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Abstract: The rebound behavior of fly ash particles normally impacting a planar surface is 

investigated by using a dynamic model. The three forms of soft sphere physical model are 

obtained using static/quasi-static contact mechanics and energy dissipation theory. The 

influences of the particle size, the incident velocity of the particle on the damping coefficient 

and the impact contact time are all examined. We also predict the critical velocity for three 

particle sizes. It is found that the variation of the damping coefficient (η) with the normal 

incident velocity (vin) can be roughly divided into the three parts. In the first part, η decreases 

with increasing vin. In the second part, η is little changed with increasing vin. In the third part, 

η rapidly increases with increasing vin. For smaller impact velocities, the viscoelastic effect 

plays a dominant role in the impact process, while for higher incident velocities; the energy 

dissipation depends mainly on plastic deformation. In addition, the critical velocity shows a 

distinct dependence on the particle size. Finally, the contact displacement-contact time 

curves are examined. The work provides a solid basis for the development of a 

discrete-element-method approach to study ash deposition. 

Keywords: ash deposition; energy dissipation; contact; impact; ash particle 

 

1. Introduction 

In industrial facilities using solid pulverized fuels, fouling and slagging are considered two of the 

most critical issues to be tackled. In general, any stream in which particles are advected may show a 
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deposition behavior [1]. Sometimes, the deposit build-up may severely decrease the performance of the 

facility [2]. Moreover, the ash deposition has undesirable consequences on heat transfer, increases 

pressure drop, interferes aerodynamically with the flow and causes heat estranger pipe corrosion through 

the uptake and retention of corrosive, condensable vapors by the fouled surface. All these effects 

translate into overall plant efficiency losses, high operating/maintenance costs and reduced availability 

of the units [3]. Ash deposition is defined as the accumulation of ash particles on a heat exchange surface 

that is essentially a particle-surface process. Modeling of the process of particle-surface impact is 

complicated, primarily because it is dynamic and nonlinear [4]. 

To better understand these problems, an appropriate dynamic model describing the impact between a 

fine particle and a flat surface is essential. The dynamic impact procedure has been extensively studied 

through experiments. Dahneke studied the normal impact of polystyrene latex microspheres with 

surfaces under vacuum conditions [5,6]. However, the accurate measurement of final bouncing velocity 

near the critical velocity, where the adhesion effect plays a predominant role, was not achieved in that 

work. Rogers and Reed measured critical impact velocity for large (15–40 μm) copper microspheres 

using a high speed camera. They evaluated an elastic-plastic impact model for particle adhesion [7]. 

Measurements of individual normal and oblique impacts of microspheres with planar surfaces are 

described and analyzed by Dunn et al. [8]. Their experimental results were similar to those of previous 

studies using monodisperse spheres. Kim and Dunn [9] provided direct imaging results of microparticle 

collisions. 40-μm diameter Ag-coated glass particles were dispersed and vertically dropped on a silica 

target plate. The collisions under standard atmospheric conditions were resolved with a digital 

high-speed technique black-light illumination. However, one of the most comprehensive experimental 

investigations of small particles impacting surfaces at normal incidence is that of Wall et al. [10]. They 

measured incoming and rebounding particle velocities to within several particle diameters of the 

impaction surface using a laser Doppler velocimetry system. At low velocity (<20 m/s), the ratio of 

rebound to impact velocity was sensitive to target material, decreasing with impact velocity due to the 

adhesion surface energy, while for higher particle velocities, the ratio of rebound to impact velocity was 

insensitive to the target material. 

From the theoretical aspect, on the other hand, analytical models have been investigated to 

understand the impact process. Relevant models can be generally categorized into kinetic models and 

dynamic models [11–13]. Kinetic models are based on two fundamental assumptions, namely, that the 

energy losses are due to the process of material deformation and the process of adhesion [4,7,10,14–16]. 

Kinetic models can predict the capture velocity, the relationship between restitution coefficient and 

incident velocity, and critical velocities. Kinetic models have been extensively used in studies such as 

hard-sphere discrete element method (DEM) simulations [12,17]. However, kinetic models can hardly 

reveal the dynamic features of the impact process, in terms of time-variant contact force, particle 

velocity, deformation and the relationships between them, etc. [13]. Dynamic models are described by 

the full equation of motion for all bodies affected by the impact. Such models provide information not 

only on the macroscopic parameters (including restitution coefficient and capture velocity) based on 

more in-depth contact mechanics [18], but also can extensively predict interparticle interactions in the 

DEM simulation of fine particulate flows [19–21]. 

Brach and Dunn proposed a dynamic model for adhesive impact based on the Hertzian contact theory 

under adhesion loading in earlier work [11]. Energy is dissipated through material deformation damping 
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and adhesion damping. These energy losses are assumed to be independent. The model has been 

extensively used in subsequent work. For example, the model extended to more complicated situations 

by Cheng, Brach, and Dunn is presented in both dimensional and nondimensional forms [22]. The model 

has been developed for implementation with computational fluid dynamic software by Kim and Dunn, to 

investigate the variation of the normal coefficient of restitution against the incident velocity and material 

properties [23]. Thornton and Ning [18] considered the normal elastic-perfectly plastic impact 

considering the effect of interfacial adhesion. Based on the Johnson-Kendall-Roberts (JKR) theory of 

adhesion [24], they derived an analytical solution of restitution coefficient for the normal impact of 

adhesive, elastic-perfectly plastic spheres. Elhady, Rindt, Wijers and Steenhoven [25] developed a 

numerical model based on DEM and simulated the interactions between a particle hitting a bed of 

particles. The contact forces between the colliding particles are based on the Thornton and Ning model. 

The numerical model can predict the critical velocity at which an incident particle starts to stick, rebound 

or remove other particles from a bed of particles. Recently, Marshall [20], and Shuiqing and Marshall [21] 

proposed a dynamic model for soft-sphere DEM based on JKR theory, and successfully applied it to the 

three-dimensional simulations of micro-particle deposition on surfaces such as a wall or a cylinder in 

low-Reynolds number dispersed flows. 

Despite the above developments on the study of the impact theoretical problems of particles with a 

substrate, there are still many important issues that remain unresolved. For example, practical ash 

particles impact a flat and powdery substrate. In addition, the effects of the temperatures of particle and 

substrate on the rebound characteristic of particles need to be investigated in detail. Therefore, the 

present work is the basis for a deeper study of the above listed problems, and it will have a guiding 

significance to the further development of this subject. An experimental set-up was developed to study 

the normal impact of particles with a planar surface and these are described in Section 2. Dynamic 

models and energy dissipation theory of the normal impact of particles with a planar surface are 

introduced (Section 3). In Section 4, firstly the variations of restitution coefficient versus incident 

velocity are discussed with experiments. Secondly, the variations of the damping coefficient versus 

normal incident velocity are developed based experimental results and numerical calculation. Thirdly 

the critical velocity is predicted with experiment and numerical calculation. Finally, the contact 

displacement-contact time curves are examined. 

2. Description of Experiments 

An experimental facility was developed to investigate the impact of fly ash particle with planar 

surfaces. A schematic of the experimental facility with the configuration used for normal impact 

measurements is shown in Figure 1. Nitrogen was drawn through a fluidized bed particle generator and 

carries the fly ash particles into the test section (the incident velocity of 0–16 ms−1). The test section 

includes a circular planar surface with a diameter of 2 mm. The planar surface was made of stainless 

steel and was oriented parallel to the horizontal. The incident and rebound normal velocity components 

of fly ash particles were recorded using a digital high-speed camera (Phantom V12.1, Vision Research 

Inc., Wayne, NJ, USA) at a frame rate of 80,000 frames/s, the resolution of 256 × 128 and the exposure 

time of 11.93 μs. Optical lenses (Tokina AT-XM 100 PROD, Kenko Tokina Co. Ltd., Tokyo, Japan) 

were attached to the camera to achieve enough magnification and record individual particle motion. A 

fiber optic solar light source (XD-300 Xenon Lamp, XD-300 xenon lamp, Alltion Co. Ltd., Guangxi, 
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China) was used to backlight the fly ash particle impact events. The camera output is connected to a 

digitizer and a frame grabber in a personal computer for image analysis. All experiments were conducted 

at a temperature of ~22 °C and a relative humidity of 25% ± 3%. Experimental repeatability was assessed 

by repeating the experiment under the same conditions. 

In the present study the samples of fly ash particles were taken from the dust in front of the boiler 

from a power plant and was used as impacting particles. Before carrying out an experiment, the particles 

were stored in a stove at 110 °C to minimize problems with agglomeration. 

The fly ash was sieved to separate the different size ranges. The crystal phases and weight 

percentages of the fly ash was investigated using XRD analysis. The fly ash was divided into the sample 

for XRD. Its scans were from 10° to 70° at a scanning speed of 1.25° 2θ/min. Through XRD analysis, the 

crystallinity data of fly ash particles can be obtained. Then the data can be used to estimate the Young’s 

modulus of fly ash particles [26]. 

Figure 1. Schematic of the experimental configuration with the high-speed camera system 

used in the normal impact experiments. 

 

From the XRD analysis, it is found that the fly ash is mainly made of either quartz, Q, (SiO2) or 

mullite, M, (3Al2O3·2SiO2). The weight percentage of crystallinity was calculated based on the XRD 

result which was obtained by the software of MDI Jade 5.0. This paper assumes that the crystalline phase 

of fly ash only consist of quartz and mullite. Since the density of quartz, mullite ,and glassy phase are 

2.65, 2.80 and 2.5 g·cm−3 [27], respectively, then the volume fractions of quartz, mullite, and glassy phase 

can be obtained .The volume fractions of all crystalline phases (quartz and mullite ) which are obtained 

from the results of quantitative XRD analysis. The volume fractions of all crystalline phases (quartz and 

mullite) which are obtained from the results of quantitative XRD analysis are shown in Table 1. 

Table 1. Volume fractions of total crystalline phase, quartz, and mullite in fly ash of 

different sizes. 

Particle size (mesh) Total cryscrystalline phase (vol%) Quart (zvol%) Mullite (vol%) 

104 μm (230) 67.31 10.19 57.12 
96 μm (270) 55.02 6.29 48.73 
88 μm (325) 49.28 1.65 47.63 

The Young’s modulus of fly ash was estimated using the parallel model of rules of mixtures [26]. The 

parallel model is written as: 
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g g m m q qfly ash
E E V E V E V= + +  (1)

where E is the Young’s modulus; V is volume fraction; and subscripts g, m, and q denote glass, mullite, 

and quartz, respectively. The modulus of quartz and mullite were taken as 94 GPa and 230 GPa, 

respectively, and the average moduli of glassy phase was taken as 73 GPa [28]. According to this, the 

Young’s moduli of 104 μm, 96 μm, 88 μm fly ash particles are 164.81 GPa, 150.82 GPa and  

148.13 GPa, respectively. 

3. Theoretical 

3.1. Dynamic Model 

Dynamic models generally describe the impact process through the combination of the static contact 

theory and appropriate dissipation mechanisms. The mechanical description of static contact theory 

between the interacting particles is the basis of particle collision dynamics. The contact forces developed 

during collision of two particles are shown in Figure 2. The contact force depends on the impaction 

phase and the velocity of the impacting particles. Impaction between particles can be divided into two 

consecutive phases, the approach and the restitution phase. The approach phase ends when the two 

bodies have a relative normal velocity equal to zero as a result of impact. The motion equation of the 

particle is given by: 

2

2
* 0tot

d d
m F

dt dt

δ δη+ + =  (2)

where η is the damping coefficient. The total force Ftot is the sum of the forces exerted on the particle by 

other particles, defined as Ftot = Fr + Fa, where Fr and Fa are the repulsive force and attractive force 

components of the total force, respectively. m* is the related to the particle masses mi by the equation  

m* = 1/m1 + 1/m2. δ is the interpenetration distance between the interacting particles as shown in  

Figure 2, and defined as δ = r1 + r2 − d. a is the contact radius. 

Figure 2. Schematic of contact model between two particles. 

 

The normal contact force developed during the approach phase of a purely elastic collision is 

described by the Hertz theory [29]. The Hertzian pressure distribution over the contact area of radius  

a is: 
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2
1/ 2

0 2
(1 )

r
p p

a
= −  (3)

where p0 is the maximum contact normal force; r is the distance from the center of the contact area; p is 

the contact normal force at the point r; a is the contact radius. 

The maximum contact normal pressure p0 and contact radius a are given by: 

* 1/ 2
0 *

2
( )p E
R

δ
π

=  (4)

2 *a R δ=  (5)

In the above equations, R* and E* are defined as: 

*
1 2

1 1 1

R r r
= +  (6)

2 2
1 2

*
1 2

1 11 v v

E E E

− −= +  (7)

with the subscripts 1 and 2 representing the interacting particle 1 and 2. E is the Young’s modulus of 

particle and v is the Poisson’s ratio. 

Then Hertz total force FH is obtained by integration of the pressure over the contact region, which gives: 
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Substituting Equations (4) and (5) into Equation (8) we obtain: 

* 1/ 2 * * *1/ 2 3/ 2
*

2 2 4
( )

3 3
H

totF E R E R
R

δ δπ δ
π

= =  (9)

The Hertz model only considers the repulsive force between the interacting particles. The actual impact 

process presents the attraction force since the surface of the interacting particle has a surface energy. 

Bradley [30], DMT [31] and Maugis-Dugdale [32] (DMT model) developed the dynamics model of a 

normal impact, which considers repulsive force and attractive force of the total force between the 

interacting particles. The expression of the repulsive force Fr
DMT is derived from Hertz theory as follows: 

* *1/ 2 3/ 24

3
DMT

rF E R δ=  (10)

while the attractive force is idealized by an annular force at the perimeter of the contact area as: 

*2DMT
aF wRπ= −  (11)
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where, the adhesion work w is defined by w = γ1 + γ2 + γ12, γi represents the surface energy of particle or 

the surface and γ12 is interfacial energy. Practically γ12 can be approximated by w = γ1 + γ2 − 2(γ1γ2) 
1/2 and 

hence leads to w = (γ1γ2)
 1/2. 

A similar strategy was also adopted by Brach and Dunn [11], the expressions of the repulsive force 

Fr
BD and the attractive force Fa

BD give: 

* *1/ 2 3/ 24

3
BD

rF E R δ=  (12)

while the attractive force is idealized by a line force at the perimeter of the contact area as: 

*1/ 2 1/ 22 2BD
aF af fRπ π δ= − = −  (13)

2 * *
1/36

( )
w R E

f
π

=  (14)

The expressions of Fr and Fa are derived from JKR theory as follows. Under a contact state with 

overlap δ and contact radius a, the relation between total force Ftot
JKR imposed on a particle and radius a 

is given as: 

3 * * * 2( 3 6 (3 ) )
R

a F wR wR F wR
K

π π π= + + +  (15)

The relation between Ftot
JKR and δ is implicit. However, δ varies with a through: 

1/ 2*2
2 8

3
wR

a a R
K

πδ
  

= −  
   

 (16)

which enables establishing the F~δ relationship implicitly. The stress distribution upon the particle 

within the contact area is given by [21,29]: 

2 2 1/ 2 0
0 2 2 1/ 2
(1 )

