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Abstract: The accurate forecasting of carbon dioxide (CO2) emissions from fossil fuel 

energy consumption is a key requirement for making energy policy and environmental 

strategy. In this paper, a novel quantum harmony search (QHS) algorithm-based discounted 

mean square forecast error (DMSFE) combination model is proposed. In the DMSFE 

combination forecasting model, almost all investigations assign the discounting factor (β) 

arbitrarily since β varies between 0 and 1 and adopt one value for all individual models and 

forecasting periods. The original method doesn’t consider the influences of the individual 

model and the forecasting period. This work contributes by changing β from one value to a 

matrix taking the different model and the forecasting period into consideration and 

presenting a way of searching for the optimal β values by using the QHS algorithm  

through optimizing the mean absolute percent error (MAPE) objective function. The QHS 

algorithm-based optimization DMSFE combination forecasting model is established and 

tested by forecasting CO2 emission of the World top‒5 CO2 emitters. The evaluation 

indexes such as MAPE, root mean squared error (RMSE) and mean absolute error (MAE) 

are employed to test the performance of the presented approach. The empirical analyses 

confirm the validity of the presented method and the forecasting accuracy can be increased 

in a certain degree. 
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1. Introduction 

With the advent of industrialization and globalization, World energy consumption has increased 

exponentially by about 30% in the last 25 years [1]. Fossil fuel consumption, attributed to economic 

growth in a large part, comprises 80% of the World’s energy use [2]. It is scientifically understood that 

the detrimental impacts of GHG emissions, especially carbon dioxide (CO2) emissions, on the living 

environment such as global warming, greenhouse effect, and climate change are mainly the result of  

fossil fuel combustion for heat supply, electricity generation and transportation purposes [3]. About 

three quarters of the human-caused carbon emissions of the past 20 years derived from fossil fuel 

burning. CO2 is considered as the single most important greenhouse gas and is held responsible for 

approximately 60% of the greenhouse effect resulting in increasing global warming and climatic 

instability [4]. The Kyoto Protocol, a legally binding agreement linked to the United Nations Framework 

Convention on Climate Change (UNFCCC), is the first international commitment that sets binding 

targets for participating countries for reducing collective emissions of greenhouse gases by 5.2% below 

the emission levels of 1990 by 2012. Forecasting CO2 emissions from fossil fuel consumption could 

provide an important reference for energy planning and environmental strategy decisions. 

In CO2 forecasting modeling, a large amount of literature using various estimation methods has been 

published. Meng [5] adopted a logistic function to simulate emissions from fossil fuel combustion. 

Bulent [6], Köne [7] and Raghuvanshi [8] employed trend analysis approaches for modeling World total 

CO2 emissions and CO2 emissions from power generation in India. Liang [9] established a 

multi-regional input-output model for energy requirements and CO2 emissions for eight economic 

regions in China and performed scenario studies for the years 2010 and 2020. Chen [10] proposed a 

hybrid fuzzy linear regression (FLR) and back propagation network (BPN) approach for global CO2 

concentration forecasting. Sun [11] provided a GDP based alternative viewpoint on the forecasting of 

energy-related CO2 emissions in OECD countries. Pao [12] and Lin [13] applied a Grey prediction 

model (GM) to predict CO2 emissions in Brazil and Taiwan. Ramanathan [14] used the Data 

Envelopment Analysis (DEA) method for the prediction of energy consumption and CO2 emissions 

from 17 countries of the Middle East and North Africa. Ullash [15] developed a long term forecast of 

energy demands and related CO2 emissions for China using an approach based on key energy indicators 

in conjunction with the TIMES G5 model. He [16] estimated China's future energy requirements and 

projected its CO2 emissions from 2010 to 2020 based on the scenario analysis approach.  

Although many quantitative methods have been applied to CO2 emissions forecasting, no single 

forecasting method has been found to outperform all others in all situations since each method has its 

own particular advantages or disadvantages. The combination forecasting method, introduced by Bates 

and Granger [17] is often regarded as a successful alternative to using just an individual method. The 

rationale of combination forecasting is to synthesize the information of each individual forecasting into 

a composite one. Another advantage is that it is less risky in practice to combine forecasts than to 
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select an individual forecasting method [18]. By combining different methods, the problem of model 

selection can be eased with a little extra effort [19]. Choosing an individual method out of a set of 

available methods is more risky than choosing a combination because there is significant uncertainty 

associated with CO2 emissions forecasting. In a combination forecasting model, how to determine the 

combination weights plays an important role since it affects the final forecast results. The combination 

weights methods encompass simple average combination, variance covariance combination, Granger 

and Ramanthan Regression method, discounted mean square forecast error (DMSFE) combination, etc. 

The combination weights can be definitely calculated or distributed by certain algorithms, except that 

the combination weights of the DMSFE method rely on the selection of the discounting factor (β). It is 

vital to select the β value in order to achieve an optimal combination result with minimum error. 

The purpose of this investigation is to develop an effective way to search for the optimal β values 

for each single model in the combination model by using a quantum harmony search (QHS) algorithm 

and to establish the QHS algorithm-based optimization DMSFE combination forecasting method. 

Through the QHS algorithm, the optimal values of β can be found on the condition of minimizing 

mean absolute percent error (MAPE). The innovative combination forecasting model can also achieve 

a pretty good forecasting performance.  

The rest of the paper is organized as follows: in Section 2, the DMSFE combination method, QHS 

algorithm and QHS algorithm based DMSFE combination model are described. Section 3 presents the 

empirical simulation and analysis on CO2 emissions of the World‒top 5 emitters to test the validity of 

the model introduced above. Apart from the QHS algorithm-based DMSFE combination model, other 

cases with different given β values (β = 0.1, 0.5 and 1 respectively) are designed to compare with the 

proposed model to test the performance through forecasting error indicators. The forecasting results 

and scenario analysis of applying the same optimal β value to all individual models of DMSFE 

combination forecasting model basing on QHS algorithm are given for the same purpose. Finally, main 

conclusions are given in Section 4.  

