
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• w = 0.8 for COM membership function;

• w = 0.7 for SC membership function;

• w = 0.6 for PC membership function;

• w = 0.2 for VC membership function.

In fact, the user feels a hot temperature in the environment and provides this feedback to the controller,
which, as a result, dynamically adapts the membership functions in order to obtain the maximum value
of personal comfort.

6. Experimental Results

In order to evaluate the validity of the proposed approach, a real test-bed scenario has been deployed.
As mentioned previously, the literature has demonstrated that ANNs are a useful tool to forecast
temperatures. In this work, the prediction made by the NNARX is really relevant and mandatory, because
we want to obtain the optimum comfort for the individual. In order to achieve this, it is not sufficient
to consider the measurement of the actual temperature, but it is necessary to have a prediction of what
will happen. It is not useful to provide the FLC with the internal temperature and its variation as input
parameters, but it is necessary to provide the values predicted by a neural network. Only in this way can
the optimum comfort for the individual be achieved. The proposed FLC, based on the indoor temperature
values forecasted by the NNARX model and on the temperature detected in the room by the data logger
(recorded every f minutes), dynamically determines the ON/OFF time and the inlet air speed of the
HVAC system. The time step between two consecutive regulation signals sent by the controller to the
HVAC system has been set to 5 min, i.e., equal to the sampling interval of the indoor temperature data
logger. As mentioned above, the proposed approach has been implemented in a prototyping board [48],
and the output values are shown on an LCD screen connected to it. In addition, in order to calculate and
plot the performance, the micro-controller continuously sends the output data to a computer through a
serial cable.

In Figures 8 and 9, a comparison between the performance of the FLC proposed in this work and
the one proposed in [20], in summer and winter scenarios, respectively, is depicted. Specifically, the
evolution of the inlet air speed injected by the fan coils and the indoor air temperature forecasted by the
NNARX model are shown as a function of the time during a day. The figures do not refer to a typical
day, but show what happens when a certain temperature is forecasted. For example, considering that it is
02:00 p.m. and the temperature is 16 ◦C, it is specified how the inlet air speed has to be set. Specifically,
considering Figures 8 and 9, at 03:00 p.m., the depicted decision (inlet air speed) does not depend on
the action taken at 02:00 p.m. In fact, the values must be considered as if the system turns on for the
first time on that hour. The measurements have been carried out in a free environment. It is necessary to
underline that the inlet air speed has been set to the default value of 2 m/s in both approaches, while, as
is possible to see, when the neural network forecasts a temperature that would fall outside the comfort
range, the controller drives the HVAC system in order to obtain an adjustment of the indoor temperature
in the right direction.
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Figure 8. Summer scenario: ON/OFF speed of the HVAC system. The approach proposed
in [20] (left); The approach proposed in this paper (right). Reproduced with permission
from [20], Copyright 2014 Elsevier.

Figure 9. Winter scenario: ON/OFF speed of the HVAC system. The approach proposed
in [20] (left); The approach proposed in this paper (right). Reproduced with permission
from [20], Copyright 2014 Elsevier.

The results show that in both approaches, the neural network model performs an off-line learning in
order to set up the FLC. In fact, subsequently, the fuzzy controller takes as input the values of the trained
NNARX model and, through the membership functions, optimizes the control, managing the switching
on or off of the HVAC system and adjusting the inlet air speed. Both approaches are based on an on-line
dynamic control of the inlet air speed, considering a forecasted temperature and not the actual measured
one in the room, because the main aim is to achieve the better adaptation of the HVAC system to the
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dynamics of the nonlinear system at the base of the temperature evolution. Therefore, the artificial neural
network models, based on the strict relationship existing between their inputs and their output, that are
the forecasted indoor temperatures, are able to learn the mechanism of the temperature’s evolution over
time. Therefore, what has been learned by the neural networks is then transmitted to the fuzzy controller
to prevent unnecessary energy consumption due to non-optimal regulation of the inlet air.