(1 )

p
p p r a

r a
= − −

−

、

 (17)

where *
0 3 / 2p aK Rπ= ; 0 3 / 2p wK aπ=、 . The stress is compressive within a circle of radius rc and 

tensile in the outer annulus (rc ＜r ≤ a). By setting Equation (17) to zero, we have 01cr a q= − , 

where 0 0 0/q p p= 、 . Then Fr
JKR is obtained by integration of the tensile stress over the annular region, 

which gives: 

3/ 2 2
0 0

4

3
JKR

aF q a pπ= −  (18)

Similary, Ftot
JKR is obtained as: 

2
0 0

2
2

3
JKR

totF q a pπ = − 
 

 (19)

and hence: 

3/ 2 2
0 0 0

2 4
2

3 3
JKR

rF q q a pπ = − + 
 

 (20)



Energies 2013, 6 4295 
 

Note that Equation (17) requires 0 ≤ q0 ≤ 1 and hence *22 / 3a wR Kπ≥ . Consequently, there will 

be tensile stress left for *22 / 3a wR Kπ＜  with Fr = 0 and Ftot = Fa. 

The relationship between contact force and particle deformation can be utilized to understand the 

differences between Hertz, DMT, BD and JKR. In order to do this, we normalize force and overlap by: 

1/ 3
*2

( )
K

a a
wRπ

= , 
_

*

F
F

wRπ
= , 

*2
1/3

2 2 *

16
( )
9

E

w R
δ δ

π
=  (21)

Then for Hertz, DMT, BD and JKR models, we have: 
3/ 2H H

tot rF F δ= =  (22)

and: 
3/ 2DMT

rF δ= , 2
DMT
aF = − , 

3/ 2
2

DMT DMT DMT
tot r aF F F δ= + = −  (23)

and: 
3/ 2BD

rF δ= , 
1/ 22/36

BD
aF δ= − , 

3/ 2 1/ 22/36
BD BD BD
tot r aF F F δ δ= + = −  (24)

For the JKR model, we have to separately consider the ranges of 1/3(2 / 3)a ≤  and 1/3(2 /3)a＞   

such that: 

3 3/2 3/ 46 2(2 /3)
JKR
rF a a a= − + , 3/ 42(2 /3)

JKR
aF a= − , 

3 3/ 2
6

JKR
totF a a= −  (25)

for 1/3(2 /3)a＞ , and: 

0
JKR
rF = , 

3 3/ 2
6

JKR JKR
a totF F a a= = −  (26)

for 1/3 1/36 (2 /3)a− ≤ ≤ . On the other hand we have: 

2 1/22(2 /3)a aδ = −  (27)

rF , aF and totF  are plotted against δ  in Figure 3 for the four models, based on which several 

conclusions can be drawn. Firstly, for a larger value of δ , the totF  given by the three 
H
totF , 

DMT
totF  

and 
JKR
totF  are similar from each other, and 

BD
totF  is much smaller than three

H
totF , 

DMT
totF and

JKR
totF . 

Secondly, the repulsive force of BD model and DMT model, exactly following the Hertzian equation. 

Thirdly, the magnitude of the attractive force of BD model is much higher than that given by the JKR 

and DMT theories. For instance, 
BD
aF  at 3δ =  is about two times of 

JKR
aF but increases to about three 

times at 3δ = . The deviation between BD and JKR, in terms of the difference
BD JKR
a totF F− , becomes 

even more significant as the overlap further increases. 

Before proceeding, it is stated that the current model could be easily applied to the particle-surface 

normal contact. For a particle with radius r1 impacting normally with a surface with radius r2, the 

effective radius R* certainly reduces to r1, i.e., r2 = + ∞. Similarly effective mass m* reduces to m1. 
  



Energies 2013, 6 4296 
 

Figure 3. Comparison of the variation of attractive force and overall force with the overlap 

in the models of Hertz, DMT, BD and JKR, under the static contact circumstance. 

 

3.2. Energy Dissipation 

Before proceeding, the contact theories between interacting particles are built on the static or 

quasi-static condition. However, the particle impacting process is the dynamic problem. The energy 

dissipation theory is introduced in order to study the parameter variation of particle impacting process. 

A complete impact process includes the approaching phase and the rebound phase. During the 

approaching phase, the contact area between interacting particles gradually increased, and kinetic 

energy of the incident particle is converted to the strain energy and the acoustic wave energy, etc. [7]. 

During the rebound phase, the strain energy stored is partly converted to kinetic energy of the rebound 

particle, while another portion is dissipated. Certain amount of energy is lost by the fraction of 1 − vr
2/vi

2 

with respect to the initial kinetic energy 1/2 mvi
2, where m is particle mass, vi and vr are the particle 

velocities before and after the impact. From a macroscopic view, the energy loss is due to the 

force-deformation hysteresis of the impact procedure. It is known that the viscoelastic effect and the 

plastic deformation play import roles in energy loss during low-velocity impact and high-velocity 

impact, respectively [7,10]. If the relative impact velocity is just large enough to initiate yield in one of 

the spheres, the plastic deformation occurs at the center of contact area. The plastic deformation region 

gradually increases with increasing relative impact velocity, and until closes to the edge of the 

deformation region. When the present paper predicts the critical velocity, the plastic effect is considered 

to be less important and hence neglected. 

