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Abstract: This paper proposes a vector-controlled distributed generator (DG) model for a 

power flow based on a three-phase current injection method (TCIM). In order to represent 

the DG models in the power flow, steady-state phase current output equations are 

formulated. Using these equations, the TCIM power flow formulation is modified to 

include the DG models. In the proposed power flow, a DG-connected bus is modeled as 

either a load bus (PQ bus) or a voltage-controlled bus (PV bus), depending on the control 

mode of the reactive power. However, unlike conventional bus models, the values of 

the DG-connected bus models are represented by three-phase quantities: three-phase 

active and reactive power output for a PQ bus, and three-phase active power and 

positive-sequence voltage for a PV bus. In addition, a method is proposed for representing 

the reactive power limit of a voltage-control-mode DG by using the q-axis current limit. 

Utilizing a modified IEEE 13-bus test system, the accuracy of the proposed method is 

verified by comparison to the power systems computer aided design (PSCAD) model. 

Furthermore, the effect of the number of DGs on the convergence rate is analyzed, using 

the IEEE 123-bus test system. 

Keywords: current injection method; distributed generator model; steady-state model; 

three-phase unbalanced power flow; vector-controlled DG 
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1. Introduction 

Recently, integration of distributed generators (DGs) into distribution systems has been increasing, 

owing to their various environmental and economic advantages. Moreover, various techniques have 

been proposed for utilizing DGs as system operational resources, such as voltage and reactive power 

(Volt/VAR) control [1–3]. However, the characteristics of DGs (especially inverter-interfaced DGs) 

are quite different from those of conventional generators. Therefore, to achieve stable and effective 

operation of a distribution system with DGs, the operating characteristics of the DGs should be taken 

into account. 

Power flow studies are the backbone of power system design, analysis, and operation [4]. 

Three-phase power flow methods are generally adopted for a distribution system, since the operating 

conditions are inherently unbalanced. Various DG models for unbalanced three-phase power flow 

studies have been proposed. In [5–9], a three-phase connected DG that operates in constant reactive 

power mode was modeled as a negative constant power load. However, this is not appropriate, 

since the phase outputs of a DG depend on the phase voltages under unbalanced operating 

conditions [10]. Consequently, power flow results obtained with these models may have errors. 

DG models considering unbalanced operating conditions to improve the accuracy of the power 

flow results were presented in [10–14]. Models for synchronous generator-based DGs were proposed 

in [10–12], and voltage-source converter (VSC)-coupled DG models (including output filters) were 

introduced in [12,13]. In [14], the power flow model for an induction generator-based wind turbine 

generating system was proposed. In [10], the phase-frame approach was used (i.e., the variables are 

represented by a-b-c phase quantities), while sequence-frame analysis was adopted in [11–14] (i.e., the 

variables are represented by positive-negative-zero sequence quantities). In [15], it was reported 

that a steady-state voltage-controlled model could be represented by a controllable three-phase 

balanced voltage source, and a current-controlled VSC model by a controllable three-phase balanced 

current source. 

In [16], phase-frame-based power flow, based on a three-phase current injection method (TCIM), 

was proposed for robust and fast unbalanced three-phase power flow studies. In this method, the power 

flow problem was formulated using current mismatch equations written in rectangular coordinates, and 

solved via the Newton-Raphson method. Voltage control device models for TCIM power flow were 

presented in [17]. In [18], a step-size optimization factor was proposed to improve the convergence 

characteristics of TCIM power flow. According to [19], the TCIM power flow method is superior to 

the forward/backward sweep method, especially in cases involving a large-scale system, heavy loading 

conditions, and/or a system with numerous voltage control devices. 

In this paper, a modified TCIM power flow incorporating vector-controlled DGs is proposed. 