As is possible to see in Figures 8 (right) and 9 (right), the FLC proposed in this work is able to
manage the ON/OFF speed of the HVAC system differently than the one proposed in [20]. In fact, the
inlet air speeds are optimized thanks to the use of a greater number of membership functions in the fuzzy
controller. Due to this feature, the FLC proposed is also able to prevent unnecessary energy consumption
due to an optimal regulation of the inlet air. Specifically, considering the summer scenario (Figure 8), the
proposed approach sets the inlet air speed of 3 m/s only twice, rather than the approach proposed in [20],
in which it is set eight times. In the winter scenario (Figure 9), the inlet air speed is set to 3 m/s six
times using the proposed approach, rather than nine times using the approach proposed in in [20]. The
proposed system would respect the current directive of the European Community (2012/27/UE [65]),
which proposes the design of zero energy buildings trying to achieve a greater energy efficiency (about
20%) by 2020. In this paper, we cannot quantify the energy savings of the proposed system, as this
depends on the type of HVAC system (heating/cooling, single, centralized, etc.). Moreover, we have
considered only meteorological factors, while the goal of our future work is to obtain the consumption of
HVAC systems, both through a thermostat and through a fuzzy controller, comparing the obtained results.

Furthermore, as said previously, the authors of [20] do not consider the comfort of a single occupant
within the environment. This comfort measure can be subjective, depending on the feeling of being hot
or cold of the user. The proposed fuzzy logic controller is able to change the MFs dynamically and,
so, achieves not only thermal comfort in an environment in which there are several occupants, but also
ensures the optimum comfort in the case when there is a single occupant in the environment. In order
to validate the dynamic variation of the membership functions, two tests have been performed, one for
the summer scenario and the other for the winter one. As mentioned previously, the user can provide
feedback on the temperature of the environment. In order to do this, the current membership function is
displayed on the LCD of the prototyping board, and the user provides his feedback (cold, hot), pressing
the appropriate button connected to it. In the first test (summer scenario), the SH membership function
has been considered, and the received feedback was “hot”. The adjusted membership functions are
depicted in Figure 10 and shown in Table 11. As is possible to see, the new membership functions
have been calculated in order to achieve the optimal comfort level for the user. In fact, the widths of
the VH, PH and SH membership functions have been increased, while the others related to SC, PC and
VH have been reduced. The second test refers to the winter scenario. In this case, the SH membership
function has been considered again and the received feedback was “cold”. In Figure 11 and Table 12,
the adjusted membership functions are shown, and even in this case, they have been adjusted in order to
meet the requirements of the thermal comfort of the user. Analyzing the obtained results, it is clear that
the proposed FLC is able to dynamically adapt the membership functions in order to achieve the optimal
comfort level for the user, whereby, even in the case that the main aim is to obtain the maximum thermal
comfort for a single occupant of the room, the proposed FLC achieves better results and introduces a
clear innovation, unlike the one proposed in [20].
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Table 11. Adjusted membership function Ti for the summer scenario.

Linguistic Values Ti(k) (◦C) interval

VC < 19

PC 19÷ 20

SC 21÷ 24

COM 24.5÷ 24.5

SH 24÷ 30

PH 28÷ 36

VH > 34

Table 12. Adjusted membership function Ti for the winter scenario.

Linguistic Values Ti(k) (
◦C) interval

VC < 14

PC 14÷ 18

SC 17÷ 22

COM 22÷ 22

SH 23÷ 25

PH 26÷ 28

VH > 28

Figure 10. Adjusted membership functions for Ti in the summer scenario.
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Figure 11. Adjusted membership functions for Ti in the winter scenario.

7. Conclusions

In this paper, an application of a combined neuro-fuzzy model for the dynamic and automatic
regulation of indoor temperature has been presented in order to meet the requirements of thermal
comfort. The approach proposed in this paper shows an FLC fed by an indoor temperature predictor. The
temperature forecast is carried out by an NNARX model, which attained good forecasting performances
compared to the state-of-the-art, thanks to the new methodology used in order to calculate the embedding
parameters. In fact, an analysis on the embedding parameters has been performed in order to
mathematically determine the embedding dimension and the time delay. Moreover, the rapid response
of the ANN and the high quality of the data approximation have been shown. Experimental results,
obtained through a prototyping board, are very promising. The results show that the efficient dynamical
regulation of the on/off times of the HVAC system and of its inlet air speed achieves a more efficient use
of energy rather than simple on-off devices; timers with fixed set point temperature or controllers whose
correction actions are based only on the temperature detected in the controlled room. Furthermore,
the results show the feature of the FLC to learn about the user’s personal comfort preferences. In
fact, receiving feedback regarding the temperature, the proposed fuzzy control system has been able
to adjust its membership functions in order to bring the room temperature to the maximum value of
personal comfort. Moreover, the further application of an improved fuzzy logic controller, based on
other characteristics, which affect the internal temperature and, then, the thermal comfort, such as special
scenarios located in urban canyons or buildings that use different types of insulation, etc., is a goal of
our future research works.
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