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Abstract: Bio-fuelization of herbaceous lignocelluloses through a simultaneous 

saccharification and fermentation process (SSF) and photocatalytic reforming  

(photo-Reform) was examined. The SSF of the alkali-pretreated bamboo, rice straw, and 

silvergrass was performed in an acetate buffer (pH 5.0) using cellulase, xylanase, and 

Saccharomyces cerevisiae at 34 °C. Ethanol was produced in 63%–85% yields, while 

xylose was produced in 74%–97% yields without being fermented because xylose cannot 

be fermented by S. cerevisiae. After the removal of ethanol from the aqueous SSF solution, 

the SSF solution was subjected to a photo-Reform step where xylose was transformed into 

hydrogen by a photocatalytic reaction using Pt-loaded TiO2 (2 wt % of Pt content) under 

irradiation by a high pressure mercury lamp. The photo-Reform process produced 

hydrogen in nearly a yield of ten theoretical equivalents to xylose. Total energy was 

recovered as ethanol and hydrogen whose combustion energy was 73.4%–91.1% of that of 

the alkali-pretreated lignocelluloses (holocellulose).  
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1. Introduction 

Ethanol production from biomass has been receiving a great amount of interest from the viewpoint 

of being a renewable energy alternative to petroleum-based fuels [1]. Second generation bioethanol 

production from lignocellulosic biomass has been recognized as one of the promising approaches, 

since the lignocelluloses are not directly in competition with food sources [2]. Usual ethanol production 

from lignocellulose is conveniently achieved by simultaneous saccharification and fermentation (SSF) 

using Saccharomyces cerevisiae and hydrolytic enzymes [3,4]. However, the ethanol yield is low 

compared with the first generation bioethanol produced from starches which are composed of glucose 

units (Equation (1)), because of the high content of hemicellulose composed of xylose units, which are 

not utilized by S. cerevisiae. Therefore fermentation of xylose has been performed using recombinant 

species of Escherichia coli [5–8] and S. cerevisiae [9–12]. In order to develop a more convenient 

methodology to utilize xylose, we intend to develop photocatalytic reforming of xylose to hydrogen 

(Equation (2)) using a Pt-loaded titanium oxide (Pt-TiO2) [13]: 

6 2 6 2 2 5. 
C H O 2CO 2C H OH

S cerevisiae
⎯⎯⎯⎯→ +  (1)

25 10 5 2 2 2Pt-TiO
C H O 5H O 5CO 10Hhν+ ⎯⎯⎯→ +  (2)

The photocatalytic hydrogen evolution from H2O by the Pt-TiO2 is initiated by the charge-separation 

on TiO2 under photoexcitation [14]. The electrons reduce water to generate H2 on Pt while holes 

oxidize hydroxide to hydroxyl radical. It is well known that the use of electron-donating sacrificial 

agents remarkably accelerates TiO2-photocatalyzed hydrogen evolution since the hydroxyl radical is 

consumed by the sacrificial agents [15]. Recently, we have found that sacrificial agents with all of  

the carbon attached oxygen atoms such as saccharides (e.g., glucose and xylose) and polyalcohols  

(e.g., l,2-ethanediol, glycerol, and arabitol) serve as an electron source until their sacrificial ability was 

exhausted in the TiO2-photocatalytic hydrogen evolution [16]. Therefore, our attention has been 

focused on the photocatalytic reforming (photo-Reform) of biomasses using Pt-TiO2 photocatalyst. 

Here we examined a new approach to fuelization of bamboo, rice straw, and silvergrass through SSF 

followed by photo-Reform (Scheme 1). 

Scheme 1. Conversion of lignocelluloses to hydrogen through SSF followed by photo-Reform. 

Operation: AL: alkali-pretreatment; SSF: simultaneous saccharification and fermentation; 

photo-Reform: photocatalytic reforming using a Pt-TiO2 catalyst. 
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Table 1. Production of ethanol and xylose through SSF of lignocelluloses.  

Lignocellulose 

Components (wt %) SSF process (a) 

Holocellulose (b) 
(glucan and xylan) 

Lignin Others 
Time 
(h) 

Ethanol (g) 
(yield (%)) 

Xylose (g) (c) 
(yield (%)) 

Bamboo 60.4 (35.9, 23.9) 17.1 22.5 72 1.29 ± 0.1 (63) 2.02 ± 0.2 (74) 
Rice straw 39.0 (29.5, 9.3) 21.3 39.7 144 1.42 ± 0.0 (85) 1.01 ± 0.1 (96) 
Silvergrass 37.5 (28.1, 9.5) 23.0 39.5 59 1.21 ± 0.1 (76) 1.00 ± 0.4 (97) 
(a) The SSF of the holocellulose was performed in a degassed acetate buffer solution (pH 5.0, 60 mL) at 34 °C 

using the cell suspension of S. cerevisiae (1.2 mL), cellulase (0.60 g), and xylanase (0.40 g). The amounts of 

holocellulose were set to 6.04 g, 3.90 g, and 3.75 g for bamboo, rice straw, and silvergrass respectively. 

Yields were based on the amounts of glucan and xylan in holocellulose; (b) Holocellulose was obtained by  

the pretreatment of lignocelluloses (50 g) with a 1% aqueous solution of NaOH (600 mL) at 95 °C for 1 h. 

The components of glucan and xylan were analyzed according to NREL method; (c) The weight of xylose was 

represented as WX. 

