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Abstract: The PEM fuel cell model presented in this paper is based on modelling species 

transport and coupling electrochemical reactions to species transport in an innovative way. 

Species transport is modelled by obtaining a 2D analytic solution for species concentration 

distribution in the plane perpendicular to the gas-flow and coupling consecutive 2D 

solutions by means of a 1D numerical gas-flow model. The 2D solution is devised on a 

jigsaw puzzle of multiple coupled domains which enables the modelling of parallel straight 

channel fuel cells with realistic geometries. Electrochemical and other nonlinear 

phenomena are coupled to the species transport by a routine that uses derivative 

approximation with prediction-iteration. A hybrid 3D analytic-numerical fuel cell model of 

a laboratory test fuel cell is presented and evaluated against a professional 3D 

computational fluid dynamic (CFD) simulation tool. This comparative evaluation shows 

very good agreement between results of the presented model and those of the CFD 

simulation. Furthermore, high accuracy results are achieved at computational times short 

enough to be suitable for system level simulations. This computational efficiency is owed 

to the semi-analytic nature of its species transport modelling and to the efficient 

computational coupling of electrochemical kinetics and species transport. 

Keywords: fuel cells; species transport; electrochemical kinetics; analytic modelling; 

numerical modelling 
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Nomenclature: 

Symbols ܣ Channel cross-sectional area ࣛ Velocity potential in channel domain ८ concentration in channel domain ܽ water activity arg Argument of a nonlinear function ܤ Butler-Volmer function ℬ Velocity potential in GDL#1 domain ९ concentration in GDL#1 domain ܿ, ܿ௪ Water vapour concentration ࣝ Velocity potential in GDL#2 domain ℂ concentration in GDL#2 domain ܿ∙ுௌைయ Membrane sulphonic group concentration ܿା Concentration of dissociated protons in membrane ܿ଴ Total molar concentration of gas ܿ௣ catalyst surface concentration of reaction product ܿ௥ catalyst surface concentration of reactant ܿ௥௘௙ reference concentration ܿ௦௔௧ concentration of saturated water vapour ܦ Gaseous binary diffusion constant ܦା diffusion constant of protons in membrane ܦ௪ diffusion constant of water in membrane ुା, ݀ା coefficient of proportionality of proton diffusivity to water content ु௪, ݀௪ coefficient of proportionality of water diffusivity to water content ܨ Faraday constant ௅݂ Linearised nonlinear function ே݂௅ Nonlinear function ॳ Either ९ or ℂ ℎ Sum of channel height and GDL thickness ℎ1 GDL thickness ℎ2 Channel height ݅ Electric/proton current density ݅௘௫ Cathode catalyst effective exchange current density ݆, ݆௪ Molar flux of water ݆ା Molar flux of protons ܮ Length of representative unit ݈ Depth of slice ݉ Index of modes along ݕ coordinate ݊ Coordinate normal to boundary plane/index of modes along ݔ coordinate ሶ݊  Molar flux 
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݊ௗ௥௚ Electroosmotic drag coefficient ݌ Pressure ܴ Gas constant/membrane ohmic resistanceݏ Source or sink term for species concentration ݐ time ܶ Temperature ܷ Velocity potential in ݕݔ plane ࢛ Velocity vector (3D) ܸ Electric potential ௢ܸ௣ Operational voltage 

Δ Ωܸ௠ Membrane overpotential ݒ Velocity ݒ෤ Average velocity ݓ Sum of 1ݓ and 1ݓ 2ݓ Width of GDL#1 domain 2ݓ Width of GDL#2 domain ݔ Coordinate perpendicular to membrane ݕ Coordinate perpendicular to channel gas-flow and parallel to membrane ݖ Coordinate parallel to direction of channel gas-flow  ℤ concentration defined in (A2) 

Greek Letters ߙ Cathode catalyst electron transfer coefficient/any of ܾ݉ݐ, ,ݐ݂݈ ,ℎ݃ݎ  Volume fraction of non-solid space in GDL ߢ Membrane thickness ߴ plane (2D) ݕݔ Velocity vector in ࢼ ݌݋ݐ

Λ Membrane water content ߣ௠,௡ Eigen value of ߰௠,௡ eigen function ߦ Integration constant 

Π Predictor value ߪ Source or sink term for ܷ velocity potential Υ Dimensionless shape of velocity profile 

Φ,Φ஼்ு Cathode Galvani potential 

Φ଴ Cathode open circuit Galvani potential at reference conditions 

Φ⦵ Cathode open circuit Galvani potential at standard conditions ߮௠, ߮௡ Eigen function for flow from boundary ߰௠,௡ Eigen function for channel flow terms 

Ω Ohmic function ߱ Geometrical factor 

Superscripts or Subscripts 1 GDL#1 domain/argument 1 
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2 GDL#2 domain/argument 2 ܦܰܣ Anode ܾ݉ݐ Bottom boundary ܥ Channel domain ܿ݊ݒ Either ݇݊ݏ or ܪܶܥ ܿݎݏ Cathode ݀(ߙ) diffusion from boundary ܮܦܩ ߙ Gas diffusion layer ܪଶ Hydrogen ݈݂ݐ Left boundary ܯ Membrane domain ܰ Number of modes taken into account ܱଶ Oxygen ݎ݌ Previous (upstream) ݃ݎℎ Right boundary ݇݊ݏ Sink ܿݎݏ Source ݌݋ݐ Top boundary ݓ Water 

 

1. Introduction 

Proton exchange membrane fuel cells (PEMFC) are emerging as an advantageous power source in 

the alternative power sources segment due to their high power density and zero tank-to-wheel 

emissions. However, as analysed in [1], commercialization of fuel cell technology is lagging behind 

owing to several disadvantageous characteristics of the fuel cell, summarised by [2] as: cost and 

complexity, immaturity, and its role as replacement technology. These facts call for increased 

application of advanced mathematical modelling and simulation tools to efficiently address and tackle 

the shortcomings of today’s fuel cell technology [2]. PEMFC are characterized by fully interrelated 

transports of mass, charge and heat, which are governed by convection, diffusion, phase transition and 

electrochemical reactions. Many fuel cell models can be found in the literature or are available as 

packages in commercial software as systematically analysed in [3–5]. Among these models the most 

comprehensive are the ones based on 3D computational fluid dynamic (CFD) modelling with extended 

capabilities of solving electrochemical reactions (e.g., [6–9]). CFD-based models indeed provide 

insight into detailed phenomena along with high level of predictability and high accuracy; however, 

they are also characterized by very long computational times inherent to their comprehensive 

modelling framework. Long computational times are a major disadvantage whenever a large number 

of simulation results are required to be obtained in reasonable amount of time which is typical for tasks 

such as: (a) rapid testing of different design options [10,11] including the ultra large scale [9];  

(b) modelling of larger systems powered by fuel cells, e.g., the entire fuel cell powered vehicle [12,13]; 
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(c) modelling transient operation of the fuel cell powered systems [14,15] and (d) development of 

control functionalities [15,16]. Among these, fast computation is of most crucial importance in models 

for which real time capability is mandatory such as in [12,14,16] or any hardware-in-the-loop model 

application. Models featuring shorter computational times can be categorised as: 

- Fully empirical models such as equivalent circuits, neural-network models, support and 

relevance vector machines which are all highly accurate and require very short computational 

times. However, these, unlike the CFD models, lack any predictability since they are 

characteristic of a specific (i.e., non general) system part and are thus useful in simulations  

only as computer model representation of an existing or a non-modifiable component. 