2. Methodologies 

2.1. Discounted Mean Square Forecast Error (DMSFE) Method  

The general form of combination forecasting model can be written as follows: 
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ty is the forecasting value for period t from forecasting model i; i is the combination weight 

assigned to the ith participating model through using DMSFE method; ty


 denotes the combined 

forecasting value for the tth period; k is the number of forecasts to be combined. The DMSFE method, 

first proposed by Bates and Granger in 1969, uses the mean square error to calculate the optimal 

weights. It weighs recent forecasts more heavily than distant ones through using a discounting  

factor [20]. The weight for the ith participating model can be defined as Equation (2): 
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where ty  is the actual value for the tth period;  is the discounting factor with 10   ; T denotes 

the observation lengths used to obtain the weights.  

Combine Equations (1) and (2), the DMSFE combination model can be written as Equation (3): 
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2.2. Quantum Harmony Search (QHS) Algorithm  

The harmony search (HS) algorithm pioneered by Geem et al. [21] in 2001 is a new meta-heuristic 

algorithm which mimics the improvisation process of music players for a perfect state of harmony [22]. A 

new harmony is selected randomly from the harmony memory (HM) based on the harmony memory 

considering rate (HMCR). Then, the new harmony is adjusted with the probability of the pitch 

adjusting rate (PAR). Due to its advantages of a simple concept, fewer parameters, excellent 

effectiveness, strong robustness and easy implementation, the HS algorithm has been successfully 

applied to many optimization problems in the computation and engineering fields [23,24]. However, 

the parameter setting and new vector creation manner influence the performance of the HS algorithm 

awfully. When applied to numerical optimization problems, it tends to perform badly in local 

searching. Lots of improved HS algorithms have been presented to enhance the performance of the HS 

algorithm [23,25,26]. Inspired by quantum computing, a new variation of the HS algorithm called 

quantum harmony search algorithm (QHS) is proposed in this paper. The new approach applies 

concepts and principles of the quantum mechanism to the HS algorithm, such as quantum bit (qbit), 

superposition and collapse of states. 

2.2.1. Quantum Encoding and Observation of Harmony  

The QHS algorithm employs qbits to express the harmonies in HM as shown in Equation (4), 

inspired by the concept of states superposition in quantum computing. The strength of quantum 

harmony comes from the fact that it can represent a linear superposition of solutions based on the 

probabilistic representation. Hence, the individual harmony could bring more information. Then, the 

convergence speed of the algorithm increases:  
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where i
tq is the ith quantum harmony at generation t in HM denoting a potential solution vector; m is 

the size of HM (HMS); n is the dimension of the problem concerned; 2
  and 2

  is the probabilities 

that the qbit exists in state ―0‖and state ―1‖, respectively. 

When observed as Equation (5), the quantum harmony collapses to a single state:  
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where rand(0,1) is a random number from the uniform distribution [0,1]. For more details for quantum 

computing readers are referred to other references [27]. 



Energies 2013, 6 1460 

 

 

2.2.2. Adjusting Bandwidth Dynamically 

Bandwidth (BW) is an important parameter in the HS algorithm in solution vectors fine-tuning. 

Small BW values bring small adjustments in the process of pitch adjustment, which means a relatively 

better local search capability. On the contrary, a large BW is good to enhance the exploration of the  

method [28]. BW is fixed and chosen based on the investigators experience in the HS algorithm. How 

to select appropriate parameters is an interesting problem, investigated by many researchers [23,28]. In 

order to use the new harmony information, we adjust BW dynamically and decrease the number of 

parameters chosen in the initialization process, and the new harmony is adopted to calculate BW as in 

Equation (6): 
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where  is the new vector after pitch adjusting,  is the new vector before pitch adjusting. 

The pitch adjusting procedure employs the golden selection mechanism shown in Equation (6) [29].  

2.2.3. QHS Optimization Procedure 

Figure 1 shows the QHS optimization procedure consisting of Steps 1–5, as follows, based on the 

discussion above: 

Step 1. Initialize the optimization problem and algorithm parameters. 

Minimize  xf      s.t. niXx ii ,,2,1   

where  xf  is the objective function; x  is the set of each design variable  ix ; iX  is the set of 

the possible range of values for each design variable; n is the number of design variables. In addition, 

the QHS algorithm parameters including HMS, HMCR, PAR and termination criterion should also 

be specified in this step.  

Step 2. Initialize HM. 

HM is a memory location where all the solution vectors (sets of decision variables) are stored. In 

this step, quantum HM matrix is filled with as many randomly generated solution vectors as the HMS.  

Step 3. Improvise a new harmony from the HM. 

A new harmony vector is generated based on three rules: memory consideration, pitch adjustment 

and random selection.  

Step 4. Update the HM. 

On condition that the new harmony vector shows better fitness than the worst harmony in the HM, 

the new harmony is included in the HM and the existing worst harmony is excluded from the HM.  

Step 5. Repeat Steps 3 and 4 until the termination criterion is satisfied. 

The computations are terminated when the termination criterion is satisfied such as when no 

manifest improvement in the best found solution is seen after a predetermined number of iterations 

or the maximum number of iterations is reached.  
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Figure 1. QHS optimization procedure. 

Step2 Initialize HM

Generate initial HM in quantum manner

(as many as HMS)

Step3 Improvise a new harmony

Based on three rules: (1)memory consideration;

(2)pitch adjustment (adjusting BW dynamically and

on golden selection mechanism);(3)random selection

Step4 Update HM

Step1 Initialize the optimization problem and QHS algorithm parameters

The objective function f(x)

The lower and upper bounds for each decision variable

HMS, HMCR, PAR

Termination criterion (e.g. maximum number of iteration)

Is the new harmony

better than the

worst in HM?

Yes

No

Update HM

Is termination criterion

satisfied?

