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Abstract: Remaining useful life (RUL) prediction is central to the prognostics and health 

management (PHM) of lithium-ion batteries. This paper proposes a novel RUL 

prediction method for lithium-ion batteries based on the Wiener process with measurement 

error (WPME). First, we use the truncated normal distribution (TND) based modeling 

approach for the estimated degradation state and obtain an exact and closed-form RUL 

distribution by simultaneously considering the measurement uncertainty and the 

distribution of the estimated drift parameter. Then, the traditional maximum likelihood 

estimation (MLE) method for population based parameters estimation is remedied to 

improve the estimation efficiency. Additionally, we analyze the relationship between the 

classic MLE method and the combination of the Bayesian updating algorithm and the 

expectation maximization algorithm for the real time RUL prediction. Interestingly, it is 

found that the result of the combination algorithm is equal to the classic MLE method. 

Inspired by this observation, a heuristic algorithm for the real time parameters updating 

is presented. Finally, numerical examples and a case study of lithium-ion batteries are 

provided to substantiate the superiority of the proposed RUL prediction method. 

Keywords: lithium-ion batteries; remaining useful life; the Wiener process; measurement 

error; prediction; truncated normal distribution; maximum likelihood estimation; Bayesian; 

expectation maximization algorithm 
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1. Introduction 

Lithium-ion batteries have been widely used in many fields, e.g., consumer electronics, electric 

vehicles, marine systems, aircrafts, satellites, etc., due to their high power density, low weight, 

long lifetime, low self-discharge rate, no memory effect and other advantages [1,2]. The demand for 

lithium-ion batteries demonstrates the necessity to evaluate their reliability. Failure of lithium-ion 

batteries could lead to performance degradation, operational impairment, and even catastrophic 

failure [3–5]. For example, in 2006, the National Aeronautics and Space Administration’s Mars Global 

Surveyor stopped working due to the failure of batteries [6]. In 2013, all Boeing 787 Dreamliners were 

indefinitely grounded due to battery failures that occurred on two planes [7]. Therefore, monitoring the 

degradation process, evaluating the state of health and predicting the remaining useful life (RUL) have 

become increasingly important for lithium-ion batteries. 

Prognostics and health management (PHM) has emerged as one of the key enablers to improve 

system safety, increase system operations reliability and mission availability, decrease unnecessary 

maintenance actions, and reduce system life-cycle costs [8,9]. As a very important step of PHM, the 

RUL prediction based on the condition monitoring (CM) information plays an important role in 

maintenance strategy selection, inspection optimization, and spare parts provision [9,10]. The RUL of 

lithium-ion batteries is defined as the length of time from present time to the end of useful life. Since 

the failure data is scarce in reality, the degradation information is often chosen to describe the health 

status through a degradation model [11]. For the lithium-ion batteries, the capacity induced by the 

charge-discharge operational cycle is a suitable feature to characterize the long-term degradation 

process [12,13]. Then, the issue of estimating the battery’s RUL could be transformed to predict the 

time when its capacity crosses a predefined failure threshold. 

There are two main approaches for prognostics in PHM, i.e., physics-of-failure (PoF) and data-driven. 

As the PoF based prognostic methods depend on the knowledge of a battery’s life cycle loading 

condition, material properties, failure mechanisms, etc., it is difficult to apply for complicated systems 

with unclear physical failure mechanism. However, this is most frequently encountered in practice. In 

contrast, data-driven techniques extract features from performance data such as current, voltage, 

capacity and impedance, and thus they are less complex than the PoF-based approaches. The current 

research about the RUL prediction of lithium-ion batteries focuses mainly on data-driven approaches. 

Saha et al. [14] presented an empirical model to describe battery behavior and predicted the RUL by 

the particle filter (PF) algorithm. Dalal et al. [15] provided details on how the PF algorithm could be 

used for prognostics. To improve the accuracy of the PF algorithm, Rao-Blackwellized PF and 

unscented PF algorithm are used [16,17]. To fully utilize the degradation data of congeneric batteries, 

He et al. [18] applied the Dempster-Shafer theory to evaluate the initial model parameters. Other  

new prognostics-related methods and models, e.g., autoregressive model, Verhulst model, fusion 

prognostic algorithm, adaptive bathtub-shaped function, relevance vectors, etc., can be found in [19–25]. 

In the above works, the probability distribution function (PDF) of the RUL is approximated by the 

Monte Carlo method, which is time-consuming. To solve this problem, the Wiener process has been 

reported to predict the RUL of batteries [12,13]. The Wiener process can provide a good description  

of system’s dynamic characteristic due to its non-monotonic property, infinite divisibility property  

and physical interpretations. As such, it has been widely used to model degradation process,  
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such as bridge beams [26], milling machines [27], light-emitting diodes (LEDs) [28,29], micro electro 

mechanical systems (MEMS) [30], laser generators [31], continuous stirred tank reactors [32], and 

gyros [33–35]. The RUL prediction based on the Wiener process, which is a type of statistics-based 

data driven methods, has gained much attention in recent years [36]. In this paper, we address the issue 

of applying the Wiener process to predict the RUL of batteries, with an emphasis on the effect of 

measurement error (ME) in the measured data [12,13]. 

In the literature, the current research about the Wiener process with ME (WPME) focuses on the 

following three aspects. The first aspect is studying the influence of the ME to the RUL prediction and 

finding the PDF of the RUL or the lifetime. Si et al. [37] presented the analytical form of the RUL 

distribution for the linear WPME by considering the uncertain of the ME. Feng et al. [13] presented an 

analytical form of the RUL distribution for the nonlinear case. Wang et al. [38] and Tang et al. [39] 

proposed the RUL distributions for the WPME by incorporating the uncertainties of the ME and the 

degradation trend simultaneously. However, when the ME is involved, the degradation state must be 

estimated from the measurements with ME. Suppose that the failure threshold is w and the actual CM 

data at the current time is xk which is a random value, it should be satisfied that w > xk if the item is not 

failed at the current time. Thus, w − xk has a nonzero probability to be negative. Particularly, when the 

degradation state approaches the failure threshold, this nonzero probability will increase and cannot 

be ignored. Otherwise, if we use the traditional normal distribution to model w − xk, an underestimated 

probability density function of the estimated RUL will be generated and thus lead to unsuccessful 

prognostics. Therefore, the task of this paper is to ensure the condition that w > xk is satisfied by 

introducing a truncated normal distribution (TND) based modeling approach. 

