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Abstract: We study the energy-efficient power allocation techniques for OFDM-based
cognitive radio (CR) networks, where a CR transmitter is communicating with CR receivers
on a channel borrowed from licensed primary users (PUs). Due to non-orthogonality of the
transmitted signals in the adjacent bands, both the PU and the cognitive secondary user (SU)
cause mutual-interference. We assume that the statistical channel state information between
the cognitive transmitter and the primary receiver is known. The secondary transmitter
maintains a specified statistical mutual-interference limits for all the PUs communicating
in the adjacent channels. Our goal is to allocate subcarrier power for the SU so that the
energy efficiency metric is optimized as well as the mutual-interference on all the active
PU bands are below specified bounds. We show that the green power loading problem
is a fractional programming problem. We use Charnes-Cooper transformation technique
to obtain an equivalent concave optimization problem for what the solution can be readily
obtained. We also propose iterative Dinkelbach method using parametric objective function
for the fractional program. Numerical results are given to show the effect of different
interference parameters, rate and power thresholds, and number of PUs.
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1. Introduction

The demand for ubiquitous wireless broadband data access and multimedia services is constantly
growing in the crowded consumer radio bands while wider spectral ranges of already licensed frequency
bands are barely used. To cope with this unequal spectrum access and usage, spectrum pooling is
identified as one of the potential techniques that enables public access to licensed frequency bands. The
key idea of spectrum pooling is to merge spectral ranges from different spectrum owners into a common
pool and the cognitive or secondary users may borrow/rent spectrum from the pool. The coexistence of
both the licensed users and cognitive users are realized by filling the time-frequency gaps of the primary
network when they are idle.

Orthogonal frequency division multiplexing (OFDM) has been identified as a feasible modulation
technique due to its flexible spectral shape that can adaptively fill the idle gaps for such a co-existence
scenario. However, due to the non-orthogonality of the transmit signals, both primary and secondary
systems introduce mutual interference and it is crucial that the sum of the interference from all the
subcarriers does not exceed acceptable limits. In this paper, our goal is to greenwise design a cognitive
radio (CR) system that optimizes energy efficiency under probabilistic interference quality of service
(QoS) constraints for primary users (PUs), and throughput and power QoS constraints for secondary
users (SUs). We assume that each PU has its own statistical interference limits depending on its own QoS
requirements. The SU sharing the spectrum has knowledge of all these individual statistical interference
limit of the PUs. OFDM has already been deployed in different broadband broadcast wireless standards,
such as, Digital Video Broadcasting (DVB), Digital Audio Broadcast (DAB), etc. because of its many
desirable features, such as high spectral efficiency, multipath delay spread tolerance, immunity to
the frequency selective fading channels and power efficiency. However, in a downlink broadcasting
network most of the power is consumed in the transmitter. Therefore, it is very crucial to design an
energy-efficient broadcasting transmission strategy. Below we discuss some works in broadcasting
situations that deals with OFDM.

In [1], the authors presented an overview of peak-to-average power ratio (PAPR) reduction
techniques for multiuser OFDM broadband communication systems. The mutual interference issues
for OFDM-based spectrum pooling techniques between the primary and cognitive systems are studied
in [2]. The authors in [3] studied an mutual interference minimization and subcarrier power allocation
technique for OFDM-based CR. Different mutual interference suppression techniques are compared
using laboratory test on real OFDM signals for spectrum pooling CR systems in [4]. In [5], the authors
developed a dynamic subcarrier allocation algorithm for multi-user downlink communications using
OFDM technique. Their algorithm attempts to allocate group of subcarriers to the user that have highest
average channel gain. Conflict resolution technique is also studied to avoid the case when two or more
users attempt to select the same channel partition. The authors also employed adaptive modulation
techniques for each user on the allocated channel partitions.

While accessing PU’s spectrum, it is crucial to limit interference so that PU’s operation is not
hampered. Different form of interference limit has been used in the literature, such as, instantaneous hard
interference limit, average interference limit, PU outage limit, or soft statistical interference limit. The
authors in [6] proposed a distributed power control framework that satisfy tight QoS constraints for SU
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and interference level threshold constraints for PUs. In [7], cross-layer tradeoff of power, sensing time
and throughput is studied under a PU interference threshold constraint. Peak and average interference
power constraints for protecting PUs in cognitive radio networks is studied in [8]. Using outage
constraint for PU, a power allocation algorithm for OFDM-based cognitive radio is studied in [9]. In [10],
optimal power allocation strategies for the secondary user is studied in order to maximize its capacity
under transmit power constraint of the SU and outage constraint of the PU. Distributed subcarrier and
power allocation technique for the maximization of throughput subject to constraints on the interference
and power is studied in [11] for ad hoc cognitive radio networks. Using statistical constraint on
interference, a joint admission control, and rate and power allocation for SUs in a CR network is
developed in [12]. The authors studied outage probabilities for SUs and interference constraint violation
probabilities for PUs for the dynamic fair spectrum sharing scenario. In [13], optimal and suboptimal
power loading techniques are studied using statistical interference constraints for CR systems.

In [14], adaptive subcarrier allocation and power distribution technique for multi-antenna orthogonal
frequency division multiple access (OFDMA) systems that provide multicast service is studied. The
problem is formulated as maximizing sum capacity with constraints on the total power. The authors
in [15] studied two-dimensional mapping of incoming requests for wireless OFDMA systems, where
a base station (BS) is transmitting to a group of subscriber station (SS) using a broadcast channel in
downlink. They presented run-time efficient heuristic solutions for the problem, where the objective
function is the spatial efficiency. The performance of multimedia streaming over an IEEE802.11b
wireless local area network using quality-oriented adaptive scheme is studied in [16]. The performance
is assessed in terms of the average user quality of experience, number of concurrent streaming sessions,
loss rate, delay, jitter and total throughput. In [17], the resource allocation problem of assigning a set
of subcarriers and determining the number of bits to be transmitted for each carrier in OFDMA-based
broadband wireless access systems is considered. The authors considered fairness and efficiency of the
optimal and suboptimal algorithms.

In [18], an energy efficient structure for beacon signal transmission is proposed for the protection of
PU, which is incumbent wireless microphone. The authors in [19] investigate energy-efficient design of
CR in order to protect incumbent users, where power allocation and transmission duration are determined
by exploiting multiple channels. In [20], the green network planning of single frequency networks based
on OFDM schemes is investigated. A genetic algorithm optimization method is proposed to maximize
energy-efficiency there. The problem of energy-efficient communication in the downlink OFDMA
network is studied in [21]. For multi-cell OFDMA downlink networks with cooperative base stations,
the energy-efficiency is discussed in [22]. In [23], a mathematical framework for energy-efficiency
is presented.

Energy-efficient green communications techniques and network designs are of special importance
for future generation communications in order to reduce carbon dioxide gas emission due to exponential
increase on energy consumption in our daily lives [24]. To cope with the exponential increase of wireless
data traffic in overly crowded consumer radio spectra, CR is identified as a very important technology
for future wireless communication networks. CR communications technology will provide a way to
opportunistically and efficiently utilize unused piece of spectrum that is currently statically assigned to
other services (such as, TV band, amateur radio, etc.). Since the activity state of the incumbent PU
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is hidden from the SUs, the main research challenges in CR are to design efficient spectrum sensing,
interference-management, and optimized accessing techniques.

While wireless handheld devices are playingan ever-increasing integral role in human daily activities,
wireless systems as a whole invariably contribute to a significant global carbon footprint. A recent study
shows that information and communication technology (ICT) is responsible for about 3%–5% of the
worldwide total energy consumptions [25]. Data-hungry applications, such as wireless cloud computing
and wireless machine-to-machine communications, are getting increasingly more attention in emerging
wireless networks. The increase in telecommunications data volume is found to be approximately
10 times every 5 years, and the corresponding increase in energy consumption is 16%–20%. As a
result, the research attention to energy-efficient environment-friendly wireless communications networks
and architecture design are increasing worldwide among telecommunication researchers, operators and
government bodies. While most of research in the last decades deals with throughput maximization, little
attention is paid on energy-efficiency issues. Future generation wireless networks need to be optimized
using energy-efficiency metric as an objective [26]. Energy-efficiency in its simplest form is defined as
the effective throughput per unit transmitted power. Some other research works that deals with energy
aware communications using green cost functions discussed above can be found in [27–34].

From the discussion above it can be seen that there are two streams of studies for cognitive radio
networks in the literature: some authors studied the maximization of capacity with statistical interference
constraint, and some authors addressed the maximization of EE without considering statistical
interference model. In this paper, we address the deficiencies in both streams by combining them. We
address a generalized formulation for green cognitive radio networks. Therefore, although downlink
power allocation techniques for wireless broadcast channels exist in the literature, energy-efficient green
power allocation technique with statistical interference constraint is not explored yet. Also, most of
spectrum access techniques in cognitive radio networks deal with either throughput maximization or
power minimization in interweave manner (cognitive user transmit when the primary user is off). In
this paper, we addressed EE maximization problem considering three important constraints that are not
addressed before together, but for cognitive radio scenario.