Examples found in references: [17–20]. 

- 1D models that are usually mechanistic and 0D models that are often fully analytic. These 

require short computational times which, however, come at the expense of lower accuracy. 

Examples found in references: [21–27]. 

- Reduced dimensionality models which are predictable mechanistic models that feature reduced 

computational load yet retain higher accuracy of current density predictions. These are 

typically 2D models (e.g., [28], the 2D model in [29]) modelling straight channel fuel cell 

configurations (such as depicted in Figure 1) solving governing equations in the plane that is 

parallel to the gas flow and perpendicular to the membrane (e.g., green plane in Figure 1). 

Further simplification of 2D models leads to the so called 1D + 1D (e.g., [30]) models where 

mathematical treatment of the dimension that runs along direction of gas flow addresses only 

the most dominant physical phenomena (e.g., mass transport via bulk gas flow in channel). 

Applying these 2D models to a fuel cell geometry such as presented in Figure 1 leads to certain 

systematic discrepancies since the area through which mass is exchanged between the gas 

diffusion layer (GDL) and the channel is considerably smaller than the area where mass is 

exchanged between the membrane and the GDL. To compensate for this discrepancy some 

models employ additional correction parameters, obtained through fitting results of full 3D 

CFD models or experimental data, yielding pseudo 3D models (e.g., [31,32] and Sherwood 

number adjusted 2D model in [29]). An alternative to this pseudo 3D modelling is the so called 

2D + 1D approach (as found in [29]) where the physical phenomena are fully addressed in the 

plane perpendicular to the gas flow and the reduced treatment of the 1D + 1D approach is used 

in the direction of gas flow. 

These pseudo 3D and 2D + 1D models aim to take into account all three dimensions whilst being 

considerably faster than 3D CFD simulations. However with the exception of [31], they are still much 

slower than 1D models due to their inherent numerical nature. The model found in [31] features 

computational times comparable to 1D models owing to its analytic nature. However the approximate 

analytic solution for direct liquid fuel cells in [31] is only valid when the velocity along channels can 

be approximated as constant. 

An article by Tavčar and Katrašnik [33] proposes a hybrid 3D analytic numerical approach to modelling 

species transport (HAN-ST) in a PEM fuel cell as a way to achieve full 3D resolution whilst featuring short 

computational times. The principles of HAN-ST modelling in [32] are presented on a theoretical straight 

channel co-flow fuel cell of very simple geometry and its core principle can be summarized as: 
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Figure 1. Schematic breakdown of fuel cell geometry onto elementary units for HAN-FC 

computation. The blue and the spotted translucent regions represent the membrane and 

GDL respectively, the green surfaces represent the plane of symmetry across the middle of 

a rib and the yellow surfaces the plane of symmetry between two ribs. (a) A five-rib 

parallel channel co-flow fuel cell geometry. The two symmetry planes that apply to all ribs 

are shown on one half of rib defining the representative unit; (b) Representative unit with 

indicated slice (red); (c) Slice as a sliced-out section of the representative unit that has 

sufficiently small depth to be treated as a 2D object and (d) Slice domains from top to 

bottom: cathode channel domain, cathode GDL domains (left cathode GDL#1, right 

cathode GDL#2), MEA domain, anode GDL domains (left anode GDL#1, right anode 

GDL#2), anode channel domain. 

 

A quasi 3D model constructed by taking a 1D numerical model for the gas-flow along the channel 

and superimposing onto it a 2D analytic solution for the plane perpendicular to the gas-flow. This 

proves to be computationally efficient due to the additional computational load introduced by the 

calculation of 2D analytic solution being of the same order of magnitude as the computational load of 

the base 1D calculation. It was shown in [33] that for the simple theoretical geometry of fuel cell (FC), 

HAN-ST enables resolving a 3D species transport with very high accuracy while preserving 

computational speed characteristic for 1D models owing to its partially analytic nature. Due to its high 

accuracy and computational efficiency the HAN-ST model offers a promising basis for an efficient 

standalone PEM fuel cell model suitable for system level simulations. HAN-ST as presented in  

article [33] is a species transport sub-model and needs to be coupled to an electrochemistry sub-model 

in order to yield a full standalone fuel cell model. Additionally the simple theoretical geometry of 

HAN-ST from [33] enables devising the 2D analytic solutions on a single domain which is practically 

impossible in cases of more complex realistic geometries. 

As a full realistic standalone PEMFC model derived from the HAN-ST of [33], this paper presents 

and describes an innovative isothermal standalone hybrid 3D analytic numerical fuel cell model 

(HAN-FC) featuring: 

1. The HAN-ST principle extended to more general realistic straight parallel channel FC 

geometries by devising the 2D analytic solution on a jigsaw puzzle of multiple domains and 

2. An electrochemistry sub-model efficiently coupled to this extended HAN-ST sub-model. 
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Thus, in terms of categorization introduced above, this is a 2D + 1D model resembling that found  

in [28], with the difference that it features analytically (instead of numerically) resolved species 

concentration in the 2D cross-sectional plane in both GDL and channel, making it computationally 

much faster. The nature of HAN-FC’s analytic solution also fundamentally differs from the one in [31] 

where the 2D analytic solution is obtained for the plane that is parallel to the gas flow and 

perpendicular to the membrane. Differences of HAN-FC from other similar models found in literature 

are further discussed in Section 3. 

The model assumptions and geometry of HAN-FC are outlined in Section 2 and the underlying 

governing equations of the species transport and electrochemical reactions are given in Section 3.  

For validation the simulation results of the HAN-FC is benchmarked with the results obtained by a 

professional 3D CFD tool: the simulation setup of HAN-FC and CFD is presented in Section 4, and the 

comparative results and their analysis is provided in Section 5. In all instances the accuracy of  

HAN-FC is to be understood as the accuracy relative to the CFD results, which is typically done for 

the 2D and pseudo 3D models [28,29,31,33]. Section 6 summarizes the main conclusions. Detailed 

mathematical derivation of the model is given in Appendix. 