The remainder of the paper is divided into four sections, organized as follows. In Section 2,  

a steady-state phase output current model for a DG is formulated. The implementation of TCIM power 

flow with the DG model formulation is described in Section 3. A method for representing the reactive 

power limit of a voltage-controlled bus (PV bus) is also proposed. In Section 4, the accuracy of the 

proposed power flow is verified by comparing its results to those obtained from the power systems 

computer aided design (PSCAD) model, utilizing a modified IEEE 13-bus test system. Moreover, the 
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effect of the number of DGs on the convergence rate of the power flow is analyzed, using the IEEE 

123-bus test system. Finally, Section 5 contains concluding remarks. 

2. Power Flow Model for a DG 

Because a vector-controlled DG controls three-phase outputs rather than single-phase outputs, 

a-b-c phase outputs should be modeled to represent the DG in the TCIM power flow. In this section, 

DGs are first classified into three types according to the topology of the output filter and the point of 

current control. Steady-state phase current output equations are formulated for each type. 

2.1. DG Overview 

Vector control theory is widely used to control the outputs of VSC-coupled DGs, since the active 

and reactive power can be controlled independently. Figure 1a shows a general power control block for 

a vector-controlled DG [20]. The three-phase active and reactive power reference values, Pref and Qref, 

are used to calculate the reference values of the d- and q-axis currents, id,ref and iq,ref. As another option, 

the dc link voltage can be used for active power control, and the three-phase ac voltage can be used for 

reactive power control. Figure 1b shows three different DG configurations determined by the topology 

of the output filter [21]. For a DG with an L filter, the current controller controls the grid-side 

current, IDG. On the other hand, either the VSC output current (IVSC) or IDG can be used as a control 

variable for a DG equipped with an LC or LCL filter [20,22,23]. 

Figure 1. Overview of a vector-controlled DG: (a) power control block and (b) output 

filter topology. 

 
(a) (b) 

2.2. Steady-State Phase Current Output Models 

In the steady state, the a-b-c phase currents at the current control point are balanced, since the 

d- and q-axis currents are maintained at specific values by the controller. Therefore, the steady-state 

output of a DG can be modeled as a balanced three-phase current source (BTCS) [15]. Table 1 lists 

three types of steady-state DG models, according to the topology of the output filter and the 

controlled current. Because the steady-state phase current output equations of the Type 1 and 2 DG 

models can be formulated by modifying those of the Type 3 DG model, the current output model for 
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the Type 3 DG is first formulated, and the modifications required to represent the other types are 

discussed at the end of the section. 

Table 1. DG types and corresponding equivalent circuits. 

Property Type 1 DG Type 2 DG Type 3 DG 

Output filter L, LC, LCL LC LCL 

Controlled current IDG IVSC IVSC 

Equivalent circuit 

The phase current outputs of a BTCS are given by: 
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where |IBTCS| and θ represent the magnitude and phase angle, respectively, of the phase a current phasor. 

From the equivalent circuit shown in Table 1, the output current of phase s for a Type 3 DG connected 

to bus k can be written as: 
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where Vk
s is the voltage of phase s for bus k; and Req,k and Xeq,k are the equivalent resistance and 

reactance of the output filter, defined by: 
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The three-phase complex power output of the DG is the sum of the phase power outputs: 
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where the superscript * denotes the complex conjugate. By substituting Equations (1)–(3) into 

Equation (4), and then substituting Equations (1)–(3) into Equation (7), the three-phase complex power 

output can be written as: 
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where Vk
+ is the positive sequence voltage, defined by: 
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By rearranging Equation (8), the current output of the BTCS for phase a can be calculated from: 
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Finally, the phase current outputs can be formulated as functions of the three-phase active and 

reactive power outputs, phase voltages, and impedances of the output filter by substituting 

Equation (10) into Equations (1)–(3), and then substituting Equations (1)–(3) into Equation (4): 
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For the Type 1 DG, only the first term in each of the Equations (11)–(13) will be used, since there 

are no shunt or series impedances. In other words, the Type 1 DG injects balanced three-phase currents 

even when the voltages are unbalanced. The current output equations of the Type 2 DG have the same 

formulation as Equations (11)–(13), except that Req,k is equal to Rd and Xeq,k is equal to XC. 

3. Implementation of the TCIM Power Flow 

In a power flow, a DG-connected bus can be modeled as either a load bus (PQ bus) or a PV bus, 

depending on the reactive power control mode of the DG. However, unlike conventional bus models, 

the given values of the models are three-phase quantities: three-phase active and reactive power 

outputs for a PQ bus, and three-phase active power and positive-sequence voltage for a PV bus. In this 

section, a method is proposed for implementing a TCIM-based power flow incorporating DG output 

models. A power flow method for the Type 2 and 3 DG models (which have the same phase current 

output equations) is first proposed. Modifications of the proposed method for the Type 1 DG model are 

presented at the end of the section. 

3.1. Basic Equations 

Taking into account the phase current outputs of the DGs, the current mismatch equations in 

rectangular form for phase s of bus k, presented in [16], are modified as follows: 
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where: 
s

krI ,Δ , s
kmI ,Δ   real and imaginary parts of current mismatch; 

st
kiG ,  st

kiB   real and imaginary parts of bus admittance matrix; 
s
krV , ,  s

kmV ,   real and imaginary parts of phase voltage; 
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s
kP ,  s

kQ   active and reactive power injections of load; 
s

k,r,DGI , s
k,m,DGI  real and imaginary parts of output current of the DG. 

The last terms of Equations (14) and (15) are newly introduced to represent the current injection of 

the DG, and are calculated from Equations (11)–(13) as follows: 
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To represent a PV bus, a three-phase voltage mismatch equation should be defined. Because the DG 

generally controls the magnitude of the positive-sequence voltage [9], the voltage mismatch equation 

for bus k is defined as: 
+++ −=Δ krefkk VVV ,||  (25)

where V+
ref,k is the reference value for the magnitude of the positive-sequence voltage; and |Vk

+| is the 

magnitude of the positive-sequence voltage calculated in the power flow: 
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To solve the power flow problem, one must find the unknown voltages that make the mismatch 

values defined in Equations (14), (15) and (25) equal to zero. 

In order to solve the power flow problem via the Newton-Raphson method, the current 

mismatch vector (ΔImr) and voltage vector (Vrm) are defined as: 
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Because bus 1 is assumed to be a slack bus, the current mismatch and voltages for bus 1 are not 

included in Equations (27) and (28). It should be noted that the order of the real and imaginary parts is 

reversed in the current mismatch vector and voltage vector [16]. 

As in [24], a three-phase reactive power vector is introduced to represent a PV bus. The three-phase 

voltage mismatch vector (ΔV+) and the three-phase reactive power vector (Q3φ) are defined as: 
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In the hth iteration of the Newton-Raphson method, the state variable vectors Vrm and Q3φ are 

updated using the mismatch vectors ΔImr and ΔV+, as follows: 

[ ]
h

mr

h

rm

h

rm

V

I
J

Q

V

Q

V








Δ
Δ

−







=








+

−
+

1

3

1

3 φφ  (31)

where J is the Jacobian matrix. 

3.2. Structure of the Jacobian Matrix 

The Jacobian matrix is the sensitivity matrix between the state variable vectors and the 

mismatch vectors. The Jacobian matrix can be partitioned as follows: 
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Because there is no explicit equation for the relationship between the three-phase voltage 

mismatch and the three-phase reactive power, the corresponding submatrix should be calculated 

via the chain rule, as follows: 
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However, if the submatrix obtained from Equation (33) is used, the Jacobian matrix does not have 

full rank, and thus it is not invertible. In order to avoid this problem, the submatrix is replaced by the 

zero matrix, as specified in Equation (32). 

Figure 2 shows a simple radial system with three DGs and the corresponding Jacobian structure. 

Since there are four buses (excluding the slack bus), and each bus has six terms pertaining to current 

mismatches and rectangular voltages, ΔImr and Vrm are 24 × 1 column vectors. Since two DGs (DG 1 

and DG 3) operate in voltage control mode, Q3φ and ΔV+ are 2 × 1 column vectors. Therefore, the 

Jacobian matrix is a 26 × 26 matrix, as shown in Figure 2b. 
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In the Jacobian matrix, the submatrices of the partition A, B, and C are a 6 × 6 matrix, a 6 × 1 

column vector, and a 1 × 6 row vector, respectively. Because the three-phase reactive output of the DG 

affects only the current mismatches of the DG-connected buses, B3 and B5 have nonzero values, and 

the other vectors in B are zero vectors. Similarly, C3 and C5 are the only nonzero vectors in C. 