The second aspect is the offline parameters estimation. The maximum likelihood estimation (MLE) 

method is most commonly used to estimate the fixed model parameters of the WPME. Whitmore [40] 

did a pioneering work for the modeling and parameters estimation of the WPME for a single item. 

Peng and Tseng [31] incorporated the random effects into the modeling of the WPME and presented a 

MLE method for a type of items. Then, this method has been applied to the nonlinear Wiener process [33] 

and the WPME when using first differences of the observations [12,39,41,42]. However, the drift 

parameter is assumed to be random for a specific item, which is not consistent with the modeling 

assumptions, as detailed in Section 3. 

The last aspect is updating the random parameters of the WPME. The updating algorithm of the 

WPME is developed from the updating algorithm for the basic linear Wiener process. In this paper, 

we review the updating algorithm for the basic linear Wiener process and WPME together. A classic 

work about the updating of the random parameters is proposed by Gebraeel et al. [43], whose model 

established a linkage between the past and current degradation data of the congeneric items by a 

Bayesian mechanism. Following Gebraeel et al. [43], some related issues and many variants and 

applications have been studied and reported [39,44–46]. The work about this Bayesian updating 

mechanism for the WPME is also been studied in [41]. Another updating algorithm is combining the 

Bayesian updating and expectation maximization (EM) algorithm, where the Bayesian updating 

includes the basic Bayesian algorithm, Kalman filtering, strong tracking filter, extended Kalman 

filter, etc., [13,32,34,35,47]. In this combination algorithm, the Bayesian updating is used to update 

the random parameters of the model and the EM algorithm is used to estimate the fixed parameters. 

However, the relationship between the Bayesian method and the combination algorithm is still unclear. 
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To address the above issues, we firstly use the TND to model w − xk and in this case an exact and 

analytical RUL distribution is obtained. This leads to the first contribution of the paper. Secondly, 

we present a two-step MLE method to estimate the parameters for satisfying the assumption that the 

random drift parameter is fixed for a specific item. This is another contribution of the paper since this 

two-step method makes the estimated variance of the drift parameter positive. Then, we find an 

interesting result about the relationship between the Bayesian method and the combination algorithm, 

and based on this result we present a heuristic algorithm for the parameters updating. This is the third 

contribution of this paper, which is not fully explored before. Finally, some numerical examples and a 

case study regarding the lithium-ion batteries are presented to verify the results derived in this paper 

and to illustrate the application and superiority of the proposed method. 

The remainder of this paper is organized as follows: Section 2 develops the ME model and derives 

the RUL distribution; in Section 3, we present a two-step MLE method to estimate the fixed parameters; 

in Section 4, we discuss the parameters updating for the WPME and propose a heuristic algorithm; 

numerical examples and a case study are provided in Section 5; and Section 6 draws the main conclusions. 

2. Degradation Modeling and RUL Prediction 

2.1. Degradation Model 

The Wiener process with a linear drift is typically used for modeling the degradation process. Let X(t) 

denote the degradation value at time t; the degradation process can be represented as follows: 

( ) (0) λ σ ( )BX t X t B t= + +  (1)

where λ is the drift parameter; σB is the diffusion parameter; and B(t) is the standard Brownian motion 

representing the stochastic dynamics of the degradation process. Without loss of generality, X(0) is 

assumed to be zero. As the mean of the degradation is governed by the drift parameter λ, λ is assumed 

as a random parameter to represent the heterogeneity among different items, and σB is assumed to be 

fixed to describe common character shared by all items. Moreover, λ is assumed to be s-independent 

with B(t). 

Generally speaking, the degradation data obtained from routine CM are inevitably contaminated by 

the uncertainty during the measurement process [48,49]. If the measurement process of X(t) contains ME, 

only the variable with ME can be observed, which is represented as follows [40]: 

( ) ( ) ε λ σ ( ) εBY t X t t B t= + = + +  (2)

where ε denotes the ME and is normally distributed with zero mean and standard deviation σε. 

Additionally, ε is assumed to be s-independent with λ and B(t). 

Generally, the lifetime of the system is defined by the concept of the first hitting time (FHT) of the 

degradation process as: 

{ }inf : ( ) (0)T t X t w X w= ≥ ≤  (3)

where w denotes the failure threshold. 
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In the sense of the FHT, it is well-known that the Wiener process crossing a constant threshold w 

obeys an inverse Gaussian distribution [50]. Accordingly, the PDF, mean and variance of the lifetime 

can be obtained as follows: 

2

23 2

( λ )
( ) exp

2σ2π σ
T

BB

w w t
f t

tt

 −= − 
 

 (4)

2

3

σ
( ) , var( )

λ λ
Bww

E T T= =  (5)

2.2. Modelling the ME 

For the degradation process with ME, the lifetime Te can be defined as: 

{ } { }e inf : ( ) (0) inf : ( ) ε (0)T t X t w X w t Y t w X w= ≥ ≤ = ≥ + ≤  (6)

Therefore, the lifetime Te can be calculated by the time of { }( ), 0Y t t ≥  hitting the threshold wε = w + ε. 

Given the probability distribution of the ME, such as normal distribution, the PDF of the RUL can be 

derived by the law of total probability [31,40]. However, the restriction that w − xk > 0 is not satisfied 
in References [31,40]. As mentioned above, we use the TND to solve this problem. If 2~ (μ,σ )Z N  

and Z is truncated by Z > 0, then this type of TND can be written as 2~ (μ,σ )Z TN . Suppose that 
2~ (μ,σ )Z TN , the PDF and mean of Z can be written as [51]: 

( )

2

22

1 ( μ)
( ) exp

2σ2πσ Φ μ/σ

z
f Z

 −= − 
 

 (7)

( ) ( )2 2σ
( ) exp μ / (2σ ) μ

2πΦ μ / σ
E Z = − +  (8)

where Φ() is the cumulative distribution function (CDF) of the standard normal distribution.  

