Supplementary Materials

	-		
Unit processes	Unit number	Energy consumption	Energy source
Loading bale, gal/DMT	1	0.17	Diesel manufactured in the U.S.
Horizontal grinder, kW·h/DMT	1	36.6	Electricity generated in the U.S.
	1	0.17	Electricity generated in the U.S.
Dust collection, kW·h/DMT	2	7.26	Electricity generated in the U.S.
	3	0.46	Electricity generated in the U.S.
	4	14.5	Electricity generated in the U.S.
Miscellaneous equipment,	1	0.29	Electricity generated in the U.S.
kW·h/DMT	4	0.29	Electricity generated in the U.S.
Convergence	1	0.58	Electricity generated in the U.S.
Conveyor system,	2	0.29	Electricity generated in the U.S.
K W 'II/DIVI I	3	0.29	Electricity generated in the U.S.

Table S1. Unit operations and energy source of the preprocessing depot.

1. Depot Capacity and Farm Biomass Supply Calculations

A depot capacity is determined based on the feedstock supply ratio, which is derived by dividing the annual feedstock supply for each depot by the total annual feedstock supply for all the depots. Then, this ratio is multiplied to the constant annual biorefinery demands in order to derive the true supply feedstock of each depot. For example, in Scenario 1 (Equal Spatial Location), the total biomass input of all the depots within the 50-mile-radius is 1,442,900 dry matter tons (DMT)/year. The biomass input of Depot 1 (at Thomas) is 627,400 DMT, which is 43% of the net inputs. This percentage is then multiplied by the constant annual demands of the central biorefinery, 900,000 DMT in order to obtain the size of each depot. The final value was rounded to the nearest multiple of 5, depending on the transport distance. The calculations for the preprocessing depots are summarized in Tables S2 and S3.

Equation (S1) is used to calculate the capacity of the depots:

Depot capacity (DC) =
$$\frac{\text{The annual feedstock supply for each depot}}{\text{The total feedstock supply of all depots}} \times 900,000$$
 (S1)

Depot	Farms (within 50 miles)	DMT/year	Feedstock supply ratio	Depot capacity within 900,000 DMT biorefinery
	Thomas	337,200	-	-
Depot 1	Sheridan	280,200	-	-
(Thomas)	Logan	10,000	-	-
	Total	627,400	0.43	390,000
	Cloud	45,200	-	-
D	Mitchell	20,300	-	-
Depot 2	Republic	15,500	-	-
(Cloud)	Saline	3,300	-	-
	Total	84,300	0.06	50,000
	Finney	48,100	-	-
	Gray	98,900	-	-
Donot 3	Hodgeman	7,200	-	-
(Crev)	Haskell	22,600	-	-
(Gray)	Ford	106,700	-	-
	Meade	154,800	-	-
	Total	438,300	0.30	275,000
	Stafford	48,300	-	-
	Reno	47,600	-	-
Donot 4	Rice	49,800	-	-
Depot 4	McPherson	34,900	-	-
(Keno)	Harvey	22,400	-	-
	Pratt	89,900	-	-
	Total	292,900	0.20	185,000
	Net total	1,442,900	-	-

Table S2. Depot capacity derived based on the demand of the single biorefinery in Scenario 1. DMT: dry matter tons.