Figure 2. Jacobian structure: (a) five bus system and (b) corresponding Jacobian matrix. 
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3.3. Calculation of the Jacobian Matrix 

The elements of the matrix A can be calculated from the partial derivatives of Equations (14) and (15) 

with respect to the rectangular voltages. For the elements of the off-diagonal block matrices, 

Equation (12) of the original TCIM [16] can be used without any modification, since these terms are 

not related to the current outputs of the DG. The diagonal terms, on the other hand, should be modified 

as follows: 

DGkkOkkkk AAA ,, −=  (34)

The first term, Akk,O, is identical to the matrix of Equation (13) in [16], and the second term, Akk,DG, 

represents the partial derivatives of the current outputs of the DG: 
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The elements of Akk,DG  can be obtained from the partial derivatives of Equations (16)–(21),  

as follows: 
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where: 
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The nonzero elements of the submatrix B corresponding to bus k are calculated from the partial 

derivatives of Equations (14) and (15) with respect to the three-phase reactive power output,  

as follows: 
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Similarly, the nonzero elements of the submatrix C for bus k are given by: 



Energies 2013, 6 4278 

 

 

[ ]kkkkkkkkkk

kk

c
km

k

c
kr

k

b
km

k

b
kr

k

a
km

k

a
kr

k
k V

V

V

V

V

V

V

V

V

V

V

V
C

βαβαβαβαβα
βα

−−−−−+−
+

=













∂
Δ∂

∂
Δ∂

∂
Δ∂

∂
Δ∂

∂
Δ∂

∂
Δ∂

=
++++++

333322
6

1
     

22

,,,,,,

 (46)

3.4. Representation of the Reactive Power Limit 

In general, the reactive power limit of a vector-controlled DG is represented by the q-axis current 

limit, instead of being expressed in terms of the three-phase reactive power output itself [25,26]. 

Figure 3 illustrates the current vector of the BTCS and the voltage vector of a DG-connected bus in a 

rotating reference frame. 

Figure 3. Voltage and current vectors in a rotating reference frame. 

 

As discussed in Section 2, the phase voltages are normally unbalanced, while the currents are 

balanced. Thus, the difference of angle between the voltage and current vectors, θ, will change 

continuously. In power flow studies, the average value of the angle (θav), given by Equation (47), 

can be used. For the voltage angle, the angle of the positive-sequence voltage will be used, since the 

negative- and zero-sequence terms have zero average. 

( ) ( )arg arga
av BTCS kI Vθ += −

 (47)

Since the current output of the BTCS is balanced, the magnitude of the current vector, |iBTCS|,  

is equal to the peak value of the phase current. Therefore, the d- and q-axis components of iBTCS can be 

expressed in terms of θav and the magnitude of the current phasor of phase a, |Ia
BTCS|, as follows: 

)cos(||2, av
a
BTCSdBTCS Ii θ=  (48)

)sin(||2, av
a
BTCSqBTCS Ii θ=  (49)

When the q-axis current is bounded by a specific limit, iq,limit, as shown in Figure 3, the magnitude 

of the limited current vector, |iBTCS,limited|, and the angular change due to the limitation, φ, are 

obtained from: 
2
,

2
,,  || limitqdBTCSlimitedBTCS iii +=  (50)
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Because the limited current is still balanced, the angular change of the current phasor is also φ. 

Therefore, the current phasor of phase a is given by: 

2

 || )) (arg(
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I  (52)

By substituting Equation (52) into Equation (8) and taking the imaginary part, the three-phase 

reactive power output of the DG with limited q-axis current can be calculated from: 
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If the reactive power of a voltage-control-mode DG is not limited, the DG-connected bus is 

modeled as a PV bus. However, if the q-axis current of a DG is restricted by its limit, the bus model 

should be changed to a bounded PQ-bus model, meaning that the reactive power of the PQ bus is not 

constant, and is calculated via Equation (53) for every iteration. The transition between a PV-bus 

model and a bounded PQ-bus model is determined by iBTCS,q calculated via Equation (49) and ΔVk
+ 

calculated via Equation (25), as shown in Figure 4. To avoid the numerical instability caused by 

frequent changes between PV-bus and PQ-bus models, the bus model is only changed if the transition 

condition occurs in two consecutive iterations. Note that in the frame of reference shown in Figure 3, 

a positive q-axis current represents negative reactive power (i.e., reactive power absorption), and 

vice versa. Accordingly, a lower-bounded PQ-bus model (iq,limit = iq,min) indicates that the DG 

connected to that bus supplies the maximum reactive power. Therefore, if the voltage is higher than the 

reference value (i.e., ΔVk
+ > 0), the bus model should be changed to a PV-bus model. For an 

upper-bounded PQ-bus model (iq,limit = iq,max), the opposite condition is applied. 

Figure 4. Transition between a PV-bus model and bounded PQ-bus models. 

 

3.5. Power Flow Procedure 

Step 1: Determine the bus model for the voltage-control-mode DG-connected buses, based on the 

rules shown in Figure 4; 

Step 2: Calculate the three-phase reactive power outputs of the bounded PQ buses, using 

Equation (53); 

Step 3: Calculate the current and voltage mismatches, using Equations (14), (15) and (25); 

Step 4: Test the convergence: if the absolute values of all mismatches are within the convergence 

tolerance, terminate the power flow; otherwise, go to Step 5; 

Step 5: Calculate the Jacobian matrix; 
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Step 6: Update the state variable vector using Equation (31), and go to Step 1. 

3.6. Modifications for Type 1 DG 

For a Type 1 DG, some of the foregoing equations are modified. 

(1) The second terms of Equations (16)–(21) are eliminated; 

(2) γk in Equationa (16)−(21) and Equations (37)–(42) is set equal to zero; 

(3) The last two matrices of Equation (36) are eliminated; and 

(4) Equation (53) is modified to 

{ }*
,

3
, )( Im3 a

limitedBTCSklimitedDG IVQ +×=φ  (54)

4. Case Studies and Results 

To verify its accuracy and convergence performance, the proposed method was implemented 

using MATLAB. For all mismatches, the convergence tolerance was set at 1.0 × 10−6 pu on a system 

base of 100 kVA. The Type 3 DG, which is the most complex type, was used in all simulations. 

4.1. Verification of Accuracy 

The accuracy of the proposed power flow method was verified by comparing its results to those 

obtained from the PSCAD model. In addition, power flow studies using conventional simplified DG 

model [5–9] were conducted to show the improvement in accuracy by the proposed method. In the 

simplified DG model, the three-phase power outputs of the DG are equally divided into each phase, 

regardless of the voltage of the DG-connected bus. 

Figure 5 shows the modified IEEE 13-bus test system, with a 1-MW DG connected to bus 680 

through a transformer [27]. The parameters of the DG are summarized in Table 2. The DG can supply 

three-phase reactive power in the range −500 kVAr to 600 kVAr at the rated voltage. In the 

PSCAD model, the DG was modeled with a three-wire two-level VSC using IGBT switches. For the 

switch control scheme, the sinusoidal pulse width modulation (SPWM) method was adopted.  

The simulation was performed with time step of 1 μs. 

Figure 5. Modified IEEE 13-bus test system. 
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Table 2. Parameters of the DG. 

Property Value Unit 

Maximum q-axis current, iq,max 650 A 
Minimum q-axis current, iq,min −650 A 

System frequency, fsys 60 Hz 
Switching frequency, fsw 10 kHz 

Converter side inductance, L1 0.25 mH 
Grid side inductance, L2 0.11 mH 

Capacitance, C 279 μF 
Damping resistance, Rd 0.17 Ω 

4.1.1. Reactive Power Control-Mode DG 

In this simulation, the DG controlled the active and reactive power outputs in accordance with the 

reference values. We tested five different three-phase active power outputs (200 kW, 400 kW, 600 kW, 

800 kW and 1000 kW), with the DG operating at a unity power factor (i.e., the reactive power output 

was set equal to zero). 