If µ >> σ, then we have Φ(µ/σ) ≈ 1 and exp(−µ2/σ2) ≈ 0. Thus, the TND approximately turns into 

the traditional normal distribution. The key issue of the RUL prediction with ME is to derive the PDF 

of the RUL, which is addressed in the following subsection. 

2.3. Real Time RUL Prediction with ME 

In this subsection, the RUL prediction method at a particular point of time tk is proposed. 
Define 0: 0 1 2{ , , ,..., }k ky y y y=Y  as the observed degradation and 0: 0 1 2{ , , ,..., }k kx x x x=X  as the actual 

degradation at CM times 0 1 2, , ,..., kt t t t , which could be irregularly spaced. Once the actual degradation 

process X0:k is available at tk, the process { ( ), }kX t t t≥  can be transformed into [34,35]: 

φ( ) ( ) ( ) λ( ) σ ( )k k k k k B kl X l t X t l B l= + − = +  (9)

where lk = t – tk ≥ 0, φ(0) = 0. 
Therefore, the RUL at time tk is equal to the FHT of the process {φ( ), 0}k kl l ≥  crossing the 

threshold wk = w – xk. Accordingly, the RUL can be defined as: 
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{ } { }0: 0:inf : ( ) inf :φ( )k k k k k k k k kL l X l t w l l w x= + ≥ = ≥ −X X  (10) 

As a result, once X0:k is available at tk, the PDF of the RUL with considering the uncertainty of λ in 

the sense of FHT can be written as [34,35]: 

0:

2
λ ,

0: 2 2 2 22 2 2 2
λ,λ ,

( μ )
( ) exp

2σ (σ σ )2π (σ σ )k k

k k kk
k kL

B B k kk B k k k

w x lw x
f l

t ll l l

 − −−= −  ++  
X X  (11)

where λ ,μ k  and 2
λ ,σ k  are the estimated mean and variance of λ conditional on X0:k by the Bayesian 

method. For more details about Equation (11), see References [34,35]. 

However, for the degradation process with ME, X0:k is unobserved. Only the degradation process 

with ME, i.e., Y0:k, can be directly measured. Thus, the true value of xk is a random value with uncertainty. 

To derive the PDF of the RUL with ME, the following lemma is given first: 

Lemma 1. If 2~ (μ,σ )Z TN , and B ∈ R, C ∈ R+, then: 

( )
2 2 2 2 2

2 2

2 2 2

22 2 2

( ) 1 σ σ μ
exp exp

2 Φ μ / σ σ 2 2 σ

μ (μ ) σ μ
exp Φ

2( σ )σ ( σ ) σ

Z

Z B C C B C
E Z

C C C

B C B B C

CC C C

π

σ

    − +⋅ − = −    +     
  + − +  + −    ++ +   

 (12)

The proof is given in the Appendix. 
As the ME 2

εε ~ (0,σ )N , it follows that 2
ε~ ( ,σ )k kw x N w y− − . On condition that w – xk > 0, we have 

2
ε~ ( ,σ )k kw x TN w y− − . Then, based on Lemma 1 and Equation (11), the PDF and mean of the RUL 

based on the updated λ can be obtained by the law of total probability, which is summarized in 

following theorem: 

Theorem 1. Once Y0:k is available at tk, the PDF and mean of the RUL with considering the 

uncertainty the estimated λ and ME can be written as: 

( )0:

2 2 2 22
λ, ε ,ε

0: 2 2
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λ, ε , , λ , λ , ,
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ε

μ σ μσ1
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where 2 2 2 2
λ, εσ σ σB k k kD l l= + + ; ,μw k kw y= − ; 2 2 2

λ ,σ σB k k kE l l= + ; and ()Λ  is the Dawson function, which 

can be expressed as follows: 

( )
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The proof is given in the Appendix. 
Similarly, if the 2

εσ  is set to be zero, the result of Theorem 1 reduces to the result of Equation (11). 

This indicates that the result of Theorem 1 is a generalization of Equation (11). If µw,k >> σε, we obtain 

that ( )2 2
, εexp μ / σ 0w k− ≈  and ( ) 1/ 2z zΛ ≈  based on the approximation property of the Dawson 

integral function. Hence, we have 0: , λ ,( ) μ / μk k w k kE L ≈Y . This result is desired since the expectation of 

the RUL is required in some maintenance strategies [45,46]. In the following, we develop a parameters 

estimation algorithm to estimate and update the parameters in Equations (13) and (14). 

3. Offline Parameters Estimation Method 

An offline parameters estimation method is needed to estimate the fixed parameters of the WPME, 

which represents population-based degradation character. The results of this estimation could provide 

the prior information for updating the online parameters. To represent the heterogeneity among 

different items, the drift parameter of the Wiener process is usually assumed as a random parameter 
with mean µ0 and variance 2

0σ  [12,31]. Strictly speaking, the drift parameter is assumed to be random 

for the population but fixed for a specific item. Peng and Tseng [31] presented a MLE method to 

estimate the unknown parameters of the WPME. This method has been further applied for the cases of 

nonlinear Wiener process [33], and the WPME when using the first differences of observations to 

develop the sample likelihood function (SLF) [12,39,41]. For more details of this MLE method, 

refer to Reference [31]. However, if the drift parameter λ is assumed to be random for a specific item, 

the estimated variance of the drift parameter may be evaluated to be negative by the MLE method 

presented in Reference [31]. This phenomenon is not consistent with the modeling assumptions and the 

actual conditions. To solve this problem, we develop a two-step MLE method. The first step is 
estimating the parameters 2 2

1 2 N B ε{λ ,λ ,...,λ ,σ ,σ }=Θ , where λn denotes the mean degradation rate for a 

specific item. The second is estimating the randomness of λ, i.e., 2
λ λ(μ ,σ ) . In the following, we present 

the two-step MLE method in detail. 

We use the first differences of the observations to develop the SLF, similarly to References [12,41]. 

It is assumed that there are N tested items, and the degradation of the nth item is measured at times 

1, 2, ,, ,...,
nn n m nt t t , where mn denotes the available number of degradation measurements of the n-th item, 

and n = 1,2,…N. Let 1, 2, ,{ ( ), ( ),..., ( )}
nn n n m nY t Y t Y t ′= Δ Δ ΔY , where , , 1,( ) ( ) ( )i n i n i nY t Y t Y t −Δ = − .  