No

Yes

Step5 Repeat

 

2.3. Design of QHS Algorithm Based DMFSE Combination Model 

In Equation (1), the different individual models have different combination weights to display the 

proportion of the corresponding individual model forecasting result in the combination model 

forecasting results. Equation (2) denotes that   is influenced by two parts: β and the error between 

the actual value and the forecasting value. Equation (2) shows that the combination weight   is 

influenced by the discounting factor β badly. In other words, the discounting factor β also influences 

this proportion because β influences  . Different individual forecasting models have different 

applicability to different kinds of forecasting cases, according to the growth pattern. Such as, the 

GM(1,1) model is effective in those with a power growth pattern, whereas, a linear model is appropriate 

for a linearly increasing situation. The proportion of the same individual model forecasting results in 

the combination forecasting result is probably different according to different application cases, even 

when the same individual models are selected, so it seems more reasonable to adopt different β values 

for different individual models than to employ the same β value for all individual models. According to 

the same reasoning, the error of different periods employing different β values is more reasonable than 
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applying the same β value to all different period errors. Thus, the β value in Equation (2) is changed 

from one parameter to a matrix Tk . Then, Equation (2) changes to Equation (7) and Equation (3) 

changes to Equation (8) where it  is the discounting factor for the tth period from the ith forecasting 

model. In Equation (7) a different β value is employed for different period errors of different individual 

models, which implies a discrepancy between models and periods considered: 
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The discounting factor β varies between 0 and 1, so different β selection leads to different 

combination weights and different combination forecasting results. How to determine the suitable β 

value with least forecasting error becomes an important issue. In most investigations, choosing β relies 

only on discretionary selection. This manner would not necessarily guarantee the best forecasting 

performance (i.e., minimal forecasting error) because it is almost impossible to select the optimal β 

value. On the other hand it is difficult to find the optimal Tk  just by traditional mathematic methods 

since Tk is a matrix and there are Tk  numbers to be obtained. It will be a high dimension problem 

when k and T are big. An artificial intelligence optimization method is a good technique to resolve this 

problem by taking the problem as an optimal question. In this proposed work, the novel intelligence 

optimization method—QHS algorithm is adopted to determine the optimal  values for each 

individual model and each forecasting period with steps as follows: 

Step 1. Choose individual forecasting model and calculate separate forecasting result. Before the 

combination forecasting model is set up, the individual forecasting model should be  

first selected according to practical problem. Then individual model forecasting results  

are obtained.  

Step 2. Establish DMSFE combination model. Based on the individual forecasting results, the 

DMSFE combination model can be built up according to Equation (1).  

Step 3. Determine the values of discounting factor β by using QHS algorithm. Due to the blindness 

and arbitrary in picking β, no theoretical guidance is provided to determine the β value in 

order to get the best combination forecasting performance (i.e., least forecasting error). So in 

this step, the QHS algorithm is adopted for determining optimal β values for every individual 

model and every forecasting period based on the least mean absolute percent error (MAPE).  

Step 4. Calculate combination forecasting results. The forecasting results of the combination model 

could be achieved according to Equation (8) with different optimal β values obtained in Step 3. 

3. Experimental Simulation and Analysis 

3.1. CO2 Emissions Data Sources  

This section describes how to apply the QHS algorithm to searching for the optimal β values for the 

DMSFE method and then establish the QHS-based optimization DMSFE combination forecast model. 
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To examine the applicability and efficiency of the proposed method, the proposed method is applied to 

the top-5 CO2 emitters. 

British Petroleum (BP) provides high-quality, objective and globally consistent data on World 

energy markets, covering data on petroleum, coal, natural gas, nuclear and power. The data of CO2 

emissions from fossil fuel consumption were adopted from the BP Statistical Review of World Energy 

(Excel data, 2011) [30]. BP presents in detail main 68 countries for the period from 1965 until 2010. In 

2010, China, the United States, the Russian Federation, India and Japan, the largest five emitters, 

produced together 57.8% of the World’s CO2 emissions, with the shares of China and the United States 

far surpassing those of all others. Combined, these two countries alone produced 14.48 Gt CO2, about 

43.6% of World CO2 emissions. China has experienced an approximate 10 percent average annual 

GDP growth over the last two decades and caused a large amount of resource and energy consumption 

and associated emissions creating serious environmental problems [31]. China, now the World’s 

largest emitter of CO2 emissions from fuel combustion, generated 8.33 Gt CO2, which accounts 25.1% 

of the World total. Due to the energy-intensive industrial production, large coal reserves exist and with 

intensified use of coal, the CO2 emissions would increase substantially for a certain period. The United 

States alone generated 18.5% of World CO2 emissions, despite a population of less than 5% of the 

global total. In the United States, the large share of global emissions is associated with a 

commensurate share of economic output. The Russian Federation and India are the two BRICS 

countries representing over one-fourth of World GDP, 30% of global energy use and 33% of CO2 

emissions from fuel combustion. With their ongoing strong economic performance, the share of global 

emissions for the Russian Federation and India are likely to rise further in coming years. India now 

emits over 5% of global CO2 emissions, and emissions will continue to grow. The World Energy 

Outlook projects that CO2 emissions in India will more than double between 2007 and 2030. Japan, 

one of the world’s leading industrial economies, is the fifth emitter, with 1.31 Gt CO2 in 2010, 

contributing a significant share of global CO2 emissions (3.9%). 

In this study, the annual CO2 emissions data of the top-5 countries for the period from 2000 to 2010 

were collected. Table 1 shows the data for CO2 emissions from fossil fuel consumption from 2000 to 

2010 and Table 2 shows the share of the World total amount for these countries in 2010.  

Table 1. CO2 emissions data from 2000 to 2010 for top-5 countries (Mtonnes). 

Country 2000 2001 2002 2003 2004 2005 

China 3659.3483 3736.9794 3969.8231 4613.9200 5357.1651 5931.9713 

USA 6377.0493 6248.3608 6296.2248 6343.4769 6472.4463 6493.7341 

Russia 1562.9791 1574.4929 1583.9895 1624.7682 1628.0350 1618.0046 

India 952.7665 959.1636 1001.2000 1030.4714 1118.3646 1172.8631 

Japan 1327.1324 1324.4486 1322.9523 1376.2507 1380.7913 1397.7016 

Country 2006 2007 2008 2009 2010  

China 6519.5965 6979.4653 7184.8542 7546.6829 8332.5158  

USA 6411.9503 6523.7987 6332.6004 5904.0382 6144.8510  

Russia 1663.3323 1678.7276 1711.0866 1602.5212 1700.1992  

India 1222.4088 1327.0771 1442.1529 1563.9172 1707.4594  

Japan 1379.2997 1392.1297 1389.3573 1225.4810 1308.3958  
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Table 2. Share of the World total in 2010. 