Figure 4 shows the force displacement relationship as defined by Thornton and Zemin [18]. 

According to JKR theory, the contact of two colliding bodies commences when the overlap exceeds 

zero (point A in Figure 4), due to Van der Waals attractive force. When the contact force reaches a 

maximum value (point B in Figure 4) the particle velocity has been reduced to zero and the incoming 

stage is complete. In the recovery stage, all the work done during the loading stage has been recovered 

when point A is reached during the recovery stage. However, at this point, when δ = 0, the particle 

remains adhered to the surface and further work is required to separate the surfaces. Figure 4 shows 

that separation occurs at point C and hence the work required breaking the contact, which results in an 

energy loss given by: 
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5 4 2 1/37.09( )sW R Eγ −=  (28)

where γ, R and E are the surface adhesive energy, reduced particle radius and Young’s modulus, 

respectively [18]. When the energy losses are neglected by elastic wave propagation, the only work 

dissipated during a collision is the work done of separating the surfaces Ws. While the particle is 

captured, the critical impact velocity vs is obtained as: 
1/ 2 5 4 2 1/ 6(14.18 / ) ( )s pv m R Eγ −=  (29)

below which the impact results in a final capture. For a particle impacting a flat surface, leading to: 

5/6 3 2 1/61.84( / ) /( )sv R Eγ ρ=  (30)

Figure 4. Schematic illustration of the force displacement relationship. 

 

3.3. Models Solution 

Using discrete method, the equation of particle motion is rewritten in a differential form as: 

1 2 1 1
2

1 1

2
0i i i i i tot i

F

t m t m

δ δ δ δ δη+ + + +− + −+ + =
Δ Δ

 (31)

The differential equation is calculated from δ = 0 at t = 0 to the maximum displacement of the impact 

and then toward the separation point δ = 0. The initial incident velocity of particle v0 is obtained by the 

experiment. If the time step is small enough, the deformation of particle is small enough at time t1. It can 

be found that motion of the particle considers to uniform motion at Δt = t1 − t0. Therefore, the 

displacement at time t1 is written as δ1 = v0Δt. Then, substituting δ1 and Ftot,1 into Equation (31) we obtain 

δ2, and so on until the end of the impaction. 

Firstly, assuming damping coefficient is a constant at time t0. Then, the rebound velocity is calculated 

by Equation (31). Finally, vn/v0 is obtained by the calculation comparison with the normal restitution 

coefficient is obtained by the experiment. When the difference between the two data of restitution 

coefficient is large, re-adjusting the damping factor, until the two data of restitution coefficient are equal 

or very close to the end of the calculation. 

4. Results and Discussion 

In this section, the impact process of fly ash particles is first investigated through experimental 

methods. Secondly, variation of damping coefficient (η) with normal incident velocity (vin) is developed 
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based on experimental results and impact dynamics models. Thirdly, model prediction on critical 

velocity is computed and with compare with experiments. Finally, the variation of contact displacement 

with impact contact time is obtained. 

4.1. Experimental Results 

The normal coefficient of restitution en is defined as a ratio of the normal rebound vrn and the 

normal incident velocity vin. Figure 5 shows en vs. vin for fly ash particles of diameter 88 μm, 96 μm, 

104 μm. For all cases, the impact with normal incident velocity lower than the critical velocity leads to 

a final capture (en = 0). For vin larger than but close to vc, the en ~ vi,n curves has a steep increase. 

However, its slope rapidly decreases as vin further increases, and the en rapidly decreases with 

increasing vin. The normal restitution coefficient of fly ash particle shows some difference than that of 

elastic spheres, especially at higher incident velocities. 
Further analysis from a macroscopic view, the energy loss is due to the force-deformation hysteresis 

of the impact procedure. The viscoelastic effect is considered to be more important with the incident 

velocity close to and not significantly higher than the critical velocity. When the incident velocity 

gradually increases, the plastic deformation occurs in the fly ahs particle around the local contact area, 

and viscoelastic effect is still considered to be more important. The viscoelastic dissipation (ws) can be 

written 5 4 2 1/37.09( )sW R Eγ −= , where γ, R and E are the surface adhesive energy, particle radius and 

Young’s modulus, respectively [18]. It can be found that the viscoelastic dissipation is independent with 

incident velocity. However, the rebound kinetic energy of particle increases with increasing incident 

velocity, and leading to normal restitution coefficient increases. On the other hand, when the incident 

velocity exceeds the yield limit velocity, the contact area due to permanent plastic deformation gradually 

increases with incident velocity. Therefore, normal restitution coefficient decreases with increasing 

incident velocity. 

Figure 5. The normal coefficient of restitution, en, versus the incident normal velocity vin for 

fly ash particles of diameter 88 μm, 96 μm, 104 μm. 
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4.2. Dependence of Damping Coefficient on Incident Velocity 

Besides the physical properties such as adhesion energy, Young’s modulus, particle size and density, 

the damping coefficient is the most important parameter affecting the dynamic model predictions. 

However, it remains a challenge to directly determine the damping coefficient according to the physical 

properties of the impacting bodies in present state. Commonly, the damping coefficients are found by 

matching the predicted e~vi variation with experimental results [11,33]. However, in their model 

damping coefficients are kept constant for same particle diameter. As an idealization, the damping force 

is assumed to be linearly dependent on both its origin force and the relevant velocity [34]. That is the 

damping coefficient changes with the incident velocity of particle. Therefore, it is necessary to calculate 

the damping coefficients of different velocity conditions. In this section, the damping coefficient is 

calculated from Equation (31) based on the experimental results. 

Before proceeding, the Hertz model only considers the repulsive force in the contact area of particle 

with target surface. However, the DMT and BD models consider repulsive force and attractive force. 

The repulsive forces of the BD model and DMT model exactly follow the Hertzian equation. For the 

DMT model, attractive force is idealized by an annular force at the perimeter of the contact area. For the 

BD model, attractive force is idealized by a line force at the perimeter of the contact area. 

For the Hertz model, substituting Ftot
H into Equation (31), the equation of particle motion is given as: 

* 1/ 2
3/ 21 2 1 1

12
1 1

2 4
0

3
i i i i i

i

E r

t m t m

δ δ δ δ δη δ+ + +
+

− + −+ + =
Δ Δ

 (32)

For the DMT model, substituting Ftot
DMT into Equation (31), the equation of particle motion is given as: 

* 1/ 2
3/ 21 2 1 1 1

12
1 1 1

2 24
0

3
i i i i i

i

E r wr

t m t m m

δ δ δ δ δ πη δ+ + +
+

− + −+ + − =
Δ Δ

 (33)

For the BD model, substituting Ftot
BD into Equation (31), the equation of particle motion is given as: 

* 1/2 1/2
3/2 1/21 2 1 1 1

1 12
1 1 1

2 24
0

3
i i i i i

i i

E r fr

t m t m m

δ δ δ δ δ πη δ δ+ + +
+ +

− + −+ + − =
Δ Δ

 (34)

The proposed dynamic model is now used to calculate variation of damping coefficient with incident 

velocity. For three fly ash particle diameters dp (88 μm, 96 μm and 104 μm) and three models (Hertz 

model, DMT model and BD model), the evolution curves of damping coefficient η with incident 

velocity vin are shown in Figure 6. It is seen that the variation of η with vin can be roughly divided into the 

three parts. 

(i) In the first part, η decreases with increasing vin. However, en increases with increasing vin. For three 

particle diameters, the variation tendency of damping coefficient with normal incident velocity is similar 

in those three models. When the normal incident velocity is small, the damping coefficient magnitude of 

the BD model is much smaller than both the Hertz model and DMT model for the same normal incident 

velocity. When the normal incident velocity is gradually increased, the damping coefficient calculated 

based on the three models tend to consistent for the same normal incident velocity. 

In order to deeply understand the relationship between the damping coefficient and the normal 

incident velocity, in the following, we calculate the contact time under different normal incident velocity 

conditions, and examine the influence of the normal incident velocity on the damping coefficients. It can 
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be seen from Figure 7 that in the first part, the contact time has a slightly downward tendency with the 

increasing normal incident velocity. While the normal incident velocity is close to about 2 m/s, the 

contact time is 294 ns, 232 ns and 224 ns for particle diameters of 88 μm, 96 μm and 104 μm, 

respectively. As discussed above, the viscoelastic effect is considered to be more important with the 

incident velocity close to and not significantly higher than the critical velocity. Therefore, the 

viscoelastic effect increases with decreasing normal incident velocity, and contact time is longer, and the 

damping coefficient is greater. 

Figure 6. The damping coefficient variation with normal incident velocity for (a) Particle 

diameter: 88 μm; (b) Particle diameter: 96 μm; (c) Particle diameter: 104μm. 

 

(ii) In the second part, η is little changed with increasing vin, and en is still little changed with 

increasing vin. For the same diameter of fly ash particle, the variation tendency of damping coefficient 

with normal restitution coefficient is similar in those three models. Damping coefficient calculated 

based on the three models is very close for the same normal restitution coefficient. Figure 7 shows that 

contact time is little changed with increasing vin in second part. In this part, the contact area due to 

permanent plastic deformation gradually increases with increasing incident velocity. The effect of 

plastic deformation on the energy dissipation increases with increasing normal incident velocity. 

Therefore, the normal restitution coefficient, the damping coefficient and the contact time are all little 

changed with increasing vin in second part. The second part is a transitional range. 

Figure 7. The contact time variation with incident normal velocity for (a) Particle diameter: 

88 μm; (b) Particle diameter: 96 μm; (c) Particle diameter: 104μm. 

 

(iii) In the third part, η rapidly increases with increasing vin. However, en decreases with increasing 

vin. For the same diameter of fly ash particle, the variation tendency of damping coefficient with normal 
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restitution coefficient is similar as those three models. Comparing Figure 6 with Figure 7, we can find a 

contact time rising tendency with the increasing normal incident velocity, implying that the plastic 

deformation plays important roles in energy loss and the energy loss due to viscoelastic effect could be 

negligible when the incident velocity is continually increased. 

In order to understand effect of the particle diameter on the damping coefficient, the evolution curves 

of damping coefficient variation with incident normal velocity of different size particles for BD model 

are shown in Figure 8. Figure 8 shows that the damping coefficient increases with the decreasing particle 

size, and it is consistent with of en–vin variation at same impact velocities. 

Figure 8. The damping coefficient variation with incident normal velocity of different size 

particles for BD model. 

 

4.3. Critical Normal Impact Velocity 

If the incident velocity is below the critical impact velocity, the particle will be captured by the 

substrate surface. The magnitude of critical impact velocity reflects the relative strength of adhesion. For 

the incident velocity close to the critical velocity, the plastic effect is considered to be neglected. 

According to the results of Figures 5 and 6, using generalized least squares we can fit the 

relationships between damping coefficient and normal restitution coefficient, which are within the range 

of normal restitution coefficient increases with increasing incident velocity in Figure 5. The fitting 

relationships are shown in Table 2. When the normal restitution coefficient is 0, the critical damping 

coefficient can be obtained by the fitting relationships in Table 2. The critical damping coefficients of 

different model are shown in Table 3. 

Table 2. The fitting relationships of damping coeefficient and normal restitution coefficient. 

Models  

dp (μm) 
Hertz model DMT model BD model 

88 η = 0.0238en
2 − 0.0291en + 0.0153 η = 0.0223en

2 − 0.0279en + 0.0151 η = 0.0193en
2 − 0.0247en + 0.0141 

96 η = 0.0104en
2 − 0.0229en + 0.0155 η = 0.0115en

2 − 0.0235en + 0.0156 η = 0.0101en
2 − 0.0213en + 0.0149 

104 η = 0.0074en
2 − 0.0217en + 0.0163 η = 0.0065en

2 − 0.0206en + 0.016 η = 0.0043en
2 − 0.017en + 0.0145 
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Table 3. The critical damping coefficients of different model. 

Particle diameter (μm) Hertz model DMT model BD model 

88 0.0153 0.0151 0.0141 
96 0.0155 0.0156 0.0149 

104 0.0163 0.0160 0.0145 

Substituting en = 0 and critical damping coefficients into Equations (32)–(34) we obtain initial 

incident velocity, which is predicted by Equations (32)–(34) as the critical velocity. The critical 

velocities of different model are shown in Table 4. 

Table 4. Critical capture velocity of different model. 

Particle diameter (μm) Hertz model (m/s) DMT model (m/s) BD model (m/s) Experimental results 

88 1.57 1.85 1.93 1.92 
96 0.71 1.05 1.27 1.25 

104 0.42 0.64 0.72 0.69 

Table 4 shows that the critical velocity decreases with increasing particle size. Critical velocity is the 

smallest predicted by the Hertz model for the same particle size. The reason is that Hertz model only 

considers the repulsive forces between particles and surfaces. However, the DMT model and BD model 

consider repulsive forces and attractive forces of the total force between particles and surfaces. In 

addition, the DMT model considers the attractive force to be lower than the BD model, therefore the 

critical velocity calculated by the BD model is higher. 
For the same material particle, Equation (30) can be simplified to 5/6

sv R−∞ . Liu et al. [13] shows that 

Ws is introduced into the total energy loss once the contact is established, and refer Ws as the 

first-contact energy loss for simplicity. The critical velocity determined solely by the first-contact 

energy loss, is proportional to dp
-5/6 and therefore gets larger for smaller particles. For instance, in the 

present work, the velocity vc of the particle with diameter of 104 μm is 0.72 m/s, which increases to 

1.93 m/s for the particle with diameter of 88 μm for the BD model. 

Comparing the critical velocity values obtained by the three models with that obtained by experiment; 

we can find the results calculated by the BD model are close to experiment, which shows the BD model is 

applicable for describing the interaction behavior between ash particles and planar surfaces. Based on 

further analysis of Figure 3, the magnitude of the attractive force of the BD model is much higher than that 

given by the JKR and DMT theories. Generally, the line force approximation adopted by the BD model 

has overestimated the adhesion force. According to this, the BD model is applicable for describing the 

interaction behavior between ash particles and planar surfaces in the present conditions. 

4.4. Contact Displacement-Contact Time Curve 

For fly ash particle diameters of 88 μm, 96 μm and 104 μm, the contact displacement-contact time 

curves of the fly ash particle impacting a planar surface are plotted in Figure 9, where we take the 

critical incident velocity, incident velocity in the curves of en increases with increasing vin, incident 

velocity in the curves of en decreases with increasing vin. Here, the displacement is defined by δ = r − d, 

where r is the particle radius, and d is the distance from particle center to planar surface. In addition, 
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numerical calculation is based on BD model. The displacement curves with increasing and decreasing 

contact time correspond to the incoming and rebounding stages, respectively. 

It can be seen from Figure 9, the contact time in the incoming stage is larger than that in the 

rebounding stage. In order to understand the deference of contact time in the two stages, we introduce 

the momentum analysis of the impact process. The Equation (2) shows that the damping force of 

impact process is: 

D d
F

dt

δη
→ →

=  (35)

0
( )

mt
D

intot
dt mvF F

→ →→ = −+  (36)

where tm is contact time of incoming stage. The momentum equation of rebounding stage is given by: 

( )
n

m

t
D

rntott
dt m vF F

→ →→ =+  (37)

where tn is cut-off time of impact process. 

Considering the direction of the force and velocity, substituting Equation (35) into Equations (36) 

and (37) we obtain: 

max,0

mt

m itot tot i
dt t mvF F ηδ→ →= = −   (38)

max,
( )

n

m

t

n m rtot rt tot
dt t t mvF F ηδ→ →= − = +  (39)

where 
,tot iF

→ and 
,tot rF

→  are the average of total force of incoming and rebounding stages; maxδ  is the 

maximum contact displacement. 
,tot iF

→ and 
,tot rF

→  can be considered equal approximately we obtain: 

, , Atot i tot r
FF F

→ →= =  (40)

Comparing Equations (38) and (39) we obtain: 

[ ] max( ) 2 ( )A n m m in rnF t t t mv mvηδ− − = − −  (41)

In order to obtain value of the right side of Equation (41), we introduce the following inequality: 

max 0 0 0 0

0 0 0 0

( )
m n m n

m n m n

t t t t

in rn in rn in rn

t t t t

i r

v v v vdt v vdt v vdt v vdt

d d
vvdt vvdt vvdt vvdt d d

dt dt

ηδ η η η η

δ δη η η η η δ η δ

+ = + = +

> + = + = +

   

     
 (42)

with the subscripts i and r representing the incoming and rebounding stages, respectively. However, the 

work done of damping force in the incoming and rebounding stages equals the difference between 

incident kinetic energy and rebound kinetic energy, we consequently obtain: 

2 21 1

2 2in rni r

d d
d d mv mv

dt dt

δ δη δ η δ+ = −   (43)

Substituting Equation (43) into Equation (42) we obtain: 
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)(2 rim mvmvx −>η   (44)

Substituting Equation (44) into Equation (41) we obtain: 

mmn ttt >−  (45)

Therefore, the contact time in the incoming stage is larger than that in the rebounding stage. In 

addition, it can be seen from Figure 9, the difference of contact time in the incoming and rebound 

stages decreases with increasing incident velocity. 

For the critical incident velocity, it can be seen from Figure 9, that the contact time is 419 ns, 521 ns 

and 532 ns for particle diameter of 88 μm, 96 μm and 104 μm, respectively. The contact time increases 

with increasing particle diameter. In addition, the variation trend of contact displacement with contact 

time tends to have gentle slope at the cut-off time, the slope of the curve tends to be 0, and that shows the 

fly ash particle is captured. 

For the normal incident velocity is greater than the critical incident velocity, the maximum contact 

displacement increases with increasing incident velocity. In addition, the slope of the contact 

displacement curve is less than 0 at the cut-off time, and that shows the fly ash particle rebound from the 

planar surface. For the same normal incident velocity, the maximum contact displacement increases with 

increasing diameter. 

Figure 9. The contact displacement variation with contact time of BD model for (a) Particle 

diameter: 88 μm; (b) Particle diameter: 96 μm; (c) Particle diameter: 104μm. 

 

5. Conclusions 

The normal impact behavior of fly ash particles on a planar surface has been investigated using the 

dynamic model with the energy dissipation. The following conclusions can be drawn from our calculations: 

(1) The impact of fly ash particles with a rigid substrate shows some differences than that of elastic 

spheres, especially at higher incident velocities. For fly ash particles, it can be found that the 

normal restitution coefficient rapidly increases with increasing incident velocity for the 

incident velocity is less than the yield velocity, and rapidly decreases with increasing incident 

velocity for the incident velocity is greater than the yield velocity.  

(2) The variation of damping coefficient with normal incident velocity can be roughly divided into 

three parts. In the first part, damping coefficient decreases with increasing normal incident 

velocity. In the second part, damping coefficient is little changed with increasing normal incident 
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velocity. In the third part, damping coefficient rapidly increases with increasing normal incident 

velocity. In all parts, damping coefficient calculated based on the three models tend to be 

consistent for the same normal incident velocity. 

(3) For lower incident velocities, viscoelastic dissipation plays a more important role in the impact 

process than plastic deformation. The contact time increases with decreasing incident velocity. 

On the other hand, when the incident velocity exceeds the yield limit velocity, plastic 

deformation dissipation dominates the impact behavior. The contact time increases with 

increasing the normal incident velocity. 

(4) The critical velocity decreases with increasing particle size. Comparing the critical velocities 

obtained by the three models with that obtained by experiment; we can find the results calculated 

by the BD model are close to the experimental value, which shows the BD model is applicable 

for describing the interaction behavior between ash particles and planar surfaces. Generally, the 

line force approximation adopted by the BD model has overestimated the adhesion force. 

According to this, the BD model is applicable for describing the interaction behavior between 

ash particles and planar surfaces under the present conditions. 

(5) The contact time in the incoming stage is larger than that in the rebounding stage, and the 

difference of contact time in the incoming and rebound stages decreases with increasing 

incident velocity. For the critical incident velocity, the contact time increases with increasing 

particle diameter. For the normal incident velocity is greater than the critical incident velocity, 

the maximum contact displacement increases with increasing incident velocity. For the same 

normal incident velocity, the maximum contact displacement increases with increasing diameter. 
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