2.2. Photo-Reform of Xylose 

2.2.1. Determination of Limiting Mole Amount of Hydrogen Evolved from Photo-Reform  

Ethanol was recovered from the SSF solution by distillation under reduced pressure. The residual 

xylose in the SSF solution was subjected to the photo-Reform step. Pt-TiO2 (100 mg, 1.25 mmol,  

2 wt % of Pt) was introduced to the reaction vessel which was attached to the measuring cylinder. The 

SSF solution was added in reaction vessel so that the amounts of xylose became 0.25 (0.35), 0.50, 

0.75, 1.00, and 1.25 mmol, and then the volume of the solution was adjusted to 150 mL by adding 

water. After the oxygen was purged from the suspension by bubbling it with N2 gas, the irradiation was 

performed by a high-pressure mercury lamp under vigorous stirring with magnetic stirrer until the gas 

evolution ceased. Typical time conversion of the evolved gas is shown in Figure 1B.  

Table 2 lists that the evolved gas volumes. The evolved gas increased with the increase of xylose. 

However, the molar ratios of H2 and CO2 to xylose (H2/xylose and CO2/xylose) were not proportional 

to the amount of xylose used. Therefore, the H2/xylose values were plotted against the molar ratio of 

xylose to catalyst (xylose/catalyst), as shown in Figure 2. As the xylose/catalyst values decreased,  

the H2/xylose values increased. The intercept of the plots represents H2
max which is the limiting mole 

amount of H2 obtained from one mole of xylose at an infinite amount of catalyst. The H2
max values 

were nearly equal to the theoretical value (10.0) shown in Equation (2). The slopes of the plots were 

changed by the use of lignocellulose. It is possible that they would be affected by the amounts of  

the materials to lower catalytic activity. Also the limiting mole amount of CO2 (CO2
max) were nearly 

equal to the theoretical values (5.0). Moreover, it was confirmed that the H2 evolution from water  

was small (2 mL) in the absence of xylose. Other gases such as CH4 and CO were not observed in  

the evolved gas. 
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3. Materials and Methods  

3.1. Chemical Components of Lignocellulose  

First, lignocelluloses were cut, dried, and made into a powder by a blender until the powder passed 

through a sieve with 150 μm mesh. The powdered lignocellulose (30 g) was treated with a 1% aqueous 

solution of NaOH (400 mL) at 95 °C for 1 h. The holocellulose was isolated as a pale yellow 

precipitate from the treated mixture by centrifugation at 10,000 rpm for 10 min and filtration. The 

supernatant solution was neutralized to pH 5.0 by a dilute HCl solution. The resulting dark brown 

precipitate, which was identified as lignin, was collected by centrifugation at 10,000 rpm for 10 min. 

Saccharides in the holocellulose were determined according to the methods published by the National 

Renewable Energy Laboratory (NREL) [19] as follows: sulfuric acid (72 wt %, 3.0 mL) was added 

slowly to holocellulose (300 mg) and kept at 30 °C for 1 h. The resulting solution was diluted by water 

(84 mL) until the concentration of sulfuric acid was 4 wt %. Acid hydrolysis was performed by 

autoclaving at 121 °C for 1 h. After the neutralization by CaCO3, the solution was subjected to a 

centrifugation to give the supernatant solution (ca. 87 mL), which was concentrated to 30 mL by 

evaporation. The solution was analyzed by HPLC. The peaks of glucose and xylose appeared whereas 

the peaks of galactose and arabinose were very weak. The amounts of glucan and xylan were determined 

from the amounts of glucose and xylose determined by HPLC. It was confirmed that the total amounts 

of glucan and xylan were equal to the amounts of holocellolose. The ash component in lignocellulose was 

obtained by burning lignocellulose (2.0 g) in an electric furnace (KBF784N1, Koyo, Nara, Japan) for  

2 h at 850 °C. Thus, the chemical components of lignocelluloses were determined, as shown in Table 1. 

3.2. Hydrolytic Enzyme and Preparation of the Inoculum Culture of S. cerevisiae  

A cellulase from Acremonium cellulolyticus (Acremozyme KM, Kyowa Kasei, Osaka, Japan) was 

used [3,20]. The cellulase activity of Acremozyme was determined to be 1320 units/mg by the method 

of breaking down filter paper [20]. A xylanases from Trichoderma longibrachiatum (reesei) 

(Sumizyme X, Shin Nihon Chemicals, Anjyo, Japan, 5000 u/g) was selected from commercially 

available hemicellulase. S. cerevisiae NBRC 2044 was cultured at 30 °C for 24 h in a basal medium 

(initial pH 5.5) consisting of glucose (20 g·L−1), bactotryptone (1.0 g·L−1, Difco, Leeuwarden,  

The Netherlands), yeast extract (1 g·L−1), NaHPO4 (1 g·L−1), and MgSO4 (3 g·L−1) [20]. After incubating 

for 24 h, the cell suspension solution of S. cerevisiae was obtained to use in SSF process.  

3.3. Procedures of SSF  

The SSF was performed using the apparatus shown in Figure 5A. A cellulosic material and buffer 

solution (37.5 mL) were introduced in the reaction vessel and then autoclaved at 121 °C for 20 min. 

After cooling to room temperature under UV-irradiation, the hydrolytic enzyme dissolved in an acetate 

buffer solution (22.5 mL) and the cell suspension of S. cerevisiae were added to the suspension of the 

cellulosic material. The holocelluloses from the bamboo, rice straw, and silvergrass were set to 6.04 g, 

3.90 g, and 3.75 g, respectively, which corresponded to the amounts of holocellulose in 10 g of  

the non-treated lignocellulose. After the air was purged with N2, the SSF was initiated by stirring the 
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could be efficiently transformed into hydrogen. The formed bio-fuel, ethanol and hydrogen, has almost 

the same combustion energy as the saccharide occurring in lignocelluloses. If the UV light in sunlight 

is used as the light source for catalytic reaction, this will provide a useful method to produce H2  

from biomass. 
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