Figure 6 shows the active and reactive power outputs of each phase, measured in the PSCAD model. 

In all cases, the active power outputs of the phases differed because the system line and load 

conditions were unbalanced. Furthermore, although the three-phase reactive power (sum of the 

three phases) was zero, one phase supplied reactive power while the others absorbed it. In addition, 

the mismatches between phases increased as the DG active power output increased. When the active 

power output was 1000 kW, the largest active and reactive power mismatches were 22.16 kW and 

18.81 kVAr, respectively. 

Figure 6. Phase power outputs measured in the PSCAD model: (a) active power and 

(b) reactive power. 
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The simulation using the proposed power flow produced almost the same results as the PSCAD 

model. The maximum phase output power difference between the two models was less than 0.13 kVA. 

The maximum differences in the phase voltage magnitude and angle were less than 2.0 × 10−5 pu 

(0.002%) and 0.023 degrees, respectively, as shown in Figure 7. 
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Figure 7. Maximum difference between the power flow results with the proposed DG 

model and the PSCAD simulation results: (a) voltage magnitude and (b) voltage angle. 
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In all cases, the power flow converged in five iterations, which is the same as the number of 

iterations required for the original system. In other words, adding a DG did not increase the number of 

iterations in this scenario. 

Figure 8 shows the comparison between the PSCAD model and the power flow using simplified 

DG model. The maximum phase voltage magnitude and angle differences were 2.7 × 10−3 pu (0.27%) 

and 0.112 degrees, respectively, which are significantly larger than the error of the proposed DG 

model. Moreover, phase a and c voltages calculated from the power flow were higher than those 

obtained from the PSCAD model, while the phase b voltages were reversed, as shown in Figure 9. 

From the above results, it is concluded that the proposed method can more accurately represent the 

output power characteristics of DG under unbalanced operating conditions. 

Figure 8. Maximum difference between the power flow results with the simplified DG 

model and the PSCAD simulation results: (a) voltage magnitude and (b) voltage angle. 
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Figure 9. Voltage profile of the nodes on the path from the secondary side of the voltage 

regulator to the DG-connected node when the active power output of the DG was 1000 kW. 
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4.1.2. Voltage Control-Mode DG 

In this simulation, the DG controlled the positive-sequence voltage of bus 681 instead of the 

reactive power output. The three-phase active power output of the DG was set at 400 kW, and three 

cases with different reference voltages (0.98 pu, 1.01 pu, and 1.04 pu) were tested. Figure 10a 

compares the reference voltage, positive-sequence voltage, and phase voltages measured in the 

PSCAD model. The magnitudes of the phase voltages differed appreciably from each other, due to the 

unbalanced operating conditions. In Case 2 (reference voltage = 1.01 pu), the DG was able to control 

the voltage of bus 681 at the reference value. However, in the other two cases, the voltage could not 

be controlled, due to the q-axis current limit. In Case 1 (reference voltage = 0.98 pu), the three-phase 

reactive power output of the DG was limited to −497 kVAr, and the positive-sequence voltage was 

0.991 pu, since the q-axis current was restricted by the upper limit. In Case 3 (reference voltage = 1.04 pu), 

the q-axis current was restricted by the lower limit, and the positive-sequence voltage and reactive 

power output of the DG were 1.036 pu and 626 kVAr, respectively. 

The results of proposed power flow method matched well with the PSCAD simulation results. 

The maximum three-phase reactive power difference between the two methods was 0.25 kVAr, 

which is 0.05% of the rated reactive power limit. The differences in voltage magnitude were also 

very small. The maximum differences between the two methods were less than 3.0 × 10−5 pu (or 

0.003%), as shown in Figure 10b. Six iterations were required for the first case, and five iterations for 

each of the other cases. 

Figure 10. Results for the voltage control-mode DG: (a) reference voltage and voltages 

measured in the PSCAD model and (b) maximum voltage magnitude difference. 
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4.2. Application to a Large Distribution System 

To investigate the effect of the number of DGs on the convergence rate of the proposed power flow 

method, we used the IEEE 123-bus test system [27]. The power flow problem was solved repeatedly, 

adding DGs to the three-phase buses one at a time, and observing the effect on the required number of 

iterations. It was assumed that each DG was connected to a bus through a 150 kVA 4.16/0.69 kV 

transformer, and generated 60 kW of active power. The main parameters of the DG are summarized in 

Table 3. In order to analyze the effects of operating mode and current limit on the convergence rate, 

we simulated the following three cases. 

Case 1: Each DG operates in reactive power control mode. The reactive power reference value is 

set at 0 kVar. The DG-connected buses are modeled as PQ buses; 
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Case 2: Each DG operates in voltage control mode. The reference voltage is 1.03 pu. A q-axis 

current limit is not imposed (i.e., the current is not bounded). Therefore, the DG-connected 

buses are always modeled as PV buses; 

Case 3: The operating mode and reference voltage are the same as in Case 2, but a q-axis current 

limit is included. The DG-connected buses can be modeled as either PV buses or bounded 

PQ buses, depending on the q-axis current and voltage mismatch. 

Table 3. Parameters of the DG. 

Property Value Unit 

AC voltage, Vac 690 V 
Maximum q-axis current, iq,max 100 A 
Minimum q-axis current, iq,min −100 A 

Grid side inductance, L2 0.3 mH 
Capacitance, C 27.8 μF 

Damping resistance, Rd 0.9 Ω 

Figure 11 shows the number of iterations required for convergence in each of the three cases, 

according to the number of DGs. In Cases 1 and 2, in which there was no current limit, the power flow 

converged in at most six iterations, regardless of the number of DGs. In other words, even when as 

many as 62 DGs were added, only one additional iteration was required for convergence. In Case 3, 

the average iteration number was 7.8 and the maximum number of iterations was 11, when the number 

of installed DGs was 51. In this case, the q-axis current was bounded in 30 of the 51 DGs, as shown in 

Figure 12. Thus, the convergence rate of the proposed power flow method was not substantially 

degraded by the addition of DG models, even when q-axis current limits were imposed on many of 

the DGs. 

Figure 11. Number of iterations required for convergence. 
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Figure 12. Numbers of PV buses and bounded PQ buses for Case 3. 
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5. Conclusions 

We proposed a TCIM-based power flow model for vector-controlled DGs. Three kinds of 

equivalent circuits for DGs were considered, classified according to output filter topology and 

current control target. Based on these equivalent circuits, steady-state phase current output models 

were formulated in terms of the three-phase active and reactive power outputs of the DG, phase 

voltages of the DG-connected bus, and impedances of the output filter. Finally, a method was 

proposed for implementing a TCIM power flow including the DG models. In the proposed power flow, 

a DG-connected bus was modeled as either a PQ bus or a PV bus. The active and reactive power and 

the voltage of a DG-connected bus were represented by three-phase quantities. The q-axis current limit 

was used to represent the reactive power limit of a voltage-control-mode DG. If the q-axis current was 

not bounded, a DG-connected bus was modeled as a PV bus. Otherwise, the bus was modeled as an 

upper-bounded or lower-bounded PQ bus. Rules for changing the bus model were also presented. 

In the case studies, the accuracy of the proposed method was verified by comparing the results with 

those of the PSCAD model. When the proposed power flow method was used, the calculated voltage 

magnitudes for the test system differed from those of the PSCAD model by less than 3.0 × 10−5 pu 

(0.003%). In addition, the effect of the number of DGs on the convergence rate of the power flow was 

analyzed by increasing the number of DGs in the IEEE 123-bus test system. It was proved that the 

convergence rate of the proposed power flow method was not substantially degraded by the addition of 

DG models, even when the q-axis current was limited in many of the DGs. 
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