Rank Country CO2 emission Total (%) 

1 China 8332.5 25.1% 

2 US 6144.9 18.5% 

3 Russian Federation 1700.2 5.1% 

4 India 1707.5 5.1% 

5 Japan 1308.4 3.9% 

3.2. Experimental Simulation 

(1) The combination forecasting procedures 

Since the CO2 emission curves of different industries have different characteristics and the future 

trend is full of uncertainties, it is more risky to select a certain forecasting model. To establish a 

combination model for CO2 emissions becomes a better solution.  

Firstly, choose individual forecasting model and calculate individual forecasting results. Linear 

regression model [7], time series model [32], Grey (1,1) forecasting model [33] and Grey Verhulst 

model [34] are selected to generate the individual forecasting results. The reason why we choose these 

models is that they have been widely and successfully used in forecasting CO2 emissions. Considering 

the time series method may lead to the loss of data, more original data were chosen in order for the 

consistent comparison period. The participating model forecasting results are shown in Appendix from 

Tables A1–A5. 

Secondly, establish DMSFE combination forecasting model. According to Equation (3), the 

DMSFE combination forecasting model could be established based on the individual forecasting model. 

Thirdly, determine the optimal βit values for every separate forecasting model and period by  

using QHS algorithm. The β matrix is 4 × 11 in this simulation since four individual models and 11 

periods are adopted. In other words, there are 44 parameters to be optimized. It is a relatively high 

dimension problem. Finally, achieve the combination forecasting results according to Equation (8). 

(2) The β optimization process based on the QHS algorithm 

The optimization objective function f(x) of QHS algorithm is specified as the Mean Absolute 

Percentage Error (MAPE) in this proposed investigation. The MAPE is the measure of accuracy in a 

fitted time series value in statistics, specifically trending. It usually expresses accuracy as a percentage, 

eliminating the interaction between negative and positive values by taking absolute operation [10], 

shown in Equation (9): 
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The QHS optimization DMSFE approach has been employed to determine optimal βit values for the 

top-5 CO2 emitting countries. The QHS algorithm parameters are selected by uniform design [35] as 

follows: HMS = 35, HMCR = 0.99, PAR = 0.6, lb = 0, ub = 1, where lb is the lower bound for decision 

variable βit, ub is the upper bound for decision variable βit. 

All the programs were run on a 2.27 GHz Intel Core Duo CPU with 1 GB of random access 

memory. In each case study, 30 independent runs were made for the QHS optimization procedure in 

MATLAB 7.6.0 (R2008a) on Windows 7 with 32-bit operating systems. Then, the best key was 

assigned as the optimal βit values for the corresponding individual model and period shown as follows: 
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where 1 is the optimal β matrix for China, 2  for US, 3  for Russia, 4  for India and 5  for 

Japan. It could be found that the optimal βit values vary quite a lot from each other even for the same 

county. The data differ from each other heavily in the case of China. The situations of Russia and 

Japan are similar to it of China. In the first column of matrix, all data, with uniform magnitude, are 

very close or equal to 1.0000 except one in the case of USA. The situation of India is similar to that of 

the USA. From the final optimal β values, we can draw two conclusions: (1) the best β values may be 

different for different counties; (2) the best β values may be different for different individual models 

and forecasting periods, even in the same country, since β ranges from 0 to 1, therefore, the arbitrary 

selection of β may not result in the best combination forecast effect, i.e., not the minimal MAPE. 

Taking the same β for all individual models and forecasting period may bring the same drawback as 

the one above. It is vital to select suitable β values for the combination model. Through an 

optimization process, the best β values could be found with the minimal MAPE for combination 

forecast based on QHS algorithm. With these optimal β values the forecasting results and evaluating 

indexes could be obtained and presented in next sections. 

(3) The forecasting results 

Figure 2 shows the curves of actual data and forecasting results achieved by the presented approach 

for the top-5 emitters from 2000 to 2010 respectively. Dual coordinates are employed in Figure 2: the 

curves of actual data and forecasting results for China and US correspond to the left y-axis coordinate; 

the curves of actual data and forecasting results for the other three countries correspond to the right 

y-axis coordinate. These five counties could be divided into two kinds according to the growth 
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direction: (1) ascending cases such as China, India and Russia; (2) fluctuating cases such as the US and 

Japan. From Figure 2 we find that the forecasting results of China, Russia, India and US are relatively 

close to the original values at every point. For Japan, the proposed approach behaves well at some 

points and relatively poor at others. But, analyzing the MAPE in next section, the forecasting errors are 

acceptable, even in those poor situations. There is a sudden drop in the actual values of Russia, US and 

Japan between 2008 and 2010 because an abrupt economy crisis broke out around the World and 

resulted in lowered CO2 emissions in these countries. The forecasting results are relatively inaccurate 

in those years because of the abruptness. It is natural since there is no one method works well for all 

situations. Every method has its own application circumstance. The presented method forecasting 

results are satisfied for different growth pattern that means the flexibility of the QHS algorithm based 

DMFSE combination model is excellent. 

Figure 2. Actual and forecast values for the World top-5 emitters. 

 

3.3. Case Comparison  

In order to testify the validity of the QHS algorithm-based DMFSE combination forecasting 

method, five cases were considered in this section: Case 1, β = 0.1; Case 2, β = 0.5; Case 3, β = 1;  

Case 4, β* (adopting the same optimal β value for all individual models and all forecasting periods 

obtained by QHS algorithm shown in Table 3; the parameters of QHS algorithm achieved by uniform 

design); Case 5, Dβ* (adopting the different optimal β values for different individual model and period 

obtained by QHS algorithm). We selected three cases near the beginning, middle and end of β span as 

examples since β varies from 0 to 1. Tables 4–8 show the combination forecasting results of different 

cases for China, US, Russian Federation, India and Japan respectively. From these tables we could find 
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that the forecasting results obtained by the presented approach are the best in most situations for all the 

five counties.  

Furthermore, the fitting effect is evaluated through some common evaluating indicators i.e., MAPE, 

RMSE and MAE shown in Equations (9), (11) and (12). The evaluating results are exhibited in  

Tables 9–11: 





T

t

tt yy
T

RMSE
1

2)ˆ(
1

 (11) 





T

t

tt yy
T

MAE
1

1 
 (12) 

Table 3. The optimal β values in case 4 for top-5 countries. 

 China United States Russian Federation India Japan 

β* 1.0000 2.2195 × 10
−5

 2.9628 × 10
−5

 2.7599 × 10
−5 

 1.0000 

Table 4. Forecasting values with different cases for China (Mtonnes). 

Year t Original data β = 0.1 β = 0.5 β = 1 β* Dβ* 

2000 1 3659.3483 3530.3572 3558.3733 3606.6073 3606.6073 3658.8771 

2001 2 3736.9794 3932.1966 3942.4741 3959.6479 3959.6479 3959.8116 

2002 3 3969.8231 4332.1111 4320.5721 4302.4815 4302.4815 4243.2317 

2003 4 4613.9200 4761.4967 4734.9856 4693.8221 4693.8221 4599.3799 

2004 5 5357.1651 5267.1257 5247.2098 5222.9176 5222.9176 5186.9109 

2005 6 5931.9713 5795.6774 5787.7327 5788.9735 5788.9735 5825.7973 

2006 7 6519.5965 6303.2887 6299.5006 6309.3182 6309.3182 6368.3617 

2007 8 6979.4653 6823.7005 6827.1577 6848.8813 6848.8813 6930.0485 

2008 9 7184.8542 7807.4174 7339.7023 7808.0081 7362.8626 7430.7278 

2009 10 7546.6829 8316.2067 7807.1845 8316.1072 7808.0081 7793.0080 

2010 11 8332.5158 8348.3939 8320.2893 8348. 5952 8316.1072 8251.4506 

Table 5. Forecasting values with different cases for the United States (Mtonnes). 

Year t Original data β = 0.1 β = 0.5 β = 1 β* Dβ* 

2000 1 6377.0493 6381.0250 6373.7812 6380.1481 6386.2180 6377.5702 

2001 2 6248.3608 6375.7827 6368.4882 6378.6697 6385.2835 6388.6531 

2002 3 6296.2248 6353.7094 6345.6626 6356.3869 6363.6782 6366.5027 

2003 4 6343.4769 6330.7889 6322.1567 6333.6167 6341.3799 6343.6542 

2004 5 6472.4463 6306.9531 6297.9141 6310.3176 6318.3324 6320.0496 

2005 6 6493.7341 6282.1296 6272.8750 6286.4460 6294.4762 6295.6276 

2006 7 6411.9503 6256.2428 6246.9770 6261.9561 6269.7488 6270.3240 

2007 8 6523.7987 6229.2130 6220.1543 6236.7998 6244.0848 6244.0715 

2008 9 6332.6004 6200.9574 6192.3385 6210.9268 6217.4158 6216.7998 

2009 10 5904.0382 6171.3898 6163.4585 6184.2853 6189.6709 6188.4359 

2010 11 6144.8510 6140.4217 6133.4411 6156.8215 6160.7771 6158.9047 
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Table 6. Forecasting values with different cases for the Russian Federation (Mtonnes). 

Year t Original data β = 0.1 β = 0.5 β = 1 β* Dβ* 

2000 1 1562.9791 1567.4618 1570.7326 1570.5784 1563.0058 1563.1559 

2001 2 1574.4929 1583. 8675 1586.3849 1586.1943 1576.6864 1576.8574 

2002 3 1583.9895 1595.8494 1597.7964 1597.6500 1590.3556 1590.4870 

2003 4 1624.7682 1607.7865 1609.0065 1608.9094 1604.0405 1604.1273 

2004 5 1628.0350 1619.6925 1620.0589 1620.0154 1617.7395 1617.7777 

2005 6 1618.0046 1631.5788 1630.9891 1631.0024 1631.4507 1631.4374 

2006 7 1663.3323 1643.4545 1641.8253 1641.8980 1645.1725 1645.1050 

2007 8 1678.7276 1655.3266 1652.5904 1652.7245 1658.9030 1658.7795 

2008 9 1711.0866 1667.2010 1663.3029 1663.4998 1672.6407 1672.4596 

2009 10 1602.5212 1679.0820 1673.9774 1674.2383 1686.3835 1686.1438 

2010 11 1700.1992 1690.9734 1684.6257 1684. 9515 1700.1300 1699.8306 

Table 7. Forecasting values with different cases for India (Mtonnes). 

Year t Original data β = 0.1 β = 0.5 β = 1 β* Dβ* 

2000 1 952.7665 942.7369 942.0609 940.7183 942.7948 946.7714 

2001 2 959.1636 946.7968 944.4024 945.9440 947.4891 959.1655 

2002 3 1001.2000 999.7583 998.5021 998.9527 1000.1231 1005.5160 

2003 4 1030.4714 1056.8241 1056.7104 1055.8411 1056.8488 1055.8330 

2004 5 1118.3646 1120.3921 1121.0592 1119.4426 1120.1885 1114.9742 

2005 6 1172.8631 1191.5319 1192.5314 1190.8567 1191.2380 1184.5290 

2006 7 1222.4088 1269.0237 1270.2957 1268.2112 1268.6389 1260.5112 

2007 8 1327.0771 1351.2171 1353.3176 1348.9823 1350.5562 1337.5920 

2008 9 1442.1529 1449.8665 1451.0315 1447.4499 1449.4336 1441.1711 

2009 10 1563.9172 1558.7055 1559.0465 1554.8412 1558.4475 1553.8716 

2010 11 1707.4594 1685.9968 1684.4426 1680.3683 1686.2154 1690.9122 

Table 8. Forecasting values with different cases for Japan (Mtonnes). 