The main contributions of this paper are as follows:

1. We propose an energy-efficiency maximization framework in a cognitive radio scenario, where the
transmitter judiciously allocates total power over multiple subcarriers. The transmitter maintains
specified statistical interference limits for the individual PUs and minimum throughput for the
SUs. We formulate the resulting problem as a fractional program;

2. Since the optimal solution of the formulated fractional program may be hard to obtain due to
non-concavity of the objective function, we show using Charnes-Cooper Transformation (CCT)
technique that the problem is equivalent to a concave optimization problem. Suitable concave
optimization solution technique can be used to obtain optimal subcarrier powers for the equivalent
concave optimization problem;

3. We discuss the special structure of the solution analytically and show that the power allocation
follows a water-filling type distribution for the special case when the sum rate throughput is greater
than the specified threshold;
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4. We propose and study an iterative technique based on Dinkelbach method to obtain ε-optimal
solution of the problem, where the objective function is transformed into a parametric form.
A comparison of both techniques is also studied;

5. With numerical analysis, we show the performance of the green cognitive radio network with
different operational parameters. We also compare the convergence of iterative method with
equivalent CCT problem.

The rest of the paper is organized as follows. The system model and problem formulation are
presented in Section 2. The transformation technique of the non-linear non-concave problem into a
concave problem is discussed in Section 3 and iterative technique based on Dinkelbach method using
parametric objective is given in Section 4. Simulation results are presented in Section 5 and conclusion
is drawn in Section 6.

2. System Model

We consider a cognitive radio network as shown in a simplified Figure 1, where a cognitive transmitter
(base station) is transmitting to its cognitive users in the downlink direction over pooled wireless
spectrum from the primary users (who are also communicating in the adjacent spectrum at the same
time). The primary users are the licensed owners of the spectrum and secondary users have the capability
to use the unused spectrum opportunistically in time and/or frequency. When the SUs transmit on the
adjacent pooled spectra, it inherently causes the mutual interference to the PUs. PUs cause mutual
interference to the SUs as well. We assume that the interference due to PU’s transmission can be
estimated perfectly. Unless specified otherwise, we use A, a, and a to represent matrix, vector and
an element of a vector respectively. When ai ≥ 0 for all components i of a vector a, we use a ≥ 0.
The notations for most common variables are given at the end of this paper.

Figure 1. A typical scenario of primary and secondary user communications in a geographic
area, where primary and secondary users co-exist in side-by-side bands. They cause adjacent
channel interference to each other.
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Let M denote the number of PUs that co-exist side-by-side with the CR user pair and Bi, ∀i ∈ M
denote the bandwidth of the frequency band of the ith PU pair, where M = {1, 2, 3, · · · ,M}. We
assume that the SUs use orthogonal frequency division multiplexing (OFDM) technique for transmission
of data. The SUs divide the acquired bandwidth into N subcarriers, where ∆f is the bandwidth of each
subcarrier. Let us denote the set of subcarriers by N = {1, 2, 3, · · · , N}.

The channel state between the CR transmitter and the CR receiver varies randomly in both time and
frequency domain due to fading, and hssj denotes the channel fading gain of the associated SUs in the j th

subcarrier. We assume that the channel state information (CSI) of all subcarriers are perfectly estimated
at the receiver and are fed back to the transmitter for power loading on the subcarriers. Without losing
generality, we assume that the set of achievable rate points for the broadcast channel can be computed
using any methods, such as, frequency division, time-division, superposition coding (SPC), etc. [35].
For example, in SPC, the users are ordered based on their channel gains, from strong to weak and the
first user is encoded last. For simplicity, we carry out our discussions using last user rate, which gives us
the lower bound of the energy-efficiency that must be maintained across all the users for QoS guarantee.
If pj, j = 1, 2, 3..., N , where pj ∈ P ∈ Rn denotes the power allocated for the j th subcarrier, its rate
throughput, Cj in bits/sec can be written by following Shannon capacity formula,

Cj = ∆f log2

(
1 +

γssj pj

σ2 +
∑M

i=1 Jij

)
, ∀j ∈ N (1)

where γssj = |hssj |2 is the channel power gain; σ2 is the additive white Gaussian noise (AWGN) variance
and Jij is the interference contributed by the ith PU transmitter to the j th subcarrier. We assume that
the randomly varying interference can be perfectly estimated at the SU receiver and also the estimated
interference can be fed back to the transmitter.

2.1. Problem Formulation

The performance of the green radio systems are usually measured in terms of energy-efficiency metric,
which is defined as the total achievable rate throughput per unit total transmitter power. Let Γ(p) denote
the energy-efficiency in information bits per Joule as,

Γ(p) =

∑N
j=1Cj

pc +
∑N

j=1 pj
(2)

where pc is the static circuit power of the source in the transmit mode. Our objective is to maximize
energy-efficiency of the green cognitive radio systems with the constraints on interference probability
limit, sum throughput over all subcarriers and allocated powers. That is,
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max
p

Γ(p) (3)

subject to:

C1 : Pr

(
N∑
j=1

Iji ≤ I thi

)
≥ IPi , ∀i ∈M

C2 :
N∑
j=1

Cj ≥ Cth

C3 :
N∑
j=1

pj ≤ PT

C4 : pj ≥ 0, ∀j ∈ N

where Iji is the interference power introduced by the j th subcarrier to the ith PU; I thi is the interference
threshold (upper limit of the permissible interference) for ith PU, IPi , ∀i ∈ M are the interference
probability thresholds (lower limit of the interference threshold maintaining probability); PT is the total
transmitter power threshold and Cth is the capacity threshold (lower limit of the total rate as determined
by QoS requirement). Constraint C1 ensures that the total interference to a PU is below a specified
threshold by a specified probability margin, C2 ensures the sum rate constraints over all the subcarriers
and C3 ensures that the total allocated power does not exceed the power threshold, PT and C4 ensures
nonnegative power values in the optimization process.

We assume that the fading channel between the SU transmitter and ith PU receiver can be described
by Rayleigh distribution with fading gain denoted as hspi . The probability density function (pdf) of the
channel power gain γspi = |hspi |2 is exponentially distributed and can be written as,

f(γspi ) =
1

γ̄spi
exp

(
−γ

sp
i

γ̄spi

)
(4)

where γ̄spi is the average channel power gain. The interference power Iji can be expressed as a function
of dji and pj as follows:

Iji = γspi

∫ dji+Bi/2

dji−Bi/2
φj(f)df (5)

where φj(f) = pjTs

(
sin(πfTs)
πfTs

)2

is the power density spectrum (PDS) of the j th subcarrier in the CR

user band assuming an ideal Nyquist pulse; dji is the spectral distance between the jth subcarrier

and ith PU, and Ts is the OFDM symbol duration. Suppose Kji = Ts
∫ dji+Bi/2
dji−Bi/2

(
sin(πfTs)
πfTs

)2

df , then
Equation (5) becomes,

Iji = γspi Kjipj (6)
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Note that the terms Kji, ∀j ∈ N , ∀i ∈ M are constants for a given set of carriers and PUs.
Substituting the value of Iji from Equation (6) into constraint C1 of Equation (3), we can write

N∑
j=1

pjKji ≤
I thi

γ̄spi (− ln(1− IPi ))
, ∀i ∈M (7)

The detailed derivation of Equation (7) is given in Appendix A. Equation (7) means that the weighted
sum of all the subcarrier powers is upper bounded by the channel between the secondary transmitter and
the primary receiver, and PU’s QoS requirement in terms of required interference thresholds.

The problem in Equation (3) is a non-linear and non-concave problem. Below, via suitable
transformation, we transform it into a concave optimization problem that can be solved easily.

3. Transformation to Equivalent Concave Programming

The fractional programming problem in Equation (3) can be expressed in the following generalized
form [36]:

max
p∈P

f(p)

g(p)
(8)

subject to: hi(p) ≤ 0, ∀i ∈M

Problem (8) is a concave fractional program (CFP) [36] since it satisfies the following properties:
(i) the function f(p), g(p), and hi(p), ∀i ∈ M are all real-valued functions that are defined on the
set P of Rn; (ii) the f(p) and g(p) are concave and affine on P respectively; and (iii) f(p) is positive
on S if g(p) is not affine, where S = {p ∈ P : hi(p) ≤ 0, ∀i ∈ M}. The objective function of
a CFP is quasiconcave, and a local optimal solution in quasiconcave problem cannot be guaranteed as
a global maximum [37]. Only in a special case, CFP problem has one maximum solution point when
f(p, z) is strictly concave or g(p) is strictly convex [36]. However, using Charnes-Cooper transformation
(CCT) [36,38] a CFP can be transformed into a concave program (CP) problem, and for CP we can
guarantee any local maximum point as global maximum point. In a differentiable equivalent CP, a
solution of the Karush Kuhn Tucker (KKT) conditions provides the optimal solution.

A CFP with affine denominator can be transformed to an equivalent concave program with
Charnes-Cooper Transformation (CCT) with the following transformations: y = tp and t = 1

g(p)
. With

CCT, we can write equivalent concave program for Equation (3) as follows:
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max
y,t

t
N∑
j=1

log2

(
1 +

yjγ
ss
j

t(σ2 +
∑M

i=1 Jij)

)
(9)

subject to:

C1 :
N∑
j=1

yjKji ≤
tI thi

γ̄spi (− ln(1− IPi ))
, ∀i ∈M

C2 :
N∑
j=1

log

(
1 +

yjγ
ss
j

t(σ2 +
∑M

i=1 Jij)

)
≥ Cth

C3 :
N∑
j=1

yj ≤ tPT

C4 : yj ≥ 0, ∀j ∈ N

C5 : tpc +
N∑
j=1

yj = 1

C6 : t > 0

The concave program (9) can be solved using any standard optimization techniques and/or using
mathematical programming software (e.g., MATLAB, CPLEX, MINOS, etc.). When the constraint C2

is a strictly inequality, we show that the power allocation in the subcarriers has water-filling type policy.
We express this by the following theorem:

Theorem 1. The optimal power allocation rule that maximizes the total energy efficiency in Equation (9)
is given by the following relation when the capacity is greater than the threshold in constraint C2:

p∗j =

(
y∗j
t∗

)
=

(
1

βj
− 1

ξj

)+

,∀j ∈ N (10)

where βj = ln2
(
υ − α− λj +

∑M
i=1(φi + ηi)Kji

)
, υ, α, λj , φi and ηi are Lagrange multipliers

of the Lagrangian function L(y, t,φ, υ,λ, µ,η, ψ, α), and ξj=
γssj

σ2+
∑M
i=1 Jij

, y∗j = t∗
(

1
βj
− 1

ξj

)+

, and

t∗ = 1

pc+
∑N
j=1

(
1
βj
− 1
ξj

)+ .

Proof. The proof of Theorem 1 is given in Appendix B.

4. Iterative Algorithm using Parametric Optimization

Another mathematically less cumbersome technique that does not require the transformation is
an iterative solution technique of the fractional programming problem based on the Dinkelbach
method [39]. In this algorithm, the objective of the fractional programming problem is first
transformed into a parametric optimization problem, then ε-optimal solutions are obtained iteratively,
where ε is the tolerance of convergence. Let q ∈ R denote a real-valued parameter such that
F (p, q) = maxp∈S [f(p)− qg(p)]. Therefore, F (p, q) is continuous for q ∈ R, strictly monotonic



Energies 2014, 7 2544

and concave over R [39]. There is a one-to-one relationship between the solutions of the fractional
programming formulation and iterative concave programming with parametric objective as stated by the
following theorem:

Dinkelbach Theorem [39]:
q∗ = f(p∗)

g(p∗)
= maxp∈ S

f(p)
g(p)

if and only if, maxp∈ S f(p)− q∗g(p) = f(p∗)− q∗g(p∗) = 0.

Therefore, the problem formulated in Equation (3) can be solved by replacing the fractional objective
function with the parametric objective function F (p, q) using ε-optimal Dinkelbach algorithm as given
in Algorithm 1.

Algorithm 1 : Iterative algorithm based on the Dinkelbach method
Initialization:
Parameter q = 0, tolerance ε = 10−6, iteration i = 0, maximum iteration I = 100,
Convergence = false,
Define: F (p, q) =

∑N
j=1Cj − q

(
pc +

∑N
j=1 pj

)
while (Convergence = false) and (i ≤ I) do
p← arg maxp{F (p, q) | C1 to C4 of Equation (3)}
if F (p, q) = 0 then

Optimal power, p∗ ← p

Convergence = true
else if F (p, q) ≤ ε then
ε-optimal power, pε ← p

Convergence = true
else

update, q ←
∑N
j=1 Cj

pc+
∑N
j=1 pj

update, i← i+ 1

end if
end while

5. Numerical Results

In this section, we present numerical simulation results for the channel access probability, average
energy efficiency and average total transmitted power with different interference parameters, power
and rate thresholds, and number of interfering primary users using both the CCT and Dinkelbach
formulations. Both the CCT and Dinkelbach formulations give the same optimal values. We conduct
Monte Carlo simulations by generating several set of channel samples for Rayleigh fading channel and
average the optimal energy efficiency and the optimal total power over the number of set of samples.
Unless specified otherwise, the values for different system parameters for the Monte Carlo simulations
are as follows: the duration of OFDM symbol, Ts = 1 µs, static circuit power, pc = 10−6 mW,
noise power variance, σ2 = 0.1 mW, the total transmitter power threshold, PT = 50 mW, number of
subcarriers, N = 16, bandwidth of each subcarrier, ∆f = 312.5 kHz, average channel power gain
of the SU link, γssj = 1 dB, average channel power gain between SU transmitter and PU receiver,
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γssj = −10 dB, number of PU channels, M = 10, the rate threshold, Cth = 5× 106 bits/sec, interference
threshold, I thi = 10−3, interference probability threshold IPi = 0.9, bandwidth of each PU, B = 1 MHz,
interference contribution of each PU is Rayleigh distributed with standard deviation 10−4.

For a given set of data and channel realization, all the constraints must satisfy together and they form
a region where all the possible solution points lie in. However, for a particular set of channel samples,
there may not be any feasible region at all. Meaning, there is no solution point that can simultaneously
satisfy all the constraints. For that channel scenario and constraint thresholds, the SU cannot access the
channel. One or more thresholds must be relaxed in order to transmit for that channel conditions. The
channel access probability is defined as the average number of samples for which a feasible region and
hence an optimal solution exists for the problem. First let us see the how the three main constraints,
i.e., the interference, rate and power affect the feasible region and consequently the optimal solution of
the problem.

Figures 2 and 3 show two typical scenarios for two different rate thresholds respectively, where we
show the feasible regions and optimal solution points. Note that as mentioned previously the feasible
region is the set of solution points where all the constraints are simultaneously satisfied. However, one
of the solution point in the feasible region will optimize the objective function and it is the optimal
energy-efficiency. In these figures, the common area inside hatched lines is the feasible region and the
solid circular point is the optimal solution point (optimal energy efficiency point), where the value of
energy efficiency is the maximum. These plots show how the rate threshold Cth affects the feasible
region and the optimal energy-efficiency. The values for different parameters for Figures 2 and 3 are
as follows: number of subcarriers, N = 2, number of PU, M = 1, bandwidth of each subcarrier,
∆f = 1 MHz, signal-to-noise and interference ratio (SINR) for subcarriers are 1.3 and 0.62. For
Figure 2, the total transmitter power threshold, PT = 1 W and the rate threshold, Cth = 0.8 Mbits/sec.
The optimal sum of subcarrier powers, the optimal rate and the optimal energy efficiency are found to
be 0.6675 W, 0.8 Mbits/sec and 1.1985 Mb/Joule respectively by calculating the optimal point. Note
that sum rate constraint is the active constraint (i.e., the optimal point lies on the sum rate constraint)
here. In Figure 3, the rate threshold is increased to Cth = 1.0 Mbits/sec for the same power threshold.
The resulting optimal sum of subcarrier powers, the optimal rate and the optimal energy efficiency are
1.0 W, 1.1754 Mbits/sec and 1.1754 Mb/Joule respectively. It can be seen that the power constraint
is the active constraint here. Although the value of optimal rate is increased, the energy efficiency is
decreased. Therefore, it is evident from the results that maximizing energy efficiency does not maximize
the capacity. In fact, they may be sometimes conflicting goals in wireless networks, as was discussed
in [26] also for general wireless network.



Energies 2014, 7 2546

Figure 2. Pictorial view of the optimization objective and all the constraints. The feasible
region (common region created by the constraints) and the optimal solution point (solid
circle) are also shown. Interference and sum rate constraints are active for this case.
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Figure 3. Pictorial view of the optimization objective and all the constraints for different rate
constraint. The feasible region and the optimal solution point are also shown in this case.
Unlike Figure 2, in this case, the power and the interference constraints are active.
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In Figures 4–6, we have shown the effect of number of PUs on the channel access probability, average
total subcarrier power and average energy efficiency for different power thresholds. For a particular
value of power threshold, the channel access probability decreases with the increase of number of
PUs. Because more PUs causes more interference to the SU’s receiver. Also, the SU transmitter need
to maintain interference constraints of additional PUs. As a results, the average numbers of channel
realization for which all the constraints, given other bounds remain the same, need to satisfied decreases.
Thus, the SU need to raise the power to counteract the increased number of PUs, as can be seen from
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Figure 6. Since for the same rate threshold the power increases, the energy efficiency decreases with
the increase of number of PUs as in Figure 5. It is also seen that as the power threshold decreases,
the channel access probability also decreases. For PT = 5 mW, the channel access probability is zero
for M = 6 or more PUs. The effect of rate threshold on the channel access probability is shown in
Figure 7. It is seen that for a particular number of PUs, the channel access probability decreases as the
rate threshold increases. Because in order to achieve higher rate, the SU transmitter need to use higher
transmitter power, which in turns disqualify many sets of channel samples for which there existed a
feasible region before.

Figure 4. The variation of channel access probability with number of primary users for
different power thresholds.
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Figure 5. The variation of average energy efficiency with number of primary users for
different power thresholds.
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Figure 6. The variation of average total subcarrier power with number of primary users for
different power thresholds.
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Figure 7. The effect of number of primary users on channel access probability for different
rate thresholds.
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The effect of interference probability threshold on the channel access probability, total power and
energy efficiency are shown in Figures 8–10 respectively for different interference thresholds. Note
that these two interference parameters, namely the interference threshold and interference probability
threshold, are specified by the PU networks depending on its QoS requirements. These curves show
the performance of SU for different pairs of these parameters. It can be seen from the Figure 8 that
the channel access probability decreases with the interference threshold for a particular interference
probability threshold. It makes sense because as the interference threshold gets tighter, less channel
realization can give a feasible region and hence the channel access probability decreases. The SU



Energies 2014, 7 2549

transmitter need to use less power in order to meet the interference constraints (7) for the tighter
interference threshold as can be seen in Figure 9. Since the total power decreases, the energy efficiency
in Figure 10 increases. For a particular value of interference threshold, similar effect is seen for
tighter interference probability threshold. It can be explained similarly using Equation (7) since tighter
bound requires use of less power in order to satisfy interference constraint, which makes rate thresholds
infeasible for greater number of sets of channel realizations.

Figure 8. Channel access probability vs. interference probability threshold for different
interference thresholds.
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Figure 9. Total power vs. interference probability threshold for different interference thresholds.
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Figure 10. Average energy efficiency vs. interference probability threshold for different
interference thresholds.
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In Figure 11, the effect of interference probability threshold on the channel access probability is shown
for different number of PUs. It is seen that the channel access probability decreases as the number
of PUs increases. Since now more interference is coming from the increasing number of PUs, the
SU transmitter must increase power to maintain the rate threshold, which on the other hand violates
interference threshold for many channel situations. Therefore, number of channel condition realizations
for which there existed a feasible region decreases. The convergence of Dinkelbach iterative algorithm
is shown in Figure 12 and compared it with the CCT optimal solution point. It is found through a large
number of simulation cases that the Dinkelbach algorithm converges to optimal solution in less than
8 iterations in most cases.

Figure 11. The effect of interference probability threshold on channel access probability for
different number of PUs.
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Figure 12. The convergence of Dinkelbach method. Energy efficient vs. number of iterations
for transformed concave and parametric Dinkelbach formulations. While transformed
concave problem gives the optimal solution directly (in one iteration), Dinkelbach method
provides solution iteratively over several iterations.
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6. Conclusions

In this paper, we studied energy-efficient downlink power allocation techniques for OFDM-based
green cognitive radio systems. We assumed that the primary and secondary users coexist in adjacent
bands. In this scenario, the mutual interference is very important to control. We formulated the problem
using a fraction programming technique, where the objective is to maximize the energy efficiency that
is defined as the ratio of capacity and transmitted power. We first provided the optimal solution of
the problem through Charne-Cooper transformation that gives us concave form of the problem from
fractional form. Although the original fractional program is quasi-concave for which global optimal
point is not guaranteed, the equivalent concave problem is easier to solve using standard optimization
technique and also has only one global optimal point. Therefore, finding a local optimal point is enough.
Then we investigated the Dinkelbach method, where the fractional objective function is converted into
parametric objective function. We provided the proof of one-to-one relationship of the solution between
the fractional programming method and the Dinkelbach method. The resulting parametric problem is
solved using iterative techniques and ε-optimal solution is found. It is found that Dinkelbach method
provides optimal solution very quickly, it converges mostly in 6–10 iterations. We also provided
numerical simulation results to show the channel access probability, average total subcarrier power
and average energy efficiency performance for different system parameters, such as, interference limits,
number of primary users, rate and power thresholds.
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Notations