2. Model Assumptions and Geometry 

The modelled fuel cell is a straight, co-flow, hydrogen-oxygen type PEM fuel cell (FC) with its 

geometry taken from a laboratory test fuel cell. The fuel cell topology and geometry are illustrated in 

Figure 1 where the following sub-elements can be distinguished: cathode channels, cathode-side gas 

diffusion layer (GDL), thin catalyst layer for oxygen reduction, hydrated proton exchange membrane, 

thin catalyst layer for hydrogen oxidation, anode-side GDL, anode channels. Due to the symmetric 

geometry of the fuel cell a half of one rib, as depicted in Figure 1, is taken as the representative unit of 

the fuel cell. The derivation of HAN-FC is based on three sets of assumptions: (1) regarding gaseous 

species transport, (2) regarding species transport in membrane and (3) regarding electrochemical 

reactions. The gaseous species transport assumptions are summarised as follows: 

I. A steady state solution of the problem is sought. 

II. The problem is isothermal meaning a constant uniform temperature is assumed for the 

whole fuel cell and no energy equation is calculated. 

III. The gases are treated as ideal. 

IV. There is no liquid water in GDLs and Channels. 

V. Pressure variations are small enough that constant pressure is assumed in gas equations and  

the gas flow is assumed incompressible over the whole fuel cell. This is justifiable due to 

very small pressure variations in the fuel cell owing to the short straight channel geometry. 

VI. The diffusion system is always bi-componential (either oxygen and water vapour or 

hydrogen and water vapour) with a constant binary diffusion coefficient. 

VII. The effective (macroscopic) diffusion constant used in GDL is the diffusion constant for 

empty space (which applies in the channel) divided by the tortuosity of GDL. 

VIII. Diffusion in gas in the direction of channel gas-flow is neglected due to the large aspect 

ratio of the relevant fuel cell dimensions. 
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IX. In GDL there is no convective transport in the direction of channel gas flow. The very small 

pressure drop from inlet to outlet produces only negligible convective flow in the GDL in 

the direction along channel length. 

X. The flow in channels is laminar. 

HAN-FC extends the assumptions regarding membrane species transport made by HAN-ST 

amounting to the following: 

XI. There is no gas crossover in the membrane. Thus water is the only species transported 

through the membrane besides protons. 

XII. The mobility of both water molecules and protons (in form of hydronium ions) at a given 

point in membrane are linearly proportional to the membrane water content at that point. 

XIII. Species transport within the membrane only occurs in the direction perpendicular to the 

membrane sheet. 

XIV. The average number of water molecules dragged by the electro-osmotic pull of each proton 

is an independent constant. 

XV. The concentration of mobile protons is constant within the whole membrane. This is due to 

the humidification of membrane being always sufficiently high that full or close to full 

proton dissociation can be assumed. 

XVI. The membrane water content at the membrane/gas boundary is in equilibrium with water 

vapour concentration in the gas. 

The assumptions regarding electrochemical reactions inherent to HAN-FC are: 

XVII. Only the electrochemical kinetics of oxygen reduction on the cathode catalyst is considered. 

The electrochemical kinetics of hydrogen oxidation on the anode catalyst is much faster and 

its contribution to the over-potential is several orders of magnitude smaller and thus neglected. 

XVIII. The catalyst layer is infinitely thin and characterised by an effective exchange current 

density as current per unit area [A/m2]. 

XIX. The electrical resistance of the GDL is neglected and uniform constant electrical potential is 

assumed within the whole GDL. 

All the above assumptions follow the assumptions made by other models of comparable modelling 

depth presented in the introduction. 

3. Governing Equations 

The modelled fuel cell is made of number of equal parallel symmetrical ribs where a half of one 

such rib is indicated between the green and the yellow plane in Figure 1a. The symmetry condition 

between ribs is defined in the GDL and membrane (yellow surfaces in Figure 1) requiring that there be 

no species flux across the symmetry plane. In the case of the two outermost ribs the wall boundary of 

the fuel cell also allows no species flux across that boundary. Thus, taking into account that zero 

velocity in the direction of channel gas flow is assumed in GDL (assumption IX), this wall boundary 

condition is the same as the symmetry condition allowing treating all ribs as identical. Since the two 

halves of one rib are mirror images and since all ribs are identical the so defined half of one rib is a 



Energies 2013, 6 5434 

 

 

representative unit of the fuel cell. This representative unit is sliced along the direction of gas flow into 

a number of thin slices as depicted in Figures 1b,c. Within each slice only variation of variables in the 

plane perpendicular to channel gas flow is addressed effectively making a slice a 2D object. The slice 

has three parts: the cathode gas part, the membrane electrode assembly (MEA) part and the anode gas 

part. The three parts are, as discernible form Figure 1d, further divided onto seven computational 

domains: each gas part is divided into one channel domain and two GDL domains (GDL#1, GDL#2 as 

depicted in Figure 2) whilst the whole MEA part is contained within its MEA domain. The so defined 

computational domains, depicted in Figure 2 as shallow rectangular cuboids, share the 2D nature of  

the slice and are thus simple rectangles. An analytic 2D solution for the distribution of species 

concentration in a slice is sought as a jigsaw puzzle of seven individual 2D solutions for each domain 

that are appropriately coupled to one another. 

Figure 2. Detailed schematic of gas part comprising three computational domains. The top 

cuboid is the channel domain, bottom left cuboid GDL#1 domain and bottom right cuboid 

GDL#2 domain. The “Source” arrow represents the convective inflow of species from the 

channel domain of the previous upstream slice and the “Sink” arrow represents the outflow 

into the channel domain of the next downstream slice. Blue arrows represent the molar 

fluxes of water traversing the borders between domains that serve as boundary conditions 

for the individual solutions in domains. The ribbed purple surface represents the catalyst 

layer, i.e., the MEA/GDL interface. At the grey surfaces, i.e., the walls, and at the green 

and yellow surfaces, i.e., the two symmetry planes, the boundary condition requires zero 

flux through the boundary. 

 

The analytic solutions for the consecutive slices are, due to assumptions VIII, IX and XIII, coupled 

only via the two bulk gas flows in channels. The cross-sectional velocity profile of the gas flow (i.e., 

profile in the 2D plane of a slice) is assumed to take on the dome shape of laminar flow (graphically 
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shown in Section 5.2). This is similar to the 1D laminar velocity profile used in [34] and [28] however, 

unlike [28] where this profile does not change along the channel, in the HAN-FC model the profile 

scales with average cross-sectional gas velocity that varies along the channel. This variation of average 

gas velocity along the channel is calculated stepwise from slice to slice, i.e., as a numerical 1D pipe 

flow model. The net convective transport into and out of the 2D plane of a slice is then obtained  

by multiplying the 2D velocity profile by the 2D species concentration distribution profile. This 2D 

profile of convective transport thus differs from the uniform plug flow used in [29]. HAN-FC 

essentially treats the bulk gas flow as a 1D flow with a superimposed simple 2D velocity profile of 

laminar flow and a 2D species concentration profile which enables coupling of the 2D solutions of 

consecutive slices. The two 1D gas flows are calculated numerically meaning that the change in mean 

gas velocity is calculated stepwise from slice to slice. 

Obtaining 2D analytical solutions for slices that are coupled to one another via the perpendicular 

numerically resolved 1D gas flow gives this approach the name “hybrid 3D analytic-numerical”. The 

HAN-FC model thus gives full 3D information on species concentration distribution, differing from 

the approach of [31] where the model is essentially 2D and the effects in the third dimension are 

accounted for by means of calibration parameters. 

The division of the gas part onto three computational domains is inherent to HAN-FC and differs 

from HAN-ST of [33] where the very simple geometry allows each gas part to be contained within a 

single computational domain. Sections 3.1 and 3.2 describe in detail the equations governing 

production, consumption and transport of species in the different types of calculation domains, 

Subsection 3.3 describes the coupling conditions between domains of one slice and Subsection 3.4 

describes the procedure for obtaining a solution for the whole fuel cell by finding consecutive solutions 

for all the slices. 

3.1. Gas Part 

In the gas part only species transport takes place. The species transport in an ideal gas is modelled 

by Stefan–Maxwell diffusion equations which, for the case of binary gas mixtures (i.e., gas mixtures of 

two components) as assumed in VI, read [35]: ࡶ௪ = ࢛ ܿ௪ − સܿ௪ܦ ௥ࡶ(1) = ࢛ ܿ௥ − સܿ௥ (2)ܦ

where vectors ࡶ௪ and ࡶ௥ are the molar fluxes of the two components: the water vapour and the reactant 

(either oxygen for cathode gas part or hydrogen for anode gas part) respectively, ܿ௪ and ܿ௥ are the 

corresponding molar concentrations, ࢛ is the net molar velocity of the gas, ܦ is the binary diffusion 

coefficient for the binary solution of the two components and સ = ൫߲௫, ߲௬, ௭߲൯୘
 is the 3D nabla 

operator. Due to assumptions II and V, the temperature and pressure are constant and thus the total 
molar concentration ܿ଴ = ܿ௪ + ܿ௥ = ௣ோ்  is also constant which means that ܿ௪  and ܿ௥  are 

complementary and the distribution of both concentrations can be obtained by solving only for ܿ௪ and 

obtaining the other by: ܿ௥ = ܿ଴ − ܿ௪ (3)
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Taking the latter into account and adding together Equations (1) and (2) the expression for net molar 

velocity is obtained: ࢛ = ௪ࡶ + ௥ܿ଴ࡶ  (4)

All the subsequent derivation of governing equations for species transport in gas will be aimed at 

finding the distribution of only water vapour concentrations by means of solving Equations (1) and (4) 

since the reactant concentration is directly given by Equation (3) and thus the subscript ݓ  shall  

be omitted. 

The requirement for a steady state solution is expressed as: ߲߲ܿݐ = −સ ⋅ ࡶ = સଶܿܦ − સ ⋅ ࢛) ܿ) = 0 (5)

where ܿ is the water vapour molar concentration and ࡶ the corresponding molar flux. The assumption 

of incompressible flow (V) requires that divergence of velocity be zero: div ࢛ = સ ⋅ ࢛ = ߲௫ݑ௫ + ߲௬ݑ௬ + ௭߲ݑ௭ = 0 (6)

At this point it is worth introducing a distinction that splits the general 3D notation into a 2D + 1D 

notation reflecting the different treatment of physical phenomena in the dimension along the channel 

gas-flow and in the dimensions perpendicular to the channel gas-flow. This distinction will be used in 

deriving the “2D + 1D type” equations in the following two subsections. Placing the gas part into the 

coordinate system defined in Figure 2 a 2D nabla operator∇, a 2D Laplace operator ∇ଶ, a 2D velocity ࢼ and a velocity component along the direction of channel gas flow ݒ are defined in the cross-sectional 

plane as:  ∇= ቆ߲௫߲௬ቇ , ∇ଶ= ߲௫ଶ + ߲௬ଶ, ࢼ = ቆݑ௫ݑ௬ቇ , ݒ = ௭ (7)ݑ

(the 3D nabla સ is not to be confused with its 2D version∇). The condition in Equation (6) can be thus 

rewritten as: ߲௫ݑ௫ + ߲௬ݑ௬ + ௭߲ݑ௭ = 0 ⇒ ࢼ∇ = − ௭߲ݒ  (8)

Rewriting Equation (5) using the 2D + 1D notation and taking into account the assumption of no 

diffusive transport along the ݖ coordinate (VIII), leading to neglecting the term ܦ డమ௖డ௭మ, reads: ߲߲ܿݐ = ଶܿ∇ܦ − ቆ∇ ⋅ (ܿ ࢼ) + ݒ)߲ ݖ߲(ܿ ቇ = ଶܿ∇ܦ − ∇ ⋅ ࢼ) ܿ)ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥଶ஽ − ᇣᇤᇥଵ஽ݖ߲(ܿ ݒ)߲ = 0 (9)

Equation (9) is solved for each computational domain. In favour of finding an analytic solution for 

species transport in the ݕݔ plane within a computational domain the term ∇ ⋅  in equation (9) is (ܿ ࢼ)

approximated as:  ∇ ⋅ ࢼ) ܿ) ≅ ܿ̃ ∇ ⋅ (10) ࢼ

where ܿ̃ is the average concentration in the relevant computational domain. ࢼ, being a 2D vector field, 

can be represented as a sum of gradient of a scalar field ܷ(ݔ, ,ݔ)ܣ and “2D curl” of a scalar field (ݕ   :(ݕ
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ࢼ = ቆ߲௫ܷ߲௬ܷቇ + ൬ ߲௬ܣ−߲௫ܣ൰ = ∇ܷ + ∇ × (11) ܣ

where the “2D curl” is defined as ∇ ×= ቀ డ೤ିడೣቁ. Since divergence of curl is zero (i.e., ∇ ⋅ (∇ × (ܣ = 0), 

Equation (9), together with approximation (10) reads: ߲߲ܿݐ = ∇ଶ(ܦ ܿ − ܿ̃ ܷ)ᇣᇧᇧᇧᇤᇧᇧᇧᇥଶୈ − ௭߲(ݒ ܿ)ᇣᇧᇤᇧᇥଵ஽ = 0 (12)

where the fact that ܦ and ܿ̃ are constants in the relevant channel domain is taken into account. In the 

following manipulations of the species transport equation for the three calculation domains that 

constitute a gas part in a slice the following subscript notation is used to distinguish quantities in 

different calculation domains: subscript ܿ  (as in e.g., ܿ௖ ௖ࢼ , , ௖ܷ ) pertains to the channel domain, 

subscript 1 pertains to the GDL#1 domain and subscript 2 to the GDL#2 domain. 

3.1.1. GDL Domains 

Assumption IX infers that the velocity of gas is in GDL has zero component along ݖ coordinate, 

i.e., ݒ = 0. Thus, Equation (12) in GDL simplifies to: ߲ܿ(ݔ, ݐ߲(ݕ = ∇ଶ൫ீܦ஽௅ ,ݔ)ܿ (ݕ − ܿ̃ ,ݔ)ܷ ൯(ݕ = 0 (13)

where ܮܦܩܦ is the effective binary diffusion coefficient in GDL. Furthermore, gas-flow in GDL is 

governed by Darcy’s law: ࢼ = − ߤ݇ ݌∇ = ∇ܷ (14)

where ݇ is the permeability of GDL and ߤ  viscosity of the gas. Since Equation (14) is a form of 

Equation (11) with ܣ = 0 and ܷ = − ௞ఓ ݌  the gas flow in GDL is fully defined by scalar field ܷ ,  

in other words: gas-flow in GDL is potential. The definition region of Equation (13) is a “1ݓ by ℎ1” 

rectangle for GDL#1 domain and a “2ݓ by ℎ1” rectangle for GDL#2 domain as discernible from 

Figure 2. For devising analytic solutions in the GDL domains also boundary conditions at the four 

boundaries must be defined for each GDL domain. 

The requirement that there is no total gas-flow through walls and across the symmetry planes yields 

the boundary conditions of zero velocity component perpendicular to these boundaries: ߲ܷଶ(ݔ, ݔ߲(ݕ ቤ௫ୀ௛ଵ = ߲ܷଶ(ݔ, ݕ߲(ݕ ቤ௬ୀ௪ = ߲ ଵܷ(ݔ, ݕ߲(ݕ ቤ௬ୀ଴ = 0 (15)

where ݔ = ℎ1 ݕ , = ݓ  and ݕ = 0  denote the positions at: wall on top of GDL#1 domain, the  

symmetry plane on the left side of GDL#1 domain and the symmetry plane on the right side of GDL#2 

domain respectively. Since there can be no species flux through these boundaries either there has  

to be, in addition to zero velocity component, also zero concentration gradient perpendicular to  

these boundaries: ߲ܿଶ(ݔ, ݔ߲(ݕ ቤ௫ୀ௛ଵ = ߲ܿଶ(ݔ, ݕ߲(ݕ ቤ௬ୀ௪ = ߲ܿଵ(ݔ, ݕ߲(ݕ ቤ௬ୀ଴ = 0 (16)
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The molar flux of water vapour from MEA into GDL, schematically represented with the two 

narrower vertical blue arrows in Figure 2, defines two boundary conditions: 

ߢ ቌீܦ஽௅  ߲ܿଵ(ݔ, ݔ߲(ݕ ቤ௫ୀ଴ − ܿ̃ଵࢼଵ(ݔ = 0, ቍ(ݕ = ߢ ߲൫ீܦ஽௅ܿଵ(ݔ, (ݕ − ܿ̃ଵ ଵܷ(ݔ, ݔ൯߲(ݕ ቤ௫ୀ଴ = ݆ெ→ଵ(ݕ) (17)

,ݔ)஽௅ܿଶீܦ൫߲ ߢ (ݕ − ܿ̃ଶܷଶ(ݔ, ݔ൯߲(ݕ ቤ௫ୀ଴ = ݆ெ→ଶ(ݕ) (18)

where ߢ is volume fraction of the gaseous phase in the GDL, ݔ = 0 denotes the position at GDL/MEA 

interface and ݆ெ→ଵ  and ݆ெ→ଶ  are the molar fluxes of water exiting MEA and entering GDL#1 and 

GDL#2 domains respectively. 

According to Equation (4) the molar fluxes of water exchanged between MEA and GDL and the 

consumption of reactant at the MEA/GDL interface define the boundary condition for net molar gas 

flow at this interface: ܿ଴ߢ ߲ ଵܷ(ݔ, ݔ߲(ݕ ቤ௫ୀ଴ = ݆ெ→ଵ(ݕ) − ݆௥ଵ(ݕ) (19)

ܿ଴ߢ ߲ܷଶ(ݔ, ݔ߲(ݕ ቤ௫ୀ଴ = ݆ெ→ଶ(ݕ) − ݆௥ଶ(ݕ) (20)

where ݆௥ଵ and ݆௥ଶ are the molar fluxes of reactant consumed at the interface between MEA and GDL#1 

and GDL#2 domains respectively. 

Species molar flux between GDL#1 and GDL#2, schematically represented with the blue horizontal 

arrow in Figure 2, defines the boundary condition at the border plane between the two GDL domains: ߢ ߲൫ீܦ஽௅ܿଵ(ݔ, (ݕ − ܿ̃ଵ ଵܷ(ݔ, ݕ൯߲(ݕ ቤ௬ୀ௪ଵ = ݆ଶ→ଵ(ݔ) = ߢ ߲൫ீܦ஽௅ܿଶ(ݔ, (ݕ − ܿ̃ଶܷଶ(ݔ, ݔ൯߲(ݕ ቤ௬ୀ௪ଵ (21)

and similarly, the continuity condition for the net molar gas flow:  ߲ ଵܷ(ݔ, ݕ߲(ݕ ቤ௬ୀ௪ଵ = (ݔ)ଶ→ଵߚ = ߲ܷଶ(ݔ, ݔ߲(ݕ ቤ௬ୀ௪ଵ (22)

where ݕ =  denotes the position at the border between the two GDL domains, ݆ଶ→ଵ is the molar flux 1ݓ

of water vapour exiting GDL#2 and entering GDL#1 and ߚଶ→ଵ  the gas velocity component 

perpendicular to the boundary between GDL#1 and GDL#2 evaluated at that boundary. GDL#2 

exchanges species also with the channel domain, defining a boundary condition: ߢ ߲൫ீܦ஽௅ܿଵ(ݔ, (ݕ − ܿ̃ଵ ଵܷ(ݔ, ݔ൯߲(ݕ ቤ௫ୀ௛ଵ = ݆ଵ→஼(ݕ) (23)

where ݔ = ℎ1 denotes the position at the border between the GDL#1 and the channel domain and ݆1→ܥ 

is the molar flux of water exiting GDL#1 domain and entering the channel domain at that 

channel/GDL boundary. The boundary condition for the velocity potential ܷ  at that channel/GDL 

interface is obtained by assuming uniform pressure in the channel region and thus defining the value of ܷ at that boundary according to Equation (14): 
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ଵܷ(ݔ = ℎ1, (ݕ = − ߤ݇ ௖ (24)݌

where ݌௖ =  .଴ is the pressure in the adjacent channel domain݌

The 2D analytic general solution of species concentration distribution ܿ and the velocity potential 

distribution ܷ for every GDL domain is obtained as a linear combination of eigen functions of the ܦ∇ଶ 

operator. As defined in Subsection A.1.2 of Appendix A, there are two families of these eigen functions: 

- the first, defined by Equation (A31), deals with species transport induced by convective transport 

along the ݖ coordinate, and thus does not apply to GDL domains; 

- the second, defined by Equation (A41), deals with species transport induced by the boundary 

conditions at the boundaries of the 2D computational domains and applies also to GDL domains. 

The general solution for each GDL domain (represented by Equations (A56) to (A60) in  

Appendix A) is obtained by treating the molar fluxes at its boundaries as input parameters. The full 

derivation is given in Subsection A.1 of Appendix A. 

3.1.2. Channel Domain 

Governing equations of gas flow in a channel are of Navier -Stokes type and thus generally the flow 

in channels is not potential i.e., the scalar field ܣ in Equation (11) is not zero. However, since in any 

case the non-potential part of the 2D velocity profile ࢼ vanishes in Equation (12) the subsequent 

derivation of species transport equations in the channel domain neglects the non potential part of 

velocity field in the cross-sectional plane. 

According to assumption VIII and IX the channel domain is the only domain type in which species 

transport along ݖ coordinate takes place thus the term ௭߲(ݒ ܿ) in Equation (12) is nonzero only in the 

channel domain. The core of the numerical treatment of the gas flow in channel is the following  

finite-difference approximation for the derivative ௭߲(ݒ ܿ௖): ߲(ݒ ܿ௖)߲ݖ ≅ 1݈ ቀ(ݒ ܿ௖)|௭ୀ௭೐ೣ೔೟ − ݒ) ܿ௖)|௭ୀ௭೐೙೟೐ೝቁ (25) 

where ݈ = ௘௫௜௧ݖ −  coordinate at ݖ ௘௫௜௧ denoting the value ofݖ ௘௡௧௘௥ andݖ ௘௡௧௘௥ is the depth of slice withݖ

the points where gas-flow enters and exits the channel domain respectively as indicated in Figure 2. 

Using approximation (25) in (12) yields: ߲߲ܿݐ = ∇ଶ(ܦ ܿ − ܿ̃ ௖ܷ)ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥଶୈ − 1݈ ቀ(ݒ ܿ)|௭ୀ௭೐ೣ೔೟ − ݒ) ܿ)|௭ୀ௭೐೙೟೐ೝቁᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥଵ஽ = 0 (26)

Equation (26) can be interpreted as a simple species transport equation in a 2D plane with source 

and sink terms where the source term is 
ଵ௟  ௭ୀ௭೐೙೟೐ೝ (i.e., the species inflow contribution) and the|(௖ܿ ݒ)

sink term is − ଵ௟  ௭ୀ௭೐ೣ೔೟ (i.e., the species outflow contribution). This interpretation enables the|(௖ܿ ݒ)

species transport along the ݖ coordinate and in the ݕݔ plane to be treated within a channel domain with 

a single 2D differential equation: ߲ܿ௖(ݔ, ݐ߲(ݕ = ∇ଶ൫ܦ ܿ௖(ݔ, (ݕ − ܿ̃௖ ,ݔ)ܷ ൯(ݕ + ,ݔ)௦௥௖ݏ (ݕ − ,ݔ)௦௡௞ݏ (ݕ = 0 (27)
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where the source term ݏ௦௥௖ and the sink term ݏ௦௡௞, schematically represented by the yellow arrows in 

Figure 2, are expressed as: ݏ௦௥௖(ݔ, (ݕ = 1݈ ,ݔ)௣௥ݒ ,ݔ)௖௣௥ܿ(ݕ ,ݔ)௦௡௞ݏ(28) (ݕ (ݕ = 1݈ ,ݔ)ݒ ,ݔ)௖ܿ(ݕ (29) (ݕ

where ݔ)ݒ,  denotes ݎ݌ component of velocity and superscript-ݖ is the cross-sectional profile of the (ݕ

the values from previous channel domain i.e., the channel domain in the upstream neighbour slice.  

The velocity profile always has, according to assumption X, the same dome-like shape of laminar  

flow (as found in Section 5.2) scaled by the average ݖ-component velocity in the channel domain  

in question: ݔ)ݒ, (ݕ = ෤ݒ Υ(ݔ, (30) (ݕ

where ݒ෤ is the average ݖ-component velocity (obtained according to 1D gas-flow Equation (85) or 

(86)) and Υ(ݔ,  .is the unit-less dome shape as given in [33] (ݕ

The definition region of Equation (27) is, for the channel domain, a “1ݓ by ℎ2” rectangle whose 

four edges represent the boundaries of channel domain with: two walls (gray surfaces in Figure 2), one 

symmetry plane (translucent yellow surface in Figure 2) and one channel/GDL boundary (translucent 

dotted surface in Figure 2). There are two types of boundary conditions on the four edges: 

1. The total molar gas flow and the molar flux of water vapour between the channel and  

the GDL, schematically represented with the wider vertical blue arrow in Figure 2, manifest as 

boundary conditions: ܦ ߲൫ܿܦ௖(ݔ, (ݕ − ܿ̃௖ ௖ܷ(ݔ, ݔ൯߲(ݕ ቤ௫ୀ௛ଵ = ݆ଵ→஼(ݕ) (31)

and:  ߲ ௖ܷ(ݔ, ݔ߲(ݕ ቤ௫ୀ௛ଵ = (32) (ݕ)ଵ→஼ߚ

where ݔ = ℎ1  denotes the position at the GDL/channel boundary and ߚଵ→஼  is the gas velocity 

component perpendicular to the boundary between GDL#1 and channel evaluated at that boundary. 

2. Analogous to conditions (15) and (16) there is no flux through walls and across the symmetry 

plane, leading to the boundary condition for the other three edges: ߲ ௖ܷ(ݔ, ݔ߲(ݕ ቤ௫ୀ௛ = ߲ ௖ܷ(ݔ, ݕ߲(ݕ ቤ௬ୀ௪ଵ = ߲ ௖ܷ(ݔ, ݕ߲(ݕ ቤ௬ୀ଴ = 0 (33)

and: ߲ܿ௖(ݔ, ݔ߲(ݕ ቤ௫ୀ௛ = ߲ܿ௖(ݔ, ݕ߲(ݕ ቤ௬ୀ௪ଵ = ߲ܿ௖(ݔ, ݕ߲(ݕ ቤ௬ୀ଴ = 0 (34)

where ݔ = ℎ ݕ , = 2ݓ  and ݕ = 0  denote the position at the two walls and the symmetry  

plane respectively. 
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The 2D analytic general solutions of species concentration and velocity potential distribution for a 

channel domain are obtained as a linear combination of both families of eigen functions of the ܦ∇ଶ 

operator since species transport in the channel domain is induced both by the convective transport along ݖ 

coordinate and by the boundary condition at the boundary between channel domain and GDL#1 domain. 

A general solution for a channel domain (represented by Equations (A53) to (A55) in Appendix A) 

is obtained by treating the average ݖ-component velocity of gas flow, the molar fluxes from GDL and 

the source term as input parameters. The full derivation is given in Subsection A.1 of Appendix A. 

3.2. MEA Part 

Contrary to the two gas parts that are each split onto three computational domains the whole MEA 

part is contained within one computational domain as discernible from Figure 1 and Figure 3. 

Figure 3. Schematic representation of species production, consumption and transport in the 

MEA. The two ribbed purple surfaces represent the catalyst layers at the MEA/GDL 

interfaces. The brown arrows represent the species transport from/to cathode gas part, 

whilst cyan arrows indicate the species transport from/to the anode gas part and the grey 

arrow represents the proton flow across the membrane. Hydrogen and oxygen are 

consumed on the anode and cathode catalyst layer respectively. All the water is produced 

on the cathode catalyst layer and the molar flux of water traversing the membrane is equal 

to the flux entering the anode gas part. 

 

In the MEA part, two types of physical processes are distinguished: 

• species transport across the membrane (water molecules and hydronium ions represented by the 

cyan “H2O” and the gray “H+” arrow in Figure 3); 

• species production and consumption by the electrochemical reactions on the catalysts that are 

on the top and bottom boundary of the MEA domain as observed in Figure 3. 

The following two subsections thus deal with the species transport and electrochemical  

reactions respectively. 

3.2.1. Species Transport across Membrane 

The equations for membrane species transport are derived with membranes for low temperature 

PEMFCs in mind; however, as indicated in Section 3.5, they are also applicable to membranes for high 

temperature PEMFCs. 
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The following equations governing species transport across the membrane are expressed with 

respect to the orientation of the coordinate system indicated in Figure 3 which is such that ݔ = 0 

represents the position at the anode catalyst layer and ݔ =  .the position at the cathode catalyst layer ߴ

According to assumption XIII the species transport in the membrane takes place only along ݔ 

coordinate, thus the dependency of variables with respect to ݕ coordinate is left out from notation in 

this subsection (recalling that within a slice the variables are also constant along ݖ coordinate).  

Molar fluxes of water ݆௪ and protons ݆ା are defined by equations taken from [34]: ݆௪ = ௪ܦ− ߲Λ߲ݔ + ݊ௗ௥௚ ݆ା (35)݆ା = − ܨܴܶ ାܿାܦ ݔ߲ܸ߲ − ାܦ ߲ܿା߲ݔ ௪ܦ(36) = ु௪Λ, ାܦ = ुା Λ (37)

where membrane water content Λ is the concentration of water normalised with the sulphonic group 
concentration, ܿା  is the concentration of dissociated protons, ݊ௗ௥௚  is the electroosmotic drag 

coefficient, ܨ is Faraday constant, ܸ is electric potential and ܦ௪ and ܦା are the diffusion coefficients 

of water molecules and dissociated protons (in form of hydronium ions) respectively. According to 

assumption XII both these two diffusion coefficients are linear functions of the membrane water 

content with their coefficients of proportionality ु௪  and ुା  depending only on temperature. The 

explicit notation of temperature dependence has been omitted due to the isothermal nature of the 

model. Following the assumption XV the concentration of dissociated protons is approximately equal 
to the membrane sulphonic group concentration ܿ∙ுௌைయ: ܿା ≅ ܿ∙ுௌைయ (38)

meaning that any proton concentration gradient is negligibly small and thus the term – ା߲௫ܿାܦ  in 

Equation (36) is neglected and ܿା  is treated as constant along the ݔ  coordinate, i.e.,: ܿା ≠ ܿା(ݔ) . 

Following the derivation of [34] and taking into account this simplification of zero proton 

concentration gradient, Equations (35) and (36) can be written as: ݆௪ = −݀௪ ߲(Λଶ)߲ݔ + ݊ௗ௥௚ ݆ା (39)

݆ା = −݀ାΛ ݔ߲ܸ߲  (40)

where the constants ݀௪ and ݀ା are defined as: ݀௪ = ुଶೢ  and ݀ା = ி ुశ௖శோ் . In steady state the continuity 

condition requires that: ܦ௪ ߲݆௪߲ݔ = − ߲Λ߲ݐ = 0 = − ߲ܿା߲ݐ = ାܦ ߲݆ା߲ݔ  (41)

leading to the molar fluxes ݆௪ and ݆ା being constant along the ݔ coordinate. In the previously defined 

coordinate system the membrane water content at the interface with the anode electrode and at the 

interface with the cathode electrode are expressed as Λ஺ே஽ = Λ(ݔ = 0)  and Λ஼்ு = Λ(ݔ =  (ߴ

respectively and the general solution for ݆௪  and Λ  in differential Equations (39) and (40) can be 

expressed as: 
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Λ(ݔ) = ටݔߴ Λ஺ே஽ଶ + ቀ1 − ቁݔߴ Λ஼்ுଶ  (42)

݆௪ = ݀௪ (Λ஺ே஽ଶ − Λ஼்ுଶ ߴ( − ݊ௗ௥௚ ݆ା (43)

where ݀௪ ൫ஃಲಿವమ ିஃ಴೅ಹమ ൯ణ = −݀௪ డ൫ஃమ൯డ௫ , the back diffusion flux of water, is also constant with respect to ݔ 

coordinate. Rearranging Equation (40), integrating it over the membrane thickness and taking into 

account that ݆ା and ݀ା are independent of ݔ gives: ݆ା݀ା න ణ(ݔ)Λݔ݀
଴ = − න ݔ߲ܸ߲ ణݔ݀

଴  (44)

The integral on the left side of Equation (44) evaluates to: න ణ(ݔ)Λݔ݀
଴ = න ቀݔߴ Λ஺ே஽ଶ + ቀ1 − ቁݔߴ Λ஼்ுଶ ቁି ଵଶ ݔ݀ = Λ஺ே஽ߴ2 + Λ஼்ு = Λഥణߴ

଴   (45)

where Λഥ is the arithmetic mean of water content at the anode and cathode side, and the integral on the 

right side of Equation (44) represents the voltage drop due to the membrane’s ohmic resistance Δ ஐܸ୫: − න ݔ߲ܸ߲ ణݔ݀
଴ = Δ ஐܸ୫ (46)

Taking into account that the proton flux is proportional to the current density ݅: ݆ା = (47) ܨ݅

Equation (44) can be formulated as the “Ohm’s law” equation for charge transport across  

the membrane: ݅ ݀ܨߴା  1Λഥ = ݅ ܴ(Λ஺ே஽, Λ஼்ு) = Δ ஐܸ୫ (48)

where ܴ(Λ஺ே஽, Λ஼்ு) = ଶణிௗశ(ஃಲಿವାஃ಴೅ಹ)  is the membrane’s specific ohmic resistance. 

3.2.2. Electrochemical Reaction Kinetics 

Following assumption XIX, the fuel cell operates at an uniform operational voltage ௢ܸ௣ ≠ ௢ܸ௣(ݕ,  :௢ܸ௣ is a sum of four contributions [36] .(ݖ

௢ܸ௣ = Φ஺ே஽ − Δ ஐܸ௠ + Φ஼்ு − Δ ஐܸ௘ (49)

where Φ஺ே஽ and Φ஼்ு are anode and cathode Galvani potentials respectively and Δ ஐܸ௠ and Δ ஐܸ௘ are 

voltage losses due to ohmic resistance of proton transport in membrane and electron transport in GDL 

respectively. Generally all four depend on current density, however taking the definition of zero 

galvanic potential of a standard hydrogen electrode, following assumption XVII that neglects reaction 

kinetics effects on the anode and following assumption XIX that neglects electric resistance of GDL 

yields Φ஺ே஽(ݕ, (ݖ = Δ ஐܸ௘ = 0. This simplifies Equation (49): 

௢ܸ௣ = Φ − Δ ஐܸ௠ (50)
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where Φ = Φ஼்ு  (i.e., the subscript ܪܶܥ  in Φ஼்ு  is from here on dropped for brevity). Current 

density, proportional to the rate of oxygen reduction reaction at the cathode catalyst, is given as a 

function of Φ by the Butler-Volmer equation: ݅ = ,൫Φܤ ܿ௥, ܿ௣൯ = ݅௘௫ ቆ ܿ௥ܿ௥௘௙ ݁ிఈோ்൫஍బି஍൯ − ቆ ܿ௣ܿ௥௘௙ቇ௦ ݁ି ி(ଵିఈ)ோ் ൫஍బି஍൯ቇ (51)

where ܤ൫Φ, ܿ௥, ܿ௣൯ denotes a Butler-Volmer function, ݅௘௫ is the exchange current density defined as 

current per unit area of catalyst layer, ܿ௥  and ܿ௣ are the surface concentrations of reactant and product  

(in this case oxygen and water) respectively, ݏ is the stoichiometry ratio, ܨ is the faraday constant, ߙ is the 
electron transfer coefficient, ܿ௥௘௙ is the reference concentration and Φ଴is the cathode open circuit Galvani 

potential at reference conditions (reference conditions mean that species participating in the cathode 
reaction assume reference concentration ܿ௥௘௙). The variable represented by (Φ଴ − Φ) is not to be confused 

with overvoltage which is the departure from the open circuit potential that would be exhibited at 

conditions equal to the actual conditions in the immediate surroundings of the electrode under operation. 

Defining the current density ݅ directly by Butler-Volmer (or Tafel) Equation (51) is applicable only 

to very thin catalyst layers (CL). In [37] it is shown that when finite thickness of CL is considered the 

local current density additionally depends also on the local proton conductivity of the ionomer phase in 

the CL. According to Equation (40) the local proton conductivity is linearly proportional to the local 

ionomer water content, which means that the current density ݅ additionally depends also on Λ஼்ு .  

In the limit of very small CL thickness this dependency vanishes and the function of current density 

reduces to Equation (51). The assumption of negligibly thin CL is typically made by the reduced 

dimensionality models, e.g., [28,31,32], it is made by the benchmarking CFD model and thus also used 

in the HAN-FC model. However, the function defining the current density in the HAN-FC model can 

easily be extended to account also for the effects of non-negligibly thick CL: instead of Equation (51) an 
equation for current density ݅ as a function of not only Φ, ܿ௥ and ܿ௣ but also Λ஼்ு, as derived for example 

in [37], can be used. This can be done since the approach of derivative approximation and estimation 

iteration, described in Section 2.4.1., is applicable to any nonlinear function of any number of arguments. 
Expressing Δ ஐܸ୫  from Equation (50), substituting it into Equation (48) and assuming a given 

species concentration at boundaries (i.e., Λ஺ே஽ , Λ஼்ு ,ܿ௥  and ܿ௣  are treated as parameters) the two 

unknowns ݅ and Φ are obtained by solving the set of the two transcendent equations: ݅ = ,(Φ)ܤ ݅ = Φ − ௢ܸ௣ܴ  (52)

Current density in turn also defines the rates of species production and consumption: ሶ݊ ைమ = − ሶ݊(53) ܨ4݅ ௪ = ሶ݊(54) ܨ2݅ ுమ = − (55) ܨ2݅

where ሶ݊ ܱ2  and ሶ݊ ௪  are molar consumption/production per unit area of oxygen and water at cathode 

catalyst layer and ሶ݊  .is that of hydrogen at the anode catalyst layer 2ܪ
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Since the species consumption/production takes place at the boundaries it is at this point worth 

defining boundary conditions for the MEA domain in the same fashion as was done for the gas part 

domains. As indicated by the cyan “H2O” arrow in Figure 3 the molar flux of water traversing the 

membrane is equal to the molar flux of water crossing the interface between the MEA and the anode 

gas part: ݆஺ே஽ = −݆௪ (56)

where ݆ܦܰܣ is molar flux of water across the interface between the MEA and the anode gas part and is, 

with respect to the orientation of coordinate system in Figure 3, defined as positive when pointing in 

the negative ݔ  direction. Using Equations (43) and (47) in Equation (56) leads to the boundary 

condition at the interface between MEA and anode GDL: ݆஺ே஽ = ݀௪(Λ஺ே஽ଶ − Λ஼்ுଶ ߴ( − ݊ௗ௥௚ (57) ܨ݅

The steady state condition requires that all water produced at the cathode catalyst layer diffuses to 

the anode and the cathode gas parts thus: ሶ݊ ௪ = ݆஼்ு + ݆஺ே஽ (58)

where ݆஼்ு is molar flux of water across the interface between the MEA and the cathode gas part. 

Equations (54), (57) and (58) lead to the boundary condition at the interface between the MEA and 

cathode the GDL: ