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Abstract: Data collected from the supervisory control and data acquisition (SCADA) 

system, used widely in wind farms to obtain operational and condition information about 

wind turbines (WTs), is of important significance for anomaly detection in wind turbines. 

The paper presents a novel model for wind turbine anomaly detection mainly based on 

SCADA data and a back-propagation neural network (BPNN) for automatic selection of 

the condition parameters. The SCADA data sets are determined through analysis of the 

cumulative probability distribution of wind speed and the relationship between output 

power and wind speed. The automatic BPNN-based parameter selection is for reduction of 

redundant parameters for anomaly detection in wind turbines. Through investigation of 

cases of WT faults, the validity of the automatic parameter selection-based model for WT 

anomaly detection is verified. 
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1. Introduction 

Supervisory control and data acquisition (SCADA) systems are used in almost all wind farms for 

monitoring the conditions of the wind turbines (WTs). Detection of WT faults with SCADA data is 

very helpful to improve the reliability of WTs and to reduce the operation and maintenance costs of 
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wind farms. A SCADA system in a wind farm may contain massive amounts of data related to 

hundreds of parameters of the WTs and SCADA data has attracted great research interest in fault 

detection for WTs [1–5]. In [6] a normal behavior model for prediction of bearing faults by using 

SCADA data was presented. A generalized model, called virtual model, was presented in [7] for 

prediction of WT parameters based on SCADA data. Three WT condition parameters, including a 

main bearing temperature, a lubrication oil temperature of gearbox, and a winding temperature of the 

generator, were modeled through a BPNN for fault detection of WTs based on SCADA data [8]. 

BPNNs were also investigated in publications [9–12] for modeling WT parameters with SCADA data. 

A comparative analysis of two BPNN-based models and a regression-based model was presented  

in [12] for modeling parameters of gearbox bearing temperature and generator stator temperature.  

Modeling parameters based on SCADA data is for the purpose of obtaining residual errors of the 

condition parameters used for fault detection of WTs. Given the hundreds of parameters of a SCADA 

system of wind farm, reducing the dimensionality of the data and establishing models with closely 

related parameters is a premise in simplifying models and ensuring prediction accuracy. In the above 

works, the condition parameters of WTs were determined empirically so as to obtain a small dataset 

for modeling parameters. The small dataset may not provide enough information about WT faults.  

Moreover, parameter selection is an important step for anomaly detection of WTs [7] and its 

purpose is to determine target parameters with relevance to the initial condition parameters for 

modeling. However, few works have considered the correlation between the target parameters and the 

initial parameters of the SCADA systems of wind farms.  

Considering the aforementioned problems, the authors propose a novel model for anomaly detection 

of WTs based on SCADA data. The model is a generalized model called automatic parameter selection 

(APS)-based model in this work, which involves automatic parameter selection using root-mean-square 

error (RMSE) of target parameters. Section 2 proposes the methodology of the APS-based model 

involving SCADA data collection, automatic parameter selection. Section 3 presents the selection of 

wind farm SCADA data and determination of initial WT condition parameters for modeling. Section 4 

introduces the method for automatic parameter selection based on one BPNN for anomaly detection of 

WTs, and presents the other BPNN for prediction of RMSE of target parameters. Section 5 provides 

validation and analysis of the proposed method. The last section offers the conclusions of the work. 

2. Methodology of the APS-based Model 

Figure 1 presents the methodology of the APS-based model for anomaly detection of WT, which 

includes the following three parts: 

(1) SCADA data collection includes data analysis and condition parameters for modeling. Data 

analysis is used to determine SCADA data for training and testing of the models in the work. 

Condition parameters from SCADA system of WT are described later. 

(2) Automatic parameter selection is to select the appropriate input parameter of BPNN from 

condition parameters. Automatic parameter selection constructs a BPNN with input of  

initially-selected condition parameters and selects condition parameters using RMSE  

as criteria.  
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(3) Anomaly analysis is to build and use the model with selected condition parameters as input for 

anomaly detection. The RMSE of target parameter is computed in automatic parameter 

selection and anomaly analysis.  

Figure 1. Schematic of the APS-based model. 