M Number of primary users (PUs)
Bi Bandwidth of ith PU
N Number of subcarriers of the secondary user’s (SU’s) transmitter
∆f Bandwidth of a subcarrier
hssj Channel fading gain of j th subcarrier
γssj Channel power gain of j th subcarrier
hspi Channel fading gain between SU transmitter and ith PU
γspi Channel power gain between SU transmitter and ith PU
pj Power allocated to j th subcarrier
Iji Interference by j th subcarrier to ith PU
I thi Interference threshold
IPi Interference probability threshold
Cj Capacity/Rate of j th subcarrier in bits/sec
Cth Capacity/Rate threshold
PT Maximum transmitted power over all subcarriers
Jij Interference by ith PU to j th subcarrier
Ts OFDM symbol duration
dji Spectral distance between j th subcarrier and ith PU
f(p) Numerator of fractional program
g(p) Denominator of fractional program
y = tp, Charnes-Cooper transformation variable
t = g(p)−1, Charnes-Cooper transformation variable
ε Convergence tolerance parameter in Dinkelbach method
q Real-valued parameter so that F (q) = maxp[f(p)− qg(p)]

Appendix

A. Derivation of Constraint C1 in Equation (7)

Combining constraint C1 of Equations (3) and (6), we can write,

Pr (γspi ≤ Γ) ≥ IPi , ∀i ∈M (A1)

where Γ =
Ithi∑N

j=1 pjKji
. Since the channel power gain γspi is exponentially distributed as given in

Equation (4), we can write: ∫ Γ

0

1

γ̄spi
exp

(
−γ

sp
i

γ̄spi

)
dγspi ≥ IPi , ∀i ∈M (A2)

After integration, we can extract
∑N

j=1 pjKji from Equation (A2) as follows:

N∑
j=1

pjKji ≤
I thi

γ̄spi (− ln(1− IPi ))
, ∀i ∈M (A3)
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B. Proof of Theorem 1

Let us assume that ξj =
γssj

σ2+
∑M
i=1 Jij

and ζ =
Ithi

γ̄spi (− ln(1−IPi ))
. Therefore, we can rewrite Equation (9) in

the following standard form:

max
y,t

t

N∑
j=1

log2 (t+ yjξj)−Nt log2 t (A4)

subject to:

C1 :
N∑
j=1

yjKji − tζi ≤ 0, ∀i ∈M

C2 : −
N∑
j=1

log2 (t+ yjξj) +N log2 t+ Cth ≤ 0

C3 :
N∑
j=1

yj − tPT ≤ 0

C4 : −yj ≤ 0, ∀j ∈ N

C5 : tpc +
N∑
j=1

yj − 1 = 0

C6 : −t < 0

The Lagrangian function of Equation (A4) can be given by,

L(y, t,φ, υ,λ, µ,η, ψ, α) = t
N∑
j=1

log2 (t+ yjξj)−Nt log2 t+

M∑
i=1

φi(
N∑
j=1

yjKji − tζi) + ψ(−
N∑
j=1

log2 (t+ yjξj) +N log2 t+ Cth)

+α(
N∑
j=1

yj − tPT )−
N∑
j=1

λjyj + υ(tpc +
N∑
j=1

yj − 1)− µt (A5)

Suppose, y∗j and t∗ denote the optimal solution of the Lagrangian function (A5), then the
Karush-Kuhn-Tucker (KKT) conditions can be written as follows:

N∑
j=1

yjKji − tζi ≤ 0, ∀i ∈M (A6)

φi

(
N∑
j=1

yjKji − tζi

)
= 0,∀i ∈M (A7)

φi ≥ 0,∀i ∈M (A8)

−
N∑
j=1

log2 (t+ yjξj) +N log2 t+ Cth ≤ 0 (A9)
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ψ(−
N∑
j=1

log2 (t+ yjξj) +N log2 t+ Cth) = 0 (A10)

ψ ≥ 0 (A11)

yj − tPT ≤ 0 (A12)

α(
N∑
j=1

yj − tPT ) = 0 (A13)

α ≥ 0 (A14)

− yj ≤ 0 (A15)

− λjyj = 0 (A16)

λj ≥ 0 (A17)

tpc +
N∑
j=1

yj − 1 = 0 (A18)

− t ≤ 0 (A19)

− µt = 0 (A20)

µ ≥ 0 (A21)

∂L

∂t∗
= 0 (A22)

∂L

∂y∗j
= 0, ∀j ∈ N (A23)

Substituting L from Equation (A5) into Equation (A23) and after some manipulation, we can write
following relation:

yjβjξj − t(ξj − βj) = ξjψ (A24)

where, βj = ln2
(
υ − α− λj +

∑M
i=1(φi + ηi)Kji

)
. Now, from Equations (A9–A11), it can be seen

that when ψ = 0, Equation (A9) should have strictly inequalities. Therefore, when the rate constraint is
satisfied with inequality, we can write Equation (A24) as follows:
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y∗j
t∗

= p∗j =

(
1

βj
− 1

ξj

)+

, ∀j ∈ N (A25)

where (.)+ is the non-negative function.
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