In addition, define 1, 2, ,{ , , , , }
nn n n m nT T T ′= Δ Δ ΔT  with , , 1,i n i n i nT t t −Δ = − . Then, according to the properties 

of the Wiener process, Yn follows a multivariate normal distribution with mean and covariance given by: 

λn n n=Y T , 2 2
εσ σn B n n= +Σ D P  (15)

where: 

1, 2, ,diag( , ,..., )
nn n n m nT T T= Δ Δ ΔD , 

1 1 0 0

1 2 1 0

0 1 2

1

0 0 1 2

n

− 
 − − 
 = −
 − 
 − 



 

   


P  
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Note that the value in the first row and the first column of Pn, i.e., Pn(1,1), is equal to one, which is 

different from the result in Reference [40]. The reason is that Reference [40] ignored the observation at 

the first time. Recently, Ye et al. [41,42] corrected this mistake and set Pn(1,1) as 1. 
To facilitate the inference, we re-parameterize the parameters by 2 2 2

ε εσ =σ /σB  and 2/ σn n B=Σ Σ . Then, 

the log-likelihood function of 2 2
1 2 N ε{λ ,λ ,...,λ ,σ ,σ }B=Θ  can be written as: 

( ) ( )2 1
2

1 1 1 1

ln 2π 1 1 1
ln ( | ) lnσ ln λ λ

2 2 2 2σ

N N N N

n B n n n n n n n n n
n n n nB

L m m −

= = = =

′= − − − − − −   Y  Θ Σ ΣY T Y T  (16)

Taking the first partial derivatives of ln ( | )L YΘ  with respect to 2
1 2 N(λ ,λ ,...,λ ,σ )B  yields: 

( )1 1
2

1
ln ( | ) λ

λ σ n n n n n n n
n B

L − −∂ ′ ′= − − +
∂

Y  Θ Σ ΣT Y T T  (17)

and: 

( ) ( )1
2 2 2 2

1 1

1 1
ln ( | ) λ λ

σ 2σ 2(σ )

N N

n n n n n n n n
n nB B B

L m −

= =

∂ ′= − + − −
∂  Y Θ ΣY T Y T  (18)

Then, by setting these derivatives with respect to 2
1 2 N B(λ ,λ ,...,λ ,σ )  to zeros, the results of the MLE 

for 1 2 Nλ ,λ ,...,λ  and 2σB  can be written as: 

1

1
λ̂ n n n

n

n n n

−

−

′
=

′



Σ

Σ

T Y

T T
, (19)

( ) ( )1

2 1

1

λ λ
σ̂

N

n n n n n n n
n

B N

n
n

m

−

=

=

′− −
=




ΣY T Y T
. (20)

Substituting Equations (19) and (20) into Equation (16), we obtain the profile likelihood function 
for 2σ  in terms of the estimated 2

1 2 N B(λ ,λ ,...,λ ,σ )  as follows: 

2 2

1 1 1 1

ln 2π 1 1 1
ˆln (σ | ) lnσ ln

2 2 2 2

N N N N

n n B n n
n n n n

L m m m
= = = =

= − − − −   Y  Σ  (21)

The MLE for 2
εσ  can be obtained by maximizing the profile log-likelihood function in Equation (21) 

through a one-dimensional search. In this paper, we use the MATLAB function “FMINSEARCH” to 
find the estimates of 2σ . Then, the estimates of 2

1 2 N B(λ ,λ ,...,λ ,σ )  can be obtained by substituting the 

estimates of 2
εσ  into Equations (19) and (20). Finally, the estimate of 2

λ λ(μ ,σ )  can be calculated  

as follows: 

2 2
0 0 0

1 1

1 1
ˆ ˆ ˆμ λ ,σ (λ μ )

N N

n n
n nN N= =

= = −   (22)

Remark 1: In the MLE method presented by Peng and Tseng [31], Yn follows a multivariate 

normal distribution with the mean 0μ nΔY  and covariance 2 2 2
0 εσ σ σn n B n n

′ + +Y Y D P . It can be  

observed that the main diagonal of nΣ  is always positive, i.e., 2 2 2 2
λ , , εσ σ σ 0i n B i nT TΔ + Δ + > , or 
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2 2 2 2
λ , , εσ σ 2σ 0i n B i nT TΔ + Δ + > . However, at the maximizing process of the ln ( | )L YΘ , it cannot be 

ensured that 2
λσ 0>  on condition that 2 2 2 2

λ , , εσ σ 2σi n B i nT TΔ + Δ +  is the sum of 2 2
λ ,σ i nTΔ , 2

,σB i nTΔ  and 2
ε2σ .  

If 2
λσ  is not restricted that 2

λσ 0> , it could be negative when searching the best Θ  to maximize 

ln ( | )L YΘ  by the MLE method presented in Reference [31]. 

Remark 2. Whitmore [40] presented two ways to develop the SLF of the WPME for a single item, 

i.e., the observations at each point (referred to as SLF1) and the first differences of the observations 

(referred to as SLF2). SLF1 has been used in References [31,33], and SLF2 in References [12,39,41]. 

However, to our knowledge, the issue that which one should be selected for the MLE method has not 

been studied before. Here, we give a simple numerical example to illustrate this issue. For a single item, 

let (0, 0.9, 1.6, 4.7, 4.3, 5.6, 5.4) be the observed data at time (0, 0.8, 2, 4.2, 5, 7.5, 8.9); then the 
estimated log-likelihood function (log-LF), λ, 2

Bσ , and 2
εσ  based on SLF1 are 7.5002, 0.63424, 

0.32989, and 0.16090, respectively. Interestingly, the estimated results based on SLF2 equals to those 

based on SLF1. This indicates that the SLFs developed by these two ways could derive the same results. 

This phenomenon also occurs for the nonlinear Wiener process and the Wiener process with 

random effects. Note that Pn(1,1) is equal to 1 in the numerical example, it verifies the remedy of the 

variance matrix by Ye et al. [41] to some extent. Additionally, since the covariance matrix in the SLF2 

is the symmetric tridiagonal matrix, it is easy to calculate its inverse [52,53]. Thus, the SLF2, i.e., 

by the first differences of the observations, is suggested. 