 

3. SCADA Data Collection 

SCADA data were collected from a wind farm consisting of upwind and doubly-fed WTs with rated 

power of 1.5 MW, a cut-in wind speed of 3 m/s, a rated wind speed of 12 m/s, and a cut-out wind 

speed of 25 m/s. Each WT is equipped with a horizontal axis and an active yawing and pitch control 

system. Figure 2 presents an example of some WT condition parameters in the SCADA system of  

the wind farm. The SCADA data with a time interval of 10 min are used for the work. The descriptions 

of these WT condition parameters are concluded in Table 1. A total of 31 WTs of the same type are 

installed in the wind farm. The SCADA data of WTs 3, 10, 17, 23, and 31 are randomly selected for 

analysis of condition parameters. 

Figure 2. Location of part of measurements by the SCADA system. 

 

The SCADA data are selected with a criteria of wind speed. The Bin method [13] was used to 

analyze SCADA data. Figure 3 shows the wind speed probability distributions at five WTs in the wind 

farm. The cumulative probability of the wind speed of WT 17, as shown in Figure 3a, indicates 
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99.22% of wind speed values not exceeding 13.5 m/s. Figure 3b shows that the wind speed probability 

distributions of WTs 3, 10, 23, and 31 are identical with that of WT 17. 

Table 1. Part of condition parameters of wind turbines. 

Monitoring unit Parameter Description Modeling or not

Nacelle 

X1 Nacelle vibration along X direction No 

X2 Nacelle vibration along Y direction No 

X3 Temperature of base cabinet Yes 

X4 Temperature of top cabinet Yes 

Gearbox 

X5 Temperature of input shaft Yes 

X6 Temperature of output shaft Yes 

X7 Temperature of inlet oil Yes 

X8 Temperature of oil Yes 

Bearing of main shaft 
X9 Temperature of rotor-side bearing Yes 

X10 Temperature of gearbox-side bearing Yes 

Generator 

X11 Temperature of winding Yes 

X12 Temperature of cooling air Yes 

X13 Temperature of bearing A Yes 

X14 Temperature of bearing B Yes 

Grid factors 

X15 Phase voltage No 

X16 Phase current No 

X17 Active power Yes 

X18 Reactive power No 

Environment factors 
X19 Wind speed No 

X20 Temperature of ambient No 

Figure 3. Wind speed probability distributions of WTs: (a) wind speed probability 

distributions of WT 17; (b) wind speed probability distributions of five WTs. 

 

Figure 4 presents the distribution of the output power versus the wind speed of WT 17. The other 

four WTs have plots very similar to Figure 4. The wind speed range between 3 and 13.5 m/s is thus 

determined for SCADA data selection, where the wind speed of 3 m/s is the cut-in wind speed of  

the WTs. The blog in Figure 4 shows that the determined wind speed range covers most output power 

of each WT in the wind farm. 
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Figure 4. Scatter diagram of wind speed vs. power from SCADA data. 

 

4. Automatic Parameter Selection 

4.1. Construction of the BPNN 

Figure 5 shows the modeling procedures based on a BPNN for estimating target parameters. Given 

one parameter in Table 1 as the target parameter of the BPNN, the other 19 parameters are considered 

as the inputs of the BPNN to be selected.  

Figure 5. Sketch of the model. 

 

The BPNN is adopted for parameter selection. The BPNN is the most widely used neural network 

in many field [14]. Using neural networks to predict parameters has achieved good results [7]; thus, the 

BP neural network was used in the work to model the parameters in WTs. Given the time interval of 

10 min, the models of the vibration parameters and some parameters with the fixed ranges are not 

established, including those of phase voltage and phase current. The 13 parameters are marked as 

“Yes”, as shown in the third column of Table 1. The BPNN for selection parameter has three layers 

with 19 nodes in the input layer and 1 node in the output layer. The 14 nodes in the hidden layer are 

determined by an empirical equation, i.e., Equation (1). And the hidden layer of all models in this 

paper has 14 nodes for comparative analysis: 

a++= nml  (1)

where, l is number of nodes in a hidden layer; m is number of nodes of an input layer; n is number of 

nodes of an output layer; a is a constant in the range of [1,10].  
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A total of 30,000 data obtained under normal operating conditions are selected from the SCADA 

system of WT 17 for a year, including 27,000 training data and 3000 testing data. The optimal number 

of hidden nodes is dependent on the following condition: the number of nodes of input and output 

layer, the number of training data, network structure, activation function, training algorithm, etc. Now 

there is no ideal way to determine the number of hidden nodes of a neural network. Different hidden 

nodes are chosen according to empirical equations. However the optimal number of hidden nodes is 

not always obtained according to empirical equations sometimes. So the neural network is tested many 

times to determine the optimal number of hidden-layer nodes [15].  

When the model is built, the number of nodes in the hidden layer is from 5 to 14. Through training 

the BP neural network, the model achieves better performance when the nodes of the hidden layer  

is 14. Figure 6 presents that the result for training the neural network by using the temperature of 

generator bearing B as an example. RMSEs of the temperature parameter of generator bearing B in 

Figure 6 change with the number of nodes in the hidden layer. So the hidden layer of all models in this 

paper has 14 nodes for comparative analysis.  

Figure 6. RMSE versus node number of a hidden layer. 

 

4.2. Relevance Criteria for Condition Parameters Selection 

Relevance between BPNN inputs and target parameters is analyzed using three steps as follows. 

(1) The optimal model is obtained based on the training data described earlier. The model structure 

is 19:14:1. 

(2) The model is tested with the test data, as shown in Equations (2) and (3). The average error is 

0.0105 and the RMSE is 1.7656: 
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where ME is average error; RMSE is root-mean-square error; ri is raw data; ir̂  is predicted value. 

(3) The inputs are successively increased and decreased by 5%. The model is tested. The average 

error and RMSE are recorded, and arranged in descending order of RMSEs, as shown in Table 2.  
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Table 2. Influence of the parameters on the temperature of generator bearing B. 

No. Parameters Average error RMSE 

1 Phase voltage X15 
+5% 0.0519 2.5363 

−5% −0.3212 2.3748 

2 Temperature of output shaft X6 
+5% −0.2040 2.2950 

−5% 0.3330 2.5846 

3 Temperature of oil X8 
+5% −0.3575 2.4915 

−5% 0.2956 2.2599 

4 Temperature of bearing A X13 
+5% −1.0219 2.2858 

−5% 0.9809 2.2690 

5 Temperature of input shaft X5 
+5% 0.0638 2.2428 

−5% −0.0268 2.1590 

6 Temperature of top cabinet X4 
+5% 0.7206 2.0841 

−5% −0.8631 2.2222 

7 Temperature of winding X11 
+5% −1.0278 2.1577 

−5% 0.8946 2.1073 

8 Temperature of gearbox–side bearing X10 
+5% −0.2745 2.1546 

−5% 0.1743 2.0624 

9 Temperature of rotor–side bearing X9 
+5% −0.2031 2.0581 

−5% 0.0694 2.1309 

10 Temperature of cooling air X12 
+5% 0.0690 1.9859 

−5% −0.0850 1.9977 

11 Temperature of base cabinet X3 
+5% −0.3296 1.9135 

−5% 0.2301 1.8659 

12 Temperature of inlet oil X7 
+5% 0.2204 1.8679 

−5% −0.3223 1.9051 

13 Active power X17 
+5% −0.0108 1.8538 

−5% −0.0447 1.8698 

14 Temperature of ambient X20 
+5% −0.0226 1.8416 

−5% −0.0623 1.8607 

15 Phase current X16 
+5% −0.0339 1.8572 

−5% −0.0376 1.8403 

16 Wind speed X19 
+5% −0.0148 1.8219 

−5% −0.0459 1.8177 

17 Reactive power X18 
+5% −0.0263 1.8193 

−5% −0.0345 1.8190 

18 Nacelle vibration along X direction X1 
+5% −0.0297 1.8192 

−5% −0.0308 1.8190 

19 Nacelle vibration along Y direction X2 
+5% −0.0311 1.8192 

−5% −0.0294 1.8189 

According to the order of the parameters shown in Table 2, the first 19 parameters are regarded as 

the input parameters of the model. The first model structure is 1:14:1, and the input parameter is  

the number 1 parameter. The second model structure is 2:14:1, and the input parameters are the first 

two parameters. By analogy, the nth model structure is n:14:1, and the input parameters are the first n 
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parameters. Each model had 14 hidden nodes, and is trained 30 times with the same training data, and 

tested with the same test data. The average RMSE at 30 times is obtained, as shown in Figure 7. 

Figure 7. The change of RMSE versus the increase of input parameters of the model. 

 

As shown in Figure 7, the RMSEs drop sharply from the 1st to the 7th model, and the RMSE 

difference between the 7th and 19th models is smaller. The RMSE changes slightly after the 7th model 

and exhibited certain fluctuations, thus indicating that the subsequent parameter information is found 

in the first seven input parameters. According to the figure, the established model with the first seven 

input parameters exhibits good accuracy. Thus, the model built from input parameters that include 

phase voltage, as well as the temperatures of the output shaft, gearbox oil, generator bearing A, input 

shaft, top cabinet, and generator winding reflects the actual changing situation of the temperature in 

generator bearing B. It illustrates the validity of our model based on the parameter selection method 

according to the order listed in Table 2.  

After the influence of various parameters on the target parameters are considered, the model for 

anomaly detection is established by the following steps (Figure 8): 

Step 1: The first three parameters with higher RMSEs are considered as the input parameters. The 

BPNN based model, with a model structure of 3:14:1, is built. The optimal model is 

established with the previous training data. 

Step 2: The newly built model is tested with the same test data. The RMSE is compared with that 

obtained from 19 initially built input parameters model. 

Step 3: When the difference of the two RMSEs is greater than the threshold, the parameter with the 

highest RMSE in the remaining parameters in Table 2 is added. The model is established by 

using the parameters as input parameters. Return to the step 2. 

Step 4: When the difference of the two RMSEs is smaller than the threshold, the model input 

parameters are finally determined.  

When the input parameters of the model for different condition parameters of wind turbines are 

selected, the thresholds of the models for each parameter are different due to the different relationship 

between condition parameters of wind turbines. Two points are considered as follows: (1) the model 

must achieve a certain accuracy; (2) the accuracy of the model changes slightly. The threshold of  
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the model of temperature of generator bearing B is 2.2 °C. And the thresholds chosen for the 

parameters are indicated in Table 3.  

Figure 8. Procedures to establish the model for anomaly detection. 

 

Table 3. Thresholds of the modeled parameters. 

Parameters Threshold 

Temperature of base cabinet X3 2.3 °C 
Temperature of top cabinet X4 2.1 °C 
Temperature of input shaft X5 1.5 °C 

Temperature of output shaft X6 1.3 °C 
Temperature of inlet oil X7 1.7 °C 

Temperature of oil X8 2.0 °C 
Temperature of rotor-side bearing X9 2.3 °C 

Temperature of gearbox-side bearing X10 2.1 °C 
Temperature of winding X11 1.2 °C 

Temperature of cooling air X12 1.9 °C 
Temperature of bearing A X13 1.8 °C 
Temperature of bearing B X14 2.2 °C 

Active power X17 60.02 kW 
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5. Anomaly Analysis 

Anomaly detection research aims to identify data patterns that do not conform to the principle of 

expectation. Such patterns are called irregular or abnormal values [16]. Two cases are used for 

verifying automatic parameter selection based model for anomaly detection. 

The model of the temperature of generator bearing B was analyzed with 3000 test data points 

obtained during normal operation. The residual of the model and its distribution are shown in Figure 9. 

As shown in Figure 9a, the errors were mostly found at approximately ±5 °C, and the RMSE was 

2.6544. Through data processing, such as smooth filtering of data [12], errors can be effectively 

reduced. However, considering that a WT is a complex nonlinear system, a large residual does not 

signify an abnormal condition and data may contain useful information. Hence, research data were not 

processed in this study. According to Figure 9b, the residual distribution of the model agrees well with 

the Gaussian distribution. From a statistical perspective, the model accurately reflects actual changes in 

temperature of generator bearing B during normal operation. 

Figure 9. Residual of the model for the temperature of generator bearing B in WT 17:  

(a) residual; (b) histogram of residual. 

 

According to field records, the SCADA data of approximately 12,600 data points for three months 

before the failure of the generator bearing of WT 17 were selected. By building the model of the 

temperature of generator bearing B, the residual between the model result and the actual value was 

calculated by time sequence, as shown in Figure 10. From the beginning to around the 10,000th data 

point, residuals distributed approximately between −5 and 5 °C, and generator bearing B was in a 

normal condition. At about the 10,000th data point, the residual increased rapidly, up to 25 °C and 

decreased to −17 °C around the 10,810th data point. It became smaller during a short interval after the 

10,810th data point, and turned into a great change of magnitude between −13 °C and 18 °C near the 

12,000th data point.  

According to Figure 10, data points with the absolute value of the residual greater than 5 °C were 

less. In the normal condition, data points with the absolute value of the residual greater than 10 °C 

were observed; thus, identifying the outlier or the disturbance was difficult. Statistics on the average 

residual per day were recorded, as shown in Figure 11. From the beginning to the 70th day, the average 

residual error changed slightly, and was mainly distributed between −4 and 4 °C. On the 75th day, the 

average residual error reached 6 °C. This value became smaller later, until finally, it rapidly reached 
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the maximum value before failure occurred. In Figure 11, during the normal condition of WTs,  

the average residual fluctuated up and down at 0 °C, with a smaller change in amplitude. Compared 

with Figure 10, the disturbance could be effectively eliminated by computing the daily average 

residual value. However, before the failure occurred, the average residual amplitude reached  

6 °C and exhibited no significant difference with the average residual during the normal condition. 

Such result is not conducive to judging the abnormal condition. 

Figure 10. Residual of model for the temperature of generator bearing B in WT 17. 

 

Figure 11. Averaged residual over one day of model. 

 

Figure 12 shows the changing trend of the RMSE on a daily basis. From the 1st to the 70th day, the 

RMSE amplitude during normal operation was less than 4. It nearly reached 10 on the 75th day, then 

dropped to around 4, and increased rapidly one or two days before the fault occurred. As shown in 

Figure 12, the RMSE on the 75th day and before the fault occurred was significantly greater than that 

in the normal condition. Compared with the average residual, the RMSE better distinguished between 

the normal condition and the degradation condition of the temperature parameter of generator bearing 

B. It efficiently identified the initial stage of parameter degradation. Therefore, the RMSE can identify 

the abnormal condition of the temperature parameter of generator bearing B and is conducive to 

providing early warning for generator bearing B. Moreover, 15 days before the fault occurred (about 



Energies 2014, 7 3115 

 

 

the 75th day), the model exhibited a large RMSE amplitude, which provided a premise for determining 

the fault alarm time.  

Figure 12. RMSE over one day of model. 

 

6. Case Study and Verification 

6.1. Verification for Parameter Selection 

A total of 30,000 data points from the SCADA system mentioned previously are adopted. The 

model of the temperature of the output shaft of the gearbox is built by using the previously described 

methods to determine the influence of other parameters on the temperature of the output shaft, as 

shown in Table 4. Table 4 shows that the temperature parameters of the input shaft caused the RMSE 

of the model to change more dramatically than the other parameters. Therefore, the temperature of the 

input shaft will significantly influence the results of the model, i.e., the temperature of the input shaft is 

closely related to that of the output shaft, which is consistent with field experience.  

Furthermore, based on Table 4 and the method of parameter selection discussed in the previous 

section, the RMSE of the model of the temperature of the output shaft that changes with the increase of 

the input parameters is obtained, as shown in Figure 13. According to the figure, a model can be 

obtained by using the first three parameters as inputs. The threshold is 1.3 °C. Based on field 

experience, the temperature of the input shaft of the gearbox, the oil temperature of the gearbox, and 

the inlet oil temperature of the gearbox are selected because they are closely related with the 

temperature of the output shaft, which verifies the effectiveness of the parameter selection method. 

6.2. Verifying Anomaly Detection  

Data from different WTs were used to verify the RMSE-based anomaly detection method. 

According to field records, WT 31 experienced an overheating fault in generator bearing B on 30 July, 

2012. In this study, SCADA data from two months before the fault were analyzed, and a total of 

10,500 data points were used, as shown in Figure 14. Though the bearing temperature showed higher 

fluctuations, it clearly did not exceed the limit. Before 30 July, the fault in generator bearing B is not 

judged from the temperature of the generator bearing B in Figure 14. The residuals of the model of the 
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temperature of generator bearing B, the daily average residual, and the daily RMSE were obtained,  

as shown in Figures 15–17. 

Table 4. Influence of the parameters on output shaft temperature of gearbox. 

No. Parameters Average error RMSE 

1 Temperature of input shaft X5 
+5% −3.2198 3.5499 

−5% 3.3400 3.7244 

2 Temperature of oil X8 
+5% 0.4570 1.2283 

−5% −0.4076 1.2070 

3 Temperature of inlet oil X7 
+5% 0.1690 1.0884 

−5% −0.1720 1.0308 

4 Phase voltage X15 
+5% 0.0445 1.0122 

−5% −0.0913 1.0131 

5 Temperature of gearbox–side bearing X10 
+5% 0.2463 1.0065 

−5% −0.0266 0.9626 

6 Temperature of rotor–side bearing X9 
+5% 0.0784 0.9459 

−5% 0.0739 0.9440 

7 Temperature of cooling air X12 
+5% −0.0111 0.9161 

−5% 0.0405 0.9156 

8 Temperature of bearing B X14 
+5% −0.0170 0.9169 

−5% 0.0407 0.9090 

9 Active power X17 
+5% 0.0299 0.9177 

−5% 0.0402 0.9043 

10 Temperature of top cabinet X4 
+5% 0.0716 0.9148 

−5% −0.0495 0.9061 

11 Phase current X16 
+5% 0.0189 0.9033 

−5% 0.0434 0.9128 

12 Temperature of winding X11 
+5% 0.0438 0.9067 

−5% −0.0043 0.9060 

13 Temperature of bearing A X13 
+5% 0.0336 0.9041 

−5% −0.0067 0.9081 

14 Temperature of ambient X20 
+5% −0.0233 0.8976 

−5% 0.0576 0.9077 

15 Temperature of base cabinet X3 
+5% 0.0179 0.8986 

−5% 0.0164 0.8978 

16 Wind speed X19 
+5% 0.0177 0.8981 

−5% 0.0169 0.8974 

17 Nacelle vibration along X direction X1 
+5% 0.0165 0.8978 

−5% 0.0178 0.8975 

18 Nacelle vibration along Y direction X2 
+5% 0.0186 0.8981 

−5% 0.0157 0.8972 

19 Reactive power X18 
+5% 0.0215 0.8971 

−5% 0.0122 0.8979 
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Figure 13. The change of RMSE versus the increase of input parameters of the model for 

temperature of the output shaft of gearbox. 

 

Figure 14. Temperature of generator bearing B in WT 31. 

 

Figure 15. Residual of model for temperature of generator bearing B in WT 31. 
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Figure 16. Averaged residual over one day of model for the temperature of generator 

bearing B. 

 

Figure 17. RMSE over one day of model for the temperature of generator bearing B. 

 

The overall average residual and the RMSE of the model were observed to go upward over time, 

fluctuating up and down, possibly because of the following reasons: (1) the change of parameters 

caused by the volatility of wind speed and (2) the influence of the nonlinear control method of WTs on 

the condition parameters. Moreover, the upward trend in Figure 17 was more apparent than that in 

Figure 16; therefore, the average residual and the RMSE illustrated the validity of the method. 

Moreover, the RMSE-based detection method was effective in eliminating the disturbance and 

accurately judging condition degradation.  

Residuals around the 8000th point in Figure 15, as well as average residual, and RMSE around the 

56th day in Figures 16 and 17 exhibited greater difference compared with the previous results of the 

model. The condition of temperature parameter of generator bearing B can be judged approximately  

16 days in advance, thus verifying the early warning time mentioned earlier.  

From the model for the temperature parameter of the gearbox output shaft and the model for the 

temperature parameter of generator bearing B, the conclusion was drawn that the models of different 

parameters have different thresholds for judging the condition. 
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7. Conclusions 

In this work, SCADA data from a wind farm are used to study the methods of condition parameters 

modeling and anomaly detection of WTs. The results and analysis can be summarized as follows: 

(1) Appropriate parameters are determined for modeling. A reasonable wind speed range of 

monitoring data is obtained by analyzing the characteristics of the SCADA data from the  

wind farm.  

(2) A neural network algorithm is adopted for automatic parameter selection, and the parameter 

selection method is proposed by using the temperature of generator bearing B as an example. 

The parameter selection method could effectively simplify the structure of the model. 

(3) A comparative study of the anomaly detection method based on the average residual and the 

RMSE is made with the model, which illustrates that the RMSE-based anomaly detection 

method is more advantageous.  

(4) The output of automatic parameter selection based model is consistent with the observed 

values. The results of the RMSE-based anomaly detection method could correctly reflect 

parameter anomalies.  

The findings of this work can provide technical reference values for online monitoring, early 

warning, and condition-based maintenance of WTs.  
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