Depot	Farms (within 50 miles)	DMT/year	Feedstock supply ratio	Depot capacity based on 900,000 DMT biorefinery
	Thomas	337,200	-	-
Depot 1	Sheridan	280,200	-	-
(Thomas)	Logan	10,000	-	-
	Total	627,400	0.33	295,000
	Wichita	83,400	-	-
	Scott	48,100	-	-
	Lane	12,700	-	-
Derect 2	Kearny	3,700	-	-
Depot 2	Finney	48,100	-	-
(Finney)	Haskell	22,600	-	-
	Grant	85,200	-	-
	Gray	98,900	-	-
	Total	402,700	0.21	190,000
	Seward	59,800	-	-
Donot 2	Ford	106,700	-	-
Depot 5	Meade	154,800	-	-
(Meade)	Clark	300	-	-
	Total	321,600	0.17	150,000
	Pawnee	68,700	-	-
	Barton	16,200	-	-
	Rice	48,800	-	-
Depot 4	Edwards	134,000	-	-
(Stafford)	Stafford	48,300	-	-
	Kiowa	54,000	-	-
	Pratt	89,900	-	-
	Total	459,900	0.24	220,000
	Cloud	45,200	-	-
	Mitchell	20,300	-	-
Depot 5	Republic	15,500	-	-
(Cloud)	Clay	16,500	-	-
	Saline	3,300	-	-
	Total	100,800	0.05	45,000
	Net total	1,912,400	-	-

Table S3. Depot capacity derived based on the demand of the single biorefinery in Scenario 2.

2. Feedstock Supply from Farm

Each depot consists of several farms. Each farm has its own feedstock supply that contributes to the total feedstock supply of the depot. The feedstock supply ratio is derived by dividing the feedstock supply for each farm by the total feedstock supply of all the farms for that depot within the 80 km (50-miles) radius. Since each depot has a limited capacity level, the ratio is then multiplied by the maximum capacity to obtain the true supply feedstock of each farm within the depot. The calculations for the farm feedstock supply can be found in Tables S4 and S5.

Equation (S2) is used to calculate the true feedstock supply of the farms:

Farm biomass supply

$= \frac{\text{The annual feedstock supply for each farm}}{\text{The total feedstock supply of all the farms within the depot radius}} \times \text{DC}$ (S2)

Table S4. Farm supply derived based on the feedstock demands of the preprocessing depot in Scenario 1.

Depot 1 (Thom	as)	390,000 DMT/year	390,000	
Farms (within 50 miles)	DMT/year	Feedstock supply ratio	Farm supply within depot, 390,000 DMT/year	
Thomas	337,200	0.54	209,608	
Sheridan	280,200	0.45	174,176	
Logan	10,000	0.02	6,216	
Total	627,400	-	-	
Depot 2 (Cloue	d)	50,000 DMT/year	50,000	
Farms (within 50 miles)	DMT/year	Feedstock supply ratio	Farm supply within depot, 50,000 DMT/year	
Cloud	45,200	0.54	26,809	
Mitchell	20,300	0.24	12,040	
Republic	15,500	0.18	9,193	
Saline	3,300	0.04	1,957	
Total	84,300	-	-	
Depot 3 (Gray	Depot 3 (Gray)		275,000	
Farms (within 50 miles)	DMT/year	Feedstock supply ratio	Farm supply within depot, 275,000 DMT/year	
Finney	48,100	0.11	30,179	
Gray	98,900	0.23	62,052	
Hodgeman	7,200	0.02	4,517	
Haskell	22,600	0.05	14,180	
Ford	106,700	0.24	66,946	
Meade	154,800	0.35	97,125	
Total	438,300	-	-	
Depot 4 (Reno))	185,000 DMT/year	185,000	
Farms (within 50 miles)	DMT/year	Feedstock supply ratio	Farm supply within depot, 185,000 DMT/year	
Stafford	48,300	0.16	30,507	
Reno	47,600	0.16	30,065	
Rice	49,800	0.17	31,454	
McPherson	34,900	0.12	22,043	
Harvey	22,400	0.08	14,148	
Pratt	89,900	0.31	56,782	
Total	292,900	-	-	
Net total	1,442,900	-	-	

 Denot 1 (Thom	95)	295.000 DMT/vear	295 000		
Farms (within 50 miles)	DMT/vear	Feedstock supply ratio	Earm supply within depot 295 000 DMT/year		
Thomas	337 200	0 54	158 550		
Sheridan	280,200	0.45	130,330		
Logan	10,000	0.02	4 702		
Total	627.400	0.02			
Depot 2 (Finne		190 000 DMT/vear	190.000		
Earms (within 50 miles)	DMT/vear	Feedstock supply ratio	Earm supply within depot 190 000 DMT/year		
Wichita	83 /00				
Scott	48 100	0.12	22 694		
Lane	12 700	0.03	5 992		
Kearny	3 700	0.01	1 746		
Finnoy	3,700	0.12	22 604		
Hackell	48,100	0.12	10 663		
Grant	22,000	0.00	40,100		
Grav	85,200	0.21	40,199		
Total	<u> </u>	0.23	40,005		
Depet 3 (Mead	402,700	- 150 000 DMT/year			
Farms (within 50 miles)	DM1/year	Feedstock supply ratio	Farm supply within depot, 150,000 DM1/year		
Seward	59,800	0.19	27,892		
Ford	106,700	0.33	49,767		
Meade	154,800	0.48	/2,201		
Clark	300	0.00	140		
Total	321,600	-	-		
Depot 4 (Staffo	rd)	220,000 DM1/year	220,000		
Farms (within 50 miles)	DMT/year	Feedstock supply ratio	Farm supply within depot, 220,000 DMT/year		
Pawnee	68,700	0.15	32,864		
Barton	16,200	0.04	7,750		
Rice	48,800	0.11	23,344		
Edwards	134,000	0.29	64,101		
Stafford	48,300	0.11	23,105		
Kiowa	54,000	0.12	25,832		
Pratt	89,900	0.20	43,005		
Total	459,900	-	-		
Depot 5 (Clou	d)	45,000 DMT/year	45,000		
Farms (within 50 miles)	DMT/year	Feedstock supply ratio	Farm supply within depot, 45,000 DMT/year		
Cloud	45,200	0.45	20,179		
Mitchell	20,300	0.20	9,063		
Republic	15,500	0.15	6,920		
Clay	16,500	0.16	7,366		
Saline	3,300	0.03	1,473		
Total	100,800	-	-		
Net total	1,912,400	-	-		

Table S5. Farm supply derived based on the feedstock demands of the preprocessing depot in Scenario 2.

3. Monte Carlo Simulation

Table S6. Results of the Monte Carlo Simulation presenting the life cycle GHG emissions for 1000 trials of uncertainty analysis. SD: standard deviation; IPCC: intergovernmental panel on climate change; and GWP: global warming potential.

Impact category	Unit	Scenario	Mean	Median	SD	Coefficient of variation	5%	95%	Standard error of mean
IPCC GWP 100 years	g CO ₂ /MJ ¹	Equal region	26.11	24.96	5.09	0.19	22.53	34.81	0.16
_	-	Biomass weighted and transport distance	25.17	24.32	2.96	0.11	22.44	32.38	0.09

¹ The GHG emission is converted from kg CO₂/dry metric ton. The unit conversion from kgCO₂ e/DMT to gCO₂ e/MJ ethanol is 3.54×10^{-4} .

Table S7. Input data and distribution function type for the Monte Carlo Simulation. All units in g CO₂e/MJ ethanol.

Secondria 1	19 counties					
Scenario I	Minimum	Average	Maximum	Distribution function type		
Feedstock harvest, collection and storage	0.013	0.32	1.41	Lognormal ^a		
Transport from field	0.089	0.20	0.96	Lognormal ^a		
Preprocessing depot	0.04	1.00	4.54	Lognormal ^b		
Transport from depots	0.09	2.00	9.62	Lognormal ^b		
Seconaria 2	27 counties					
Scenario 2	Minimum	Average	Maximum	Distribution function type		
Feedstock harvest, collection and storage	0.0009	0.22	1.07	Lognormal ^c		
Transport from field	0.0006	0.15	0.72	Lognormal ^c		
Preprocessing depot	0.003	0.72	3.44	Lognormal ^d		
Transport from depots	0.006	1.50	7.28	Lognormal ^d		

^a Selected among 11 distribution function types by Oracle Crystal Ball statistical software (Oracle Corporation, Redwood City, CA, USA) [1], with maximization of goodness-of-fit method to the data compiled from 19 farms; ^b Selected among 11 distribution function types by Oracle Crystal Ball statistical software, with maximization of goodness-of-fit method to the data compiled from four depots; ^c Selected among 11 distribution function types by Oracle Crystal Ball statistical software, with maximization of goodness-of-fit method to the data compiled from 27 farms; ^d Selected among 11 distribution function types by Oracle Crystal Ball statistical software, with maximization of goodness-of-fit method to the data compiled from five depots.

			Current paper	Wang	<i>et al.</i> [2]	Larson	<i>et al.</i> [3]	Eranki e	et al. [4]
		Energy		Energy		Energy		Energy	
1	rocesses	consumption Assump		consumption	Assumptions	consumption	Assumptions	consumption	Assumptions
		(MJ/DMT)		(MJ/DMT)		(MJ/DMT)		(MJ/DMT)	
			Harvesting 3.4 short ton of corn stover per acre.						
			The inventory takes into account the diesel fuel						
			consumption and the amount of agricultural						
			machinery and of the shed, which has to be						
	Combine harvesting	118.7	attributed to the harvesting by combined harvester.	-	-	-	-	-	-
	(U.S. electricity)		Also taken into consideration is the amount of						
			emissions to the air from combustion and the						
			emission to the soil from tyre abrasion during the						
			work process.						
			Raking 1.73 short ton of corn stover per acre.						
			The inventory takes into account the diesel fuel						
			consumption and the amount of agricultural						
Harvesting	TT 1 1 14		machinery and of the shed, which has to be						
	I win bar rake with	27.5	attributed to the harvesting by combined harvester.	-	-	-	-	-	-
	180 HP tractor		Also taken into consideration is the amount of						
			emissions to the air from combustion and the						
			emission to the soil from tyre abrasion during the						
			work process.						
			Baling 2.4 short ton of stover per acre of land.						
			Data are based on INL conventional biomass						
		logistics design. Assumes 175-HP tractor and PTO							
	Bailing	60.2	flail-shredder and windrower. Includes emissions	-	-	-	-	-	-
			from diesel combustion and infrastructure.						
			Does not include emissions from tire abrasion						
			and dust, etc.						

Table S8. Energy inputs for feedstock production. PTO: power take-off; GHG: greenhouse gas; and INL: Idaho National Laboratory.

	Current Paper		Wang et al. [2]		Larson et al. [3]		Eranki <i>et al</i> . [4]	
D	Energy		Energy		Energy		Energy	
Processes	consumption	Assumptions	consumption	Assumptions	consumption	Assumptions	consumption	Assumptions
	(MJ/DMT)		(MJ/DMT)		(MJ/DMT)		(MJ/DMT)	
						Harvesting corn stover involves		
				Fartilizar production and		mowing, raking into windrows,		
				forming for forming		fiel-drying to 15% moisture,		
Subtotal (harvesting)	206.4	-	379	are significant CHC	677.5	and then square-bailing.	-	-
						Mowing occurs during harvest		
				emission sources.		of the primary crop and shredding		
						is required before raking.		
Selfpropelled		Stacking 2.4						
Collection	41.3	short ton of corn	-	-	-	-	-	-
		stover per acre.						
				The amount of nutrients		After baling, a Stinger Stacker		
Subtotal (collection)	41.3	_	219	lost with stover removal	57	4400 collects and piles bales at	_	_
Subtour (concerton)	11.5	-		would be supplemented	57	field edge for manual tarping with		
				with synthetic fertilizers.		the help of a telescopic handler.		
								Processing energy and emissions
Feedstock production (harvesting + collection)								were obtained from the
	2477		508		734 5		1 271	NREL/Dartmouth Aspen plus
	247.7	-	598	-	/34.3	-	4,274	biorefinery model (National
								Renewable Energy Laboratory,
								Golden, CO, USA [5]).

Table S8. Cont.

Figure S1. Map of Kansas presenting the distribution and density of corn stover supply by county. The biorefinery is located at the centroid of Reno county (red frame).

Figure S2. Histogram representing life cycle GHG emissions within 90% confidence interval in Scenario 1.

Figure S3. Histogram representing life cycle GHG emissions within 90% confidence interval in Scenario 2.

4. Matlab Code Description

The energy consumption output data from Biomass Logistics Model (BLM) developed using PowersimTM at Idaho National Laboratory (INL) (Idaho Falls, ID, USA) [6] were presented in an excel spreadsheet. The database of four processes in the bio-ethanol supply chain was exported to the excel files from SimaPro v.7.3.3. Processes are ranked from 1 to 4, which represent the order of four processes in the supply chain: (1) harvest; (2) transport from field; (3) preprocessing depot; and (4) transport from depot. A Matlab script, namely Readcode.m is used to access the values from the BLM output. These values are corresponding to the parameters in SimaPro spreadsheet for each unit process. A Matlab function, autoGenCells.m, was written in order to replace the values in the SimaPro spreadsheet with the corresponding values from the BLM output. Then, the function multiplies these values to the GHG emission of each sub-process (*i.e.*, electricity, diesel, *etc.*), which was generated by the SimaPro 7.3.3. Finally, the function sums the GHG emission of all sub-processes in order to calculate the GHG emission of the process.

4.1. Readcode.m

This file reads all the values from the BLM output spreadsheet and fills in the spots in the SimaPro Process spreadsheet. It also keeps track of each resource used.

For attributes follow the legend below:

- D: diesel used
- E: electric used
- X: unknown attribute

Filenames and sheets

fromFile = 'Depot_Drexel.xlsx';

toFileDepot = 'Corn Stover, depot operations, Advanced.xls';

toFileField = 'Corn stover, field operations, conventional, 2010 INL test';

fromSheet = 'Sheet1';

toSheetDepot = 'Sheet2';

toSheetField = 'Sheet3'.

Generate destination cells automatically

[fromCellsDepot toCellsDepot attributeDepot] = autoGenCells(toFileDepot); [fromCellsField toCellsField attributeField] = autoGenCells(toFileField); <u>Record so we can multiply with amounts later on</u> dataToRecordDepot = zeros(length(fromCellsDepot),1); dataToRecordField = zeros(length(fromCellsField),1); totalDiesel = 0; totalElectric = 0.

Copying of data (example for only the preprocessing depot and harvest operations processes)

```
The Preprocessing depot
```

```
for ii = 1:length(fromCellsDepot)
  try
    [\sim,\sim,data] = xlsread(fromFile,fromSheet,fromCellsDepot{ii});
  if ~isnumeric(data)
       data = 0;
    end
  catch Exception
    data = 0;
  end
  xlswrite(toFileDepot,data,toSheetDepot,toCellsDepot{ii});
  dataToRecordDepot(ii) = data;
  switch attributeDepot(ii)
    case 'D'
       totalDiesel = totalDiesel + data;
    case 'E'
       totalElectric = totalElectric + data;
  end
  disp(data)
end
```

The Harvest, Collection and Storage

```
for ii = 1:length(fromCellsField)
try
  [~,~,data] = xlsread(fromFile,fromSheet,fromCellsField{ii});
  if ~isnumeric(data)
     data = 0;
  end
  catch Exception
```

4.2. AutoGenCells.m

Procedures:

- (1) Read to File and find the cells that start with 'INL_'. These are the areas we need to fill.
- (2) Extract the full names.
- (3) Extract their locations in Excel. This will be their toCells entry.
- (4) One by one, find the corresponding Excel reference.
- (5) Look to the right of the reference and find the cell it is pointing.
- (6) This will be the fromCells entry.

```
function [fromCells toCells attribute] = autoGenCells(toFile)
```

```
count = 0;
attribute = [];
[~,~,raw] = xlsread(toFile);
[a ~] = size(raw);
for ii = 1:a
  temp = strfind(raw{ii,2},'INL_');
  if ~isempty(temp)
```

Finding text

count = count + 1; toCells{1,count} = ['B' num2str(ii)]; fullname = raw{ii,2};

Check for attributes before doing anything

```
if ~isempty(strfind(raw{ii,1},'Electricity'))
  attribute = [attribute 'E'];
elseif ~isempty(strfind(raw{ii,1},'Diesel'))
  attribute = [attribute 'D'];
else
  attribute = [attribute 'X'];
end
```

Finding where the values in the BLM Excel spreadsheet

```
for jj = ii:a
                temp2 = strfind(lower(raw{jj,1}),lower(fullname));
                if ~isempty(temp2)
                  % we found the reference
                  ref = raw{jj,2};
                  refs = regexp(ref,'!','split');
                  fromCells \{1, \text{count}\} = \text{refs};
                end
             end
          end
        end
clear all
close all
```

5. Paired-Samples T-Test

clc

Pair 1	Mean	N	SD	Standard error of the mean
Scenario1_Total	31.4678	1000	5.12564	0.16209
Scenario2_Total	27.9610	1000	3.16813	0.10019

Table S10. 1	Paired sam	ples test.
--------------	------------	------------

Mean	-	3.5
SD	-	1.95
Standard error of the mean	-	0.06
90% confidence interval of the difference	Lower	3.4
	Upper	3.6
t	-	56.65
df	-	999
Sig. (two-tailed)	-	0

Null hypothesis: $\mu_{GHG \text{ emissions, scenario } 1} = \mu_{GHG \text{ emissions, scenario } 2}$.

Alternative hypothesis: μ_{GHG} emissions, scenario $1 \neq \mu_{GHG}$ emissions, scenario 2.

This is a two-tailed test with $\alpha = 0.1$ (90% confidence interval). The descriptive statistics of two scenarios are described in Table S9. The two-tailed p value is less than 0.001. In order to reject the null hypothesis, the *p*-value has to be less than alpha. In this analysis, *p*-value $< \alpha$ (Table S10), and thus rejecting the null hypothesis. Therefore, the results imply that the mean values of two scenarios are statistically different.

References

- 1. *Forecasting and Risk Analysis for Spreadsheet Users*; Oracle Crystal Ball Release 11.1.2.3.500; Oracle Corporation: Redwood City, CA, USA, 2014.
- Wang, M.; Han, J.; Dunn, J.B.; Cai, H.; Elgowainy, A. Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. *Environ. Res. Lett.* 2012, 7, doi:10.1088/1748-9326/7/4/045905.
- Larson, E.D.; Fiorese, G.; Liu, G.; Williams, R.H.; Kreutz, T.G.; Consonni, S. Co-production of decarbonized synfuels and electricity from coal + biomass with CO₂ capture and storage: An illinois case study. *Energy Environ.* 2010, *3*, 28–42.
- Eranki, L.P.; Dale, E.B. Comparative life cycle assessment of centralized and distributed biomass processing systems combines with mixed feedstock landscapes. *Glob. Chang. Biol. Bioenergy* 2011, *3*, 427–438.
- Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; *et al. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol*; Contract No. DE-AC36-08GO28308; National Renewable Energy Laboratory: Golden, CO, USA, 2011.
- Muth, D.J.; Langholtz, M.H.; Tan, E.C.D.; Jacobson, J.J.; Schwab, A.; Wu, M.M.; Argo, A.; Brandt, C.C.; Cafferty, K.G.; Chiu, Y.-W.; *et al.* Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs. *Biofuels Bioprod. Biorefining* 2014, *8*, 545–567.