4. Online Parameter Updating 

Online parameter updating is used to make the estimation adapt to the item’s individual 

characteristic and reduce the uncertainty of the estimation. As mentioned above, there are two 

commonly used updating methods, i.e., the Bayesian method and the combination algorithm. From a 

comparative perspective, the advantage of Bayesian method is that the prior information and the in situ 

degradation data could be reasonably incorporated. However, it is sensitive to the prior information [34]. 

In contrast, the merit of the combination algorithm is its robustness over the selection of these prior 

parameters. Essentially, the estimation by the Bayesian method could partially reflect the population 

information, while the combination algorithm is more adaptable to the individual information of a 

specific item. In this section, we attempt to find the relationship between the Bayesian method and the 

combination algorithm, and then present a heuristic parameters updating algorithm. We first present 

the combination algorithm for the WPME. 

4.1. The Combination Algorithm for Parameters Updating  

Parameters updating via newly observed CM data is an important part for the real time RUL 

prediction. To estimate the PDF of the RUL based on the in situ CM data Y0:k, Si et al. [34] proposed a 

general process for the estimation of the unknown parameters through the combination of Bayesian 

updating and EM algorithm. Inspired by this algorithm, we use both Bayesian updating and EM 

algorithm to estimate the unknown parameters for the linear WPME. However, the result of the EM 

algorithm can be directly derived and an interesting result is obtained. 

For the combination algorithm, the estimate of the unknown parameters includes the following steps: 
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Step 1: Determine the prior information for the unknown parameters. 

First, to update the PDF of the RUL, the unknown parameters need to be estimated by the history 

degradation data, lifetime data or accelerated degradation data. The initial parameters are estimated by 

the MLE method presented in the above section. Additionally, in order to simplify the updating 
process, it is assumed that the prior distribution of λ0 follows 2

0 0(μ ,σ )N . Consequently, such prior 

distribution falls into the conjugate family of sampling distribution 0:( λ)kp Y , and the posterior 

estimate of λ conditional on Y0:k is still normal, that is, 2
0: λ , λ ,λ | ~ (μ ,σ )k k kNY . 

Step 2: Update the posterior distribution of the random parameter. 

Given that 2
0 0~ (μ ,σ )Nλ , based on the Bayesian theorem, the posterior distribution of λ can be 

obtained as follows: 

( )

( ) ( )

( ) ( )

0: 0:

2
1 0

2 2
0

2 1 2 2 1 2 2
0 0 0

2
λ ,

2
λ,

λ | ( | λ) (λ)

(λ μ )1
exp λ (f ) λ exp

2σ 2σ

1
exp λ (f ) / σ 1/ (f ) / σ μ / σ

2

(λ μ )
exp

2σ

k k

k k k k
B

k k B k k B

k

k

p p p

σ λ

−

− −

∝

   −′∝ − Δ − Δ Ψ Δ − Δ −  
   
 ′ ′∝ − Δ Ψ Δ + + Δ Ψ Δ +  
 −

∝ −  
 

Y Y

y t y t

t t y t
 (23)

where 1 0 2 1 1{ , ,..., }k k ky y y y y y −Δ = − − −y , and 1 0 2 1 1{ , ,..., }k k kt t t t t t −Δ = − − −t . Due to the property of 

the normal distribution of 0:λ | kY , we have: 

2
0: λ , λ ,λ | (μ ,σ )k k kNY   (24)

with: 
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Step 3: Estimate the unknown parameters via the EM algorithm. 

For simplicity, the linear WPME is referred to as Model 0, and the basic linear Wiener process as 
Model 1. The unknown parameters of Model 0 are 2σB , 2

εσ , and the parameters µ0 and 2
0σ  in prior 

distribution ( )p λ , denoted by 2 2 2
0 0 ε{μ ,σ ,σ ,σ }BΦ = . Accordingly, Model 1 includes three unknown 

parameters, i.e., 2 2
0 0{μ ,σ ,σ }B

′ ′ ′ ′Φ = . For the real time RUL prediction, once new observation yk is 

available, the unknown parameters can be calculated by the MLE method as follows: 

0:
ˆ arg max ln ( )k kp

Φ
Φ = ΦY  (26)

where 0:( )kp ΦY  is the joint PDF of the observed degradation data Y0:k. 
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However, it is difficult to maximize the log-likelihood function due to the random effect and 

unobservability of λ. Generally, the EM algorithm provides a possible way to solve this problem [54]. 
The fundamental principle of the EM algorithm is to manipulate the relationship between 0:( )kp ΦY  

and 0:( ,λ )kp ΦY  via the Bayesian theorem so that the estimating of Φ can be achieved by two steps:  

E-step and M-step: 

E-step: 

Calculate ( ) { }( )
0:

( )
0:ˆλ .

ˆ ln ( ,λ )i
k k

i
k kL E p

Φ
Φ Φ = Φ

Y
Y  (27)

where ( )ˆ i
kΦ  denotes the estimated parameters in the i-th step of the EM algorithm conditional on Y0:k. 

M-step: 

( )( 1) ( )ˆ ˆarg maxi i
k kL+

Φ
Φ = Φ Φ  (28)

Then, the E-step and M-step are iterated multiple times until a criterion of convergence is satisfied. 

The commonly used criterion of convergence is that the difference between ( )ˆ i
kΦ  and ( 1)ˆ i

k
+Φ  falls below 

a pre-defined threshold. For more details of the convergence properties of the EM algorithm, see [54]. 

For Model 0, we first evaluate the complete log-likelihood function as follows:  

( ) ( )
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Given ( ) ( ) 2( ) 2( ) ( )
0, 0, ,

ˆˆ ˆ ˆ ˆ{μ ,σ ,σ , }i i i i i
k k k B k kφΦ =  as the estimate in the i-th step based on Y0:k. The expectation of 

0:ln ( ,λ )kp ΦY  can be calculated as follows: 
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(30)

After deriving ( )( )ˆ i
k kL Φ Φ , the results of the estimated parameters in the (i + 1)-th step can be 

summarized in the following theorems: 

Theorem 2. 

(1) ( 1)ˆ i
k

+Φ , by maximizing ( )( )ˆ i
k kL Φ Φ , is given by: 
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where: 
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and C denotes a generic constant that may change from line to line throughout the paper.  

(2) ( 1)ˆ i
k

+Φ  is uniquely determined and located at the maximum. 

The proof is given in Appendix. From Theorem 2, it can be observed that the M-step can be solved 

analytically and each iteration of the EM algorithm can be performed with only a single computation. 

To further simplify the computation, we propose the following Theorem.  

Theorem 3. 

(1) The iteration result of the combination algorithm is: 

( )
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(2) The result of the EM algorithm is equal to the estimate via the MLE method by assuming a fixed λ. 

The proof is given in Appendix. 

Based on Theorem 3, we can obtain similar results for Model 1 as follows: 

Corollary 1. 

(1) The result of the combination algorithm for Model 1 is: 
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(2) It is equal to the estimate via the MLE method by assuming a fixed λ. 

The proof of Corollary 1 can be easily obtained by setting 2
εσ 0=  in the proof of Theorem 3. 

The reason why the EM algorithm obtains the same results with the MLE method can be explained 
as follows. The EM algorithm is used to find the maximum likelihood estimate of 2 2 2

0 0 ε{μ ,σ ,σ ,σ }BΦ = , 

where µ0 and 2
0σ  are the mean and variance of λ to represent the heterogeneity among different items. 

However, λ is a fixed value for a specific item, therefore, the maximum likelihood estimate of 2
0σ  by 

the EM algorithm should be zero. And thus the EM algorithm turns into the traditional MLE method. 

The second result of Theorem 3 indicates that the EM algorithm can overcome the impact of 

improper prior information on the RUL prediction. However, it completely gets rid of the impact of 

prior information and only depends on the in situ observed data. Therefore, how to reasonably 

integrate the prior information and in situ information is an important issue in the real time RUL 

prediction. The following subsection attempts to address this issue. 

4.2. A Heuristic Parameter Updating Method 

Note that the convergent result of the combination algorithm equals to maximum likelihood estimate. 

Consequently, if no iteration is performed, it is the traditional Bayesian updating method. As the 

number of iterations increases, the estimation depends more on the in situ information, i.e., the 

individual characteristic. To integrate the prior information and in situ information, the following two 

basic guidelines should be followed. The first is that the less confident on the prior information, the 

more iterations. The second is that the more in situ degradation data are observed, the more iteration 

times are performed.  

Based on the above two guidelines, we present a heuristic parameter updating algorithm as shown 

in Figure 1. 

Figure 1. A framework of the heuristic parameter updating algorithm for the remaining 

useful life (RUL) prediction. 
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The heuristic algorithm includes three main steps as follows: 

Step 1: Calculate the priori information by the estimation method presented in Section 3, i.e., 
2 2 2

0 0 ε{μ ,σ ,σ ,σ }BΦ = ; 

Step 2: According to the confidence of the priori information, determine the length of iteration interval; 
Step 3: Suppose that there are k degradation data observed. If it it( 1) / /k L i k L− ≤ < , the EM algorithm 

presented in Section 4.1 is performed i times of the iteration, where Lit is the iteration interval length 

determined in Step 2. Then, the RUL is predicted based on the updated parameters. 

As the drift parameter λ is assumed as a random parameter to represent the heterogeneity among 
different items, and 2 2

ε{σ ,σ }B  are assumed to be fixed which are common to all items, we only update 

the drift parameter by the heuristic algorithm in this paper. As more degradation data are observed, 

the iteration times of the EM algorithm increase and thus the estimation depends more on the in situ 

information. This is consistent with the second basic guideline presented above. Additionally, it can be 

observed that the key issue of the heuristic method is to determine the iteration interval length via the 

prior information. In this paper, the iteration interval length is determined by the historical experience 

or expert’s information. The selection of Lit should base on the following principle. The more confidence 

there is on the prior information, the smaller Lit is. 

5. Experimental Studies 

In this section, we provide several numerical examples to analyse the effect without considering  

the restriction that w − xk > 0, to compare the performance of the fixed MLE method with the existing 

method in the literature, and to verify the interesting consequence derived in this paper. Then, a practical 

case study of the lithium-ion batteries is illustrated to demonstrate the application of the developed 

method for the real time RUL prediction. 

5.1. Numerical Examples 

First, we provide a numerical example to show the effect without considering the restriction that 

w − xk > 0. For illustrative purposes, the parameters in the degradation process are assumed as w = 10, 
yk = 9 and {1,0.01,0.09,2}Φ = . Then, the corresponding PDF and CDF of the lifetime are illustrated in 

Figure 2, where ND represents the traditional normal distribution. Obviously, the PDF and CDF by the 

traditional normal distribution are smaller than those by the TND. 
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Figure 2. Comparisons between estimated lifetime distributions with traditional normal 

distribution (ND) and truncated normal distribution (TND): (a) probability distribution 

function (PDF); and (b) cumulative distribution function (CDF). 
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The reason why the traditional normal distribution obtains smaller PDF and CDF can be explained 

as follows. When the traditional normal distribution is used, the PDF and CDF of the RUL can be 

calculated by the law of total probability as follows: 
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where wk = w − xk. It can be observed that ε1
( )Tf t  and ε1

( )TF t  are considered when the traditional 

normal distribution is used to model w − xk. However, ε1
( )Tf t  and ε1

( )TF t  will be negative since the 

integral is performed on condition that w − xk < 0. This is why the method via the traditional normal 

distribution derives the smaller PDF and CDF. The underestimated PDF could lead to delayed-maintenance, 

and then result in failure of the system. However, the TND is used to satisfy the condition that w − xk < 0. 

Then, ε1
( )Tf t  and ε1

( )TF t are not considered for the RUL estimation. And thus the TND could provide a 

probability distribution with total probability one. 

Then, five degradation paths are generated to demonstrate the validity of the proposed offline  

MLE method. For illustrative purposes, the parameters for the degradation process are assumed  
as 3 8 5 5{3 10 ,4 10 ,1 10 ,2 10 }− − − −Φ = × × × × . The degradation paths are simulated by the Euler 

approximation method with measurement frequency of 2.5 h, as shown in Figure 3. 
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Figure 3. The simulated data. 
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For simplicity, the MLE method proposed in this paper is referred to as MA, the method presented 

by Reference [31] as MB. Then, the estimation results of the parameters and the log-likelihood function 
value are shown in Table 1 for comparison. From Table 1, it can be observed that the estimate of 2

λσ  

by MB is negative. This demonstrates the better performance of the presented model. If the 2
λσ  is 

restricted as 2
λσ 0>  in the process of maximizing the log-likelihood function, the estimation results are 

given in the last line of Table 1. Compared with MB, our method produces closer estimations of  

the unknown parameters to the real results and has better fit in terms of the log-LF. 

Table 1. Comparisons of the two maximum likelihood estimation (MLE) methods with 

simulated degradation data. 

Methods λμ  2
λσ  2σB  2

εσ  Log-LF 

Real value 3 × 10−3 4 × 10−8 1 × 10−5 2 × 10−5 - 
MA 2.8735 × 10−3 1.6847 × 10−7 1.0467 × 10−5 1.8566 × 10−5 416.48 
MB 2.8750 × 10−3 −6.9337 × 10−8 1.3679 × 10−5 1.4693 × 10−5 414.50 

MB (with restriction) 2.8747 × 10−3 0 1.2749 × 10−5 1.5704 × 10−5 414.39 

To demonstrate the interesting consequence derived in this paper, we use the third  

simulated degradation paths to illustrate the iteration process of the combination algorithm of  

the Bayesian updating and EM algorithm through estimating the unknown parameters of a  

specific item. Using the MLE method in Reference [40], the estimated results are 
3 6 5

MLE
ˆ | {3.3279 10 ,0,1.3245 10 , 2.3885 10 }− − −Φ = × × × . The real and random prior parameters are 

respectively used for the parameters updating, where the random prior parameters are chosen as 
3 8 5 5{1 10 ,9 10 ,3 10 ,1 10 }− − − −Φ = × × × × . The iterative process of 100 times is illustrated in Figure 4.  

It is shown that the iteration based on the right prior parameters converges faster than that under the 

random prior parameters. However, they all converge to the results by using the MLE directly. 
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Figure 4. The estimated parameters by the expectation maximization (EM) algorithm: 
(a) 0μ ; (b) 2

0σ ; (c) 2σB ; and (d) 2
εσ  (real prior parameters: blue solid line; random prior 

parameters: black dotted line; the result of the MLE: red dashed lines). 
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5.2. A Practical Case Study 

In this experiment, we use the data collected from the National Aeronautics and Space 

Administration (NASA) Ames Prognostics Center of Excellence to demonstrate the effectiveness of 

our algorithm [55]. The degradation data includes four Li-ion batteries run through three different 

operational profiles (charge, discharge and impedance) at room temperature. The use of the lithium-ion 

battery is a process of repeatedly charging and discharging. Based on the analysis of the available 

performance measures of the lithium-ion batteries presented by Jin et al. [12], the capacity can be used 

to characterize the long-term degradation process induced by the charge-discharge operational cycle. 

The cycle life of the battery is defined as the number of times a battery can be recharged before its 

capacity has faded beyond acceptable limits (20%~30% of the rated capacity). The degradation data 
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from NASA included two time scales, i.e., calendar time and cycle time [12]. The degradation data 

based on the two time scales are shown in Figure 5. 

Figure 5. The experimental degradation data: (a) with calendar time; and (b) with cycle time. 
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It can be observed that some rest time exists in the experiment, which leads to the recovery of 

the battery. This phenomenon, called relaxation effect, increases the available capacity for the next 

cycle [12]. Due to the uncertainty of the rest time, the RUL could not be accurately predicted. 

Therefore, the relaxation effect should be extracted to study the RUL prediction of the cycle time. 

Jin et al. [12] used an exponential function of the calendar time presented in Reference [14] to extract 

the relaxation effect. For more details about how to extract the relaxation effect, see Reference [14]. 

In this paper, we also extract the relaxation effect by the method presented in Reference [14]. The 

transformed data by extracting the relaxation effect is illustrated in Figure 6, where the data is 

collected until failure. When the full charge capacity is reduced to below 70% of its rated value (1.4 A h), 

it is considered as the end of life and the battery needs to be replaced. 

Figure 6. The transformed degradation data. 
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In the following, we compare our method with Bayesian algorithm [43]. For simplicity,  

the method proposed in this paper is referred to as M1, the method based on the Bayesian  

updating algorithm as M2, and the method based on the MLE method as M3. To evaluate  

the proposed method, B0006 is chosen to compare these methods at different CM times and  

the data of other items are used to evaluate the prior parameters, the results of which  
are 3 6 5 5{ 6.30 10 ,3.92 10 ,4.51 10 ,2.55 10 }− − − −Φ = − × × × × . For comparison, the inappropriate prior 

parameters are chosen as µ0 = −2.10 × 10−3 and 2
0σ  = 9.8 × 10−7. 

We set iteration interval length Lit = 10 for the RUL prediction with right prior information and Lit = 5 

for that with inappropriate prior information. The corresponding PDFs of RULs under M1 and M2, 

and the actual RULs at some different CM points are shown in Figure 7. From Figure 7, it can be 

observed that, for the case with the right prior information, the range of the PDFs of the RULs based 

on both methods could cover the actual RUL. However, the uncertainty in the estimated RULs of M1 is 

less than that by M2. For the case with inappropriate prior information, the PDFs based on M1 could 

cover the actual RULs. However, the PDFs based on M2 could not cover the actual RULs and thus the 

maintenance is delayed if such predictive result is applied in maintenance schedule. This indicates that 

the proposed method could obtain desirable results regardless of the quality of the prior information. 