Year t Original data β = 0.1 β = 0.5 β = 1 β* Dβ* 

2000 1 1327.1324 1335.7870 1337.9497 1340.2127 1340.2127 1328.2275 

2001 2 1324.4486 1345.3518 1348.5590 1352.5496 1352.5496 1368.1131 

2002 3 1322.9523 1342.5741 1346.1892 1350.6658 1350.6658 1363.8899 

2003 4 1376.2507 1339.5890 1343.5568 1348.4494 1348.4494 1359.6458 

2004 5 1380.7913 1336.4605 1340.7632 1346.0493 1346.0493 1355.3961 

2005 6 1397.7016 1333.2195 1337.8593 1343.5409 1343.5409 1351.1491 

2006 7 1379.2997 1329.8798 1334. 8695 1340.9617 1340.9617 1346.9085 

2007 8 1392.1297 1326.4468 1331.8050 1338.3305 1338.3305 1342.6762 

2008 9 1389.3573 1322.9214 1328.6703 1335.6560 1335.6560 1338.4531 

2009 10 1225.4810 1319.3021 1325.4661 1332.9418 1332.9418 1334.2398 

2010 11 1308.3958 1315.5861 1322.1915 1330.1890 1330.1891 1330.0362 
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Table 9. MAPE values with different case for top-5 countries (%). 

Country β = 0.1 β = 0.5 β = 1 β* Dβ* 

China 3.3011 3.2285 3.0601 3.0601 2.6211 

United States 2.0594 2.1104 2.0494 2.0282 2.0135 

Russian Federation 1.3183 1.4003 1.3959 1.1854 1.1894 

India 1.3249 1.4144 1.3537 1.3010 0.9462 

Japan 3.2263 3.1894 3.1415  3.1415 2.9949 

Table 10. MAE values with different case for top-5 countries (Mtonnes). 

Country β = 0.1 β = 0.5 β = 1 β* Dβ* 

China 1.6886 × 10
2
 1.6659 × 10

2
 1.6017 × 10

2
 1.6017 × 10

2
 1.4196 × 10

2
 

United States 1.3022 × 10
2
 1.3357 × 10

2
 1.2943 × 10

2
 1.2797 × 10

2
 1.2703 × 10

2
 

Russian Federation 2.1597 × 10 2.2967 × 10 2.2893 × 10 1.9402 × 10 1.9469 × 10 

India 1.6003 × 10 1.7051 × 10 1.6466 × 10 1.5728 × 10 1.1539 × 10 

Japan 4.3382 × 10 4.2723 × 10 4.1881 × 10 4.1881 × 10 3.9763 × 10 

Table 9 shows the MAPE values of different β values for these five countries. The MAE values for 

all situations for all the five countries are shown in Table 10. The MAPE and MAE values of Dβ* are 

the least in five situations for China, USA, India and Japan. The MAPE and MAE values of Dβ* are 

better than those of βs obtained arbitrarily, but worse a little than β* for Russia. Actually, they are very 

close to those of β* for Russia. Comparing the MAPE and MAE results of β* and Dβ* with those of 

the other three βs shown in Tables 9 and 10 it could be found: (1) the MAPE and MAE values of the 

first three βs are close to each other; (2) the MAPE and MAE values of β* increase to a certain extent 

for USA and India; (3) the MAPE and MAE values of β* are the same as those of β = 1 and better than 

those of β = 0.1 and β = 0.5 for China and Japan; (4) the MAPE and MAE values of β* are the best 

among the five cases for Russia; (5) the MAPE and MAE values of Dβ* are improved relatively 

remarkably for all five countries, especially in the case of India compared with those of βs obtained 

arbitrarily; (6) the MAPE and MAE values of Dβ* are the best among all five cases for all countries 

except Russia; (7) the MAPE and MAE values of Dβ* are better than those of βs obtained arbitrarily 

and close to those of β* for Russia. The results of β* for China and Japan are the same as those of  

β = 1 because the optimal β values found are 1. The results of β* show that adopting an optimization 

method to choose an optimal β value is better than the method of assigning β values arbitrarily. The 

results of Dβ* indicate that considering different individual models and periods is better than applying 

one β value to all separate models and periods. The empirical results suggest that QHS 

algorithm-based combination forecasting method enhances the MAPE and MAE to a certain degree for 

every country, especially for India. Namely, the proposed method outperforms all the other methods 

concerned. For India, the MAPE increases from over 1.3249% to 0.9462% and the MAE increases 

from over 16.003 Mtonnes to 11.539 Mtonnes. It means over 28% performance enhancement 

compared with the original method. It enhances over 14% in the case of China. For Russian it 

improves by over 10%. It increases relatively indistinctively only in the case of Japan and US, near 5% 

and 2%, respectively.  
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The RMSE values of all situations for five countries are shown in Table 11. The results of Dβ* are 

the best among all five situations for all countries, except Russia. The RMSE results for Russia 

presents an opposite situation compared with the status when considering the MAPE values viz. the 

results of β* and Dβ* are worse than those of β = 0.1, β = 0.5 and β = 1. The RMSE value of Dβ* is 

better than that of β* for Russia. The RMSE value for India of Dβ* is improved over 22.3% compared 

with the original method. It increases over 6.7% for China, 1.5% for USA and 1.7% for Japan. The 

RMSE values of β* for USA and India are enhanced too compared with those of β = 0.1,  

β = 0.5 and β = 1. China and Japan share the same RMSE value of β = 1 and β* for the reason 

mentioned last paragraph. And the values of β* are better than those of β = 0.1, β = 0.5. All these again 

show that adopting the optimization method to choose an optimal β value is better than the method of 

assigning β value arbitrarily. The method taking different individual models and periods into 

consideration is the best among all the methods. The conclusion is the same as the one drawn when 

discussing the MAPE index.  

Table 11. RMSE values with different case for top-5 countries (Mtonnes). 