Figure 7. The PDFs of the RULs at different times. (a) right prior information; and  

(b) inappropriate prior information. 
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To further test the goodness of fit, we use the mean square error (MSE) to compare the methods in 

terms of the total prediction error of the RUL. The MSE at each observation point is calculated as follows: 

1:

2
1:0

( ) ( )d
k kk k k k k kLMSE l t T f l l

+∞
= + − Y Y  (34)

where T is the real failure time for a specific data path. Figure 8 presents the results of the MSEs at 

some CM points. This criterion demonstrates that our method is better than the traditional 

Bayesian method. For the case with inappropriate prior information, the accuracy of the proposed 

method improves significantly. The reason is that, after more iteration of the EM algorithm, the 

estimation is more adaptive to the characteristic of the individual item under study. Moreover, when 
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the prior information is appropriate, M1 is a little better than M2. This implies that the Bayesian method 

is useful for the case with appropriate prior information. 

Figure 8. The mean square errors (MSEs) at some condition monitoring (CM) points: (a) right 

prior information; and (b) inappropriate prior information. 
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Since the combination of the Bayesian method and the EM algorithm is actually the MLE method 

for a fixed degradation rate [40], we further compare our method with the MLE method. The 

corresponding PDFs of RULs and the actual RULs at some different CM points are shown in Figure 9. 

From Figure 9, we observe that all the PDFs could cover the actual RUL. However, the MLE method 

has a wider distribution, and has low probability for the time close to the actual RUL values. 

Figure 9. The estimated PDFs of the RULs by M1 and M3: (a) right prior information; and 

(b) inappropriate prior information. 
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Additionally, we give the results of the MSEs at some CM points as shown in Figure 10. It can  

be observed that the proposed method obtains better accuracy than the MLE method and has certain 
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robustness over the selection of the prior information. Moreover, the MLE method cannot apply the prior 

information for the RUL prediction. This further demonstrates the superiority of the proposed method. 

Figure 10. The MSEs at some CM points by M1 and M3. 
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Overall, the numerical examples and the practical study demonstrate that our developed method can 

work well and efficiently. Moreover, we verify that reasonably integrating the prior information and 

in situ information into degradation modeling can improve the accuracy of the RUL prediction. 

6. Conclusions 

This paper proposes a novel RUL prediction algorithm for lithium-ion batteries based on the 

WPME. First, some issues regarding the RUL prediction for the WPME have been studied. In order to 

ensure that w − xk > 0, we use the TND to model the estimated state w − xk and obtain an exact and 

closed-form RUL distribution by considering the ME and the distribution of the estimated drift 

parameter simultaneously. A new likelihood function is established for the offline parameters 

estimation, and thus the requirement of a fixed drift parameter for a specific item is satisfied. For the 

online parameter updating, we infer that the combination of the Bayesian updating algorithm and the 

EM algorithm derives the same results with that by the MLE method with a fixed drift parameter, and 

verify the interesting consequence through numerical examples. Based on this interesting result, 

we propose a heuristic parameter updating algorithm. Finally, the usefulness of the proposed method is 

demonstrated by a real-world degradation data of lithium-ion batteries from NASA. Compared with 

the existing approach, the proposed method can generate better results in predicting the RUL and has 

application potential. 

We primarily discuss the issues associated with estimating the RUL for the batteries with linear 

degradation characteristic. However, in many cases, lithium-ion batteries exhibit nonlinear 

degradation trend, especially when they approach the end of life. Therefore, using Wiener process for 

the RUL estimation of lithium-ion batteries with nonlinear degradation trend is necessary in future 

research. Additionally, the relaxation effect could lead to the recovery of the battery, i.e., increases the 
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available capacity for the next cycle. This phenomenon gives rise to a new studying issue that how to 

set the rest time for increasing the utilization of the batteries. Moreover, the heuristic parameter 

updating algorithm proposed in this paper is still preliminary, the issue regarding how to reasonably 

incorporate the prior information and in situ information together should be further exploited. 
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Appendix 

A. The Proof of Lemma 1 

Duo to the limited space, it is only summarized the main results below: 
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with 2 2φ ( σ μ ) / (σ )B C C= + +  and 2 2ψ σ / (σ )C C= + . Then, I1 and I2 can be formulated separately  

as follows: 
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By substituting Equations (A2) and (A3) into Equation (A1), the final result of Theorem 2 can be 

obtained after some manipulations. This completes the proof. 

B. The Proof of Theorem 1 

As 2
ε~ ( ,σ )k kw x TN w y− − , from Equation (11) and using the law of total probability, it can be 

obtained that: 
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Let λ,μ k kB l=  and 2 2 2
λ ,σ σB k k kC l l= + , the PDF of RUL can be obtained straightforwardly using 

Theorem 1. 
Let ()Λ  be the Dawson function, from Theorem 2, the mean of RUL can be formulated as [31]: 
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This completes the proof. 

C. The Proof of Theorem 2 

(1) By taking the first partial derivatives of the expectation of the complete log-likelihood  
function in Equation (30) with respect to ( )

0,μ̂ i
k , 2( )

0,σ̂ i
k  and 2( )

,σ̂ i
B k , and setting the three derivatives to zero,  

we obtain restricted estimate of ( 1)
0,μ̂ i

k
+ , 2( 1)

0,σ̂ i
k
+  and 2( 1)

,σ̂ i
B k

+ . Substituting the restricted estimate into  

Equation (30) and simplifying, gives the profile log-likelihood function only regarding to φ  as 

( )( ) 2( 1) ( 1) 2( 1)
, 0, 0,

ˆ ,σ ,μ ,σi i i i
k k B k k kL φ + + +Φ . By maximizing the profile log-likelihood function, we get ( 1)ˆ i

kφ + . Then, 

substitute ( 1)ˆ i
kφ +  into the restricted estimate, we obtain the estimate for ( 1)

0,μ̂ i
k
+ , 2( 1)

0,σ̂ i
k
+  and 2( 1)

,σ̂ i
B k

+ , as shown 

in Equation (31). 
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This proves that the matrix in Equation (C1) is negative definite at ( 1)
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+Φ = Φ . It indicates that 
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maximum. This completes the proof. 

D. The Proof of Theorem 3 
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Consequently, the result of the EM algorithm is the solution of the above equations. By solving the 

above equations, we can obtain the result of the EM algorithm. 

(2) Set 2 2
εσ / σBφ = , then from Equation (15) we have: 

( ) ( )2 1
0: 2

1 1
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By maximizing the above equation, we can derive the result of the estimation by the MLE method, 

which is the same as the result of the EM algorithm. This completes the proof. 
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