Country β = 0.1 β = 0.5 β = 1 β* Dβ* 

China 1.8966 × 10
2
 1.8748 × 10

2
 1.8325 × 10

2
 1.8325 × 10

2
 1.7000 × 10

2
 

United States 1.6285 × 10
2
 1.6600 × 10

2
 1.6190 × 10

2
 1.5966 × 10

2
 1.5951 × 10

2
 

Russian Federation 2.9552 × 10 2.9619 × 10 2.9606 × 10 3.0144 × 10 3.0113 × 10 

India 2.0462 × 10 2.1386 × 10 2.0705 × 10 2.0218 × 10 1.5907 × 10 

Japan 5.0801 × 10 4.9519 × 10 4.8536 × 10 4.8536 × 10 4.7725 × 10 

According to the discussions above, the presented method shows the best MAPE, RMSE and MAE 

performance among the five situations for all countries, except Russia. For Russia the proposed 

method shows a better RMSE performance than the method of applying the same optimal β value for 

all individual models and forecasting periods. A better MAPE and MAE performance are obtained by 

the presented method compared with those of the original method. All in all the presented approach 

could provide a relatively better forecasting performance in comparison with the methods of choosing 

β values arbitrarily and assigning the same optimal β value to all individual models synthesizing the 

MAPE, RMSE and MAE indexes discussed above. The analysis based on MAPE, RMSE and MAE 

indicates that the proposed method has a good robustness to the choice of index for forecasting accuracy. 

3.4. Analysis of Future Projections  

In order to evaluate the out-of-sample forecasting performance of the proposed approach, the 

forecasting values calculated with the optimal β values obtained in Section 3.2 and the relative errors 

between the forecasting values and the actual values of the year 2011 are shown in Table 12. The 

forecasting performance is relatively nice for all the five countries, especially for China. 

The forecasting values of the year 2012–2015 are shown in Table 13. We could find that the trend 

of the CO2 emissions for China and India is increasing and it is fluctuating for USA, Russia and Japan 

based on the analysis of the forecasting values. These trends are consistent with the expectations. The 

situation is very critical since CO2 has so many detrimental impacts on our living environment. The 

technical improvements and energy policies of the government should be made to reduce the emissions. 
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Table 12. Forecasting values and relative errors of 2011 for top-5 countries.  

 China USA Russia India Japan 

Original data (Mtonnes) 8979.1411 6016.6127 1675.0355 1797.9879 1307.4005 

Forecasting data (Mtonnes) 8947.8374  6134.1258 1712.9565  1855.5183  1324.2965  

Relative error (%) 0.3486 1.9531 2.2639 3.1997 1.2923 

Table 13. Forecasting values of 2012–2015 for top-5 countries (Mtonnes). 

Country 2012 2013 2014 2015 

China 9268.5600  9821.0476  10391.8123  10981.5386  

USA 6102.2810  6068.9120  6034.0906  5997.7174  

Russia 1727.0771  1740.7605  1754.4431  1768.1233  

India 2039.1502  2291.2737  2641.2330  3182.6860  

Japan 1321.4904  1317.3657  1313.2513  1309.1472  

4. Conclusions  

As Hibon pointed out, no one forecasting model can outperform others in all circumstances [18]. 

Choosing a combination method could lead to less risk than choosing one single method. The DMSFE 

combination method was applied in this work to forecast CO2 emissions. The individual forecasting 

method was first selected to establish the combination model. Then, the QHS algorithm was 

introduced to search for the optimal discounting factor β values for each individual model and 

forecasting period. Finally, the combination forecasting results were obtained. In the DMSFE 

combination forecasting method, how to select the β value is a key problem since it varies between 0 

and 1 and influences the forecasting results directly. However, it is hard to choose the appropriate  

β values for decision-makers only by arbitrary attempts, and this manner often leads an unsatisfactory 

forecasting performance. Assigning the same β value for all separate models and forecasting period in 

all application cases is somewhat unreasonable since it affects the proportion of each individual model 

forecasting results in the combination model forecasting results. Applying different β values to 

different individual models and forecasting periods sounds more suitable. Thus, β was changed from 

one value to a matrix to express the influences of the individual models and forecasting periods. It is 

difficult to seek the optimal matrix by traditional mathematical methods since there are so many 

parameters to be optimized. The optimization algorithm provides a valid way to solve these problems 

through optimizing objective function (MAPE in this work) to find the optimal β values. A novel and 

effective intelligence optimization method called QHS algorithm was applied in this investigation to 

find the optimal β values for every individual forecasting model and forecasting period in the 

combination model. The empirical analysis applied to the World’s top-5 emitters shows that the  

QHS- based optimization DMSFE combination method performs much better than the original method 

with an arbitrarily chosen parameter β value. The contributions of this work are as follows: (1) The 

optimal discounting factor β can be determined by using an optimization technique; (2) Applying 

different β values to different individual models and forecasting periods is more reasonable than the 

manner where the same value is applied to all separate models; (3) The QHS-based combination 

forecasting model can increase forecasting accuracy in a certain degree. 
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Appendix 

Table A1. Actual and forecasted value of China’s CO2 emissions (Mtonnes). 

Year t Original data Linear Time series GM(1,1) Grey Verhulst 

2000 1 3659.3483 3341.8808 3805.3326 3659.3483 3659.3483 

2001 2 3736.9794 3834.0923 3986.7985 4030.3437 4041.8571 

2002 3 3969.8231 4326.3038 4127.3788 4380.2836 4450.4295 

2003 4 4613.9200 4818.5153 4392.4903 4760.6075 4884.0364 

2004 5 5357.1651 5310.7268 5075.6312 5173.9535 5341.0744 

2005 6 5931.9713 5802.9384 5844.9986 5623.1889 5819.3488 

2006 7 6519.5965 6295.1499 6428.7331 6111.4297 6316.0849 

2007 8 6979.4653 6787.3614 7041.1086 6642.0626 6827.9699 

2008 9 7184.8542 7279.5729 7535.3537 7218.7685 7351.2249 

2009 10 7546.6829 7771.7844 7769.8726 7845.5476 7881.7080 

2010 11 8332.5158 8263.9959 8179.2798 8526.7477 8415.0396 

2011 12 8979.1411 8756.2075 9015.3020  9267.0938 8946.7454 

2012 13  9248.4190 9133.1506  10071.7214 9472.4053 

2013 14  9740.6305 9704.6868  10946.2120 9987.7987 

2014 15  10232.8420 10311.9889  11896.6313 10489.0362 

2015 16  10725.0535 10957.2947  12929.5720 10972.6686 

Table A2. Actual and forecasted value of the United States’ CO2 emissions (Mtonnes). 

Year t Original data Linear Time series GM(1,1) Grey Verhulst 

2000 1 6377.0493 6419.3668 6185.1970 6377.0493 6377.0493 

2001 2 6248.3608 6400.0122 6143.7445 6415.6747 6356.7048 

2002 3 6296.2248 6380.6575 6102.5698 6393.5792 6334.5820 

2003 4 6343.4769 6361.3029 6061.6711 6371.5598 6310.5402 

2004 5 6472.4463 6341.9483 6021.0465 6349.6163 6284.4300 

2005 6 6493.7341 6322.5937 5980.6942 6327.7483 6256.0938 

2006 7 6411.9503 6303.2391 5940.6123 6305.9556 6225.3658 

2007 8 6523.7987 6283.8845 5900.7990 6284.2380 6192.0722 

2008 9 6332.6004 6264.5299 5861.2525 6262.5952 6156.0317 

2009 10 5904.0382 6245.1753 5821.9711 6241.0269 6117.0562 

2010 11 6144.8510 6225.8206 5782.9529 6219.5329 6074.9517 

2011 12 6016.6127 6206.4660 6053.4690  6198.1130 6029.5197 

2012 13  6187.1114 6180.4805  6176.7668 5980.5582 

2013 14  6167.7568 6146.2823  6155.4941 5927.8637 

2014 15  6148.4022 6112.2734  6134.2947 5871.2337 

2015 16  6129.0476 6078.4527  6113.1683 5810.4687 
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Table A3. Actual and forecasted value of the Russian Federation’s CO2 emissions (Mtonnes). 

Year t Original data Linear Time series GM(1,1) Grey Verhulst 

2000 1 1562.9791 1571.5251 1595.7145 1562.9791 1562.9791 

2001 2 1574.4929 1583.5498 1604.7234 1587.7206 1576.6415 

2002 3 1583.9895 1595.5745 1611.9879 1598.7991 1590.3213 

2003 4 1624.7682 1607.5993 1617.8458 1609.9548 1604.0169 

2004 5 1628.0350 1619.6240 1622.5694 1621.1884 1617.7264 

2005 6 1618.0046 1631.6487 1626.3785 1632.5003 1631.4482 

2006 7 1663.3323 1643.6735 1629.4500 1643.8912 1645.1804 

2007 8 1678.7276 1655.6982 1631.9267 1655.3616 1658.9213 

2008 9 1711.0866 1667.7230 1633.9240 1666.9120 1672.6692 

2009 10 1602.5212 1679.7477 1635.5344 1678.5430 1686.4222 

2010 11 1700.1992 1691.7724 1636.8331 1690.2551 1700.1786 

2011 12 1675.0355 1703.7972 1664.2550  1702.0490 1713.9367 

2012 13  1715.8219 1717.9585  1713.9252 1727.6946 

2013 14  1727.8466 1731.5470  1725.8842 1741.4505 

2014 15  1739.8714 1745.2431  1737.9267 1755.2028 

2015 16  1751.8961 1759.0474  1750.0532 1768.9495 

Table A4. Actual and forecasted value of India’s CO2 emissions (Mtonnes). 

Year t Original data Linear Time series GM(1,1) Grey Verhulst 

2000 1 952.7665 853.7771 941.3825 952.7665 952.7665 

2001 2 959.1636 928.4370 974.8739 911.6569 989.5973 

2002 3 1001.2000 1003.0970 998.0749 974.3971 1031.2846 

2003 4 1030.4714 1077.7569 1020.9715 1041.4550 1078.8060 

2004 5 1118.3646 1152.4168 1066.0052 1113.1279 1133.4199 

2005 6 1172.8631 1227.0768 1137.1655 1189.7333 1196.7737 

2006 7 1222.4088 1301.7367 1207.2558 1271.6107 1271.0674 

2007 8 1327.0771 1376.3967 1239.9065 1359.1229 1359.3059 

2008 9 1442.1529 1451.0566 1360.1818 1452.6576 1465.7047 

2009 10 1563.9172 1525.7165 1459.7331 1552.6295 1596.3681 

2010 11 1707.4594 1600.3765 1597.1158 1659.4813 1760.4798 

2011 12 1797.9879 1675.0364 1748.0260  1773.6868 1972.5260 

2012 13  1749.6964 1814.7520  1895.7518 2256.7673 

2013 14  1824.3563 1951.5173  2026.2173 2657.1569 

2014 15  1899.0162 2098.5896  2165.6615 3262.4076 

2015 16  1973.6762 2256.7456  2314.7022 4282.4294 
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Table A5. Actual and forecasted value of Japan’s CO2 emissions (Mtonnes). 

Year t Original data Linear Time series GM(1,1) Grey Verhulst 

2000 1 1327.1324 1359.4524 1342.8458 1327.1324 1327.1324 

2001 2 1324.4486 1357.0881 1347.3844 1369.6358 1323.8707 

2002 3 1322.9523 1354.7238 1349.7048 1365.1630 1320.4393 

2003 4 1376.2507 1352.3595 1350.8911 1360.7048 1316.8304 

2004 5 1380.7913 1349.9952 1351.4976 1356.2611 1313.0358 

2005 6 1397.7016 1347.6309 1351.8077 1351.8320 1309.0473 

2006 7 1379.2997 1345.2667 1351.9662 1347.4173 1304.8563 

2007 8 1392.1297 1342.9024 1352.0473 1343.0170 1300.4539 

2008 9 1389.3573 1340.5381 1352.0887 1338.6311 1295.8312 

2009 10 1225.4810 1338.1738 1352.1099 1334.2595 1290.9789 

2010 11 1308.3958 1335.8095 1352.1207 1329.9022 1285.8877 

2011 12 1307.4005 1333.4452 1294.8801  1325.5592 1280.5479 

2012 13  1331.0809 1337.9647  1321.2303 1274.9498 

2013 14  1328.7166 1338.8713  1316.9155 1269.0835 

2014 15  1326.3523 1339.7786  1312.6149 1262.9392 

2015 16  1323.9880 1340.6865  1308.3283 1256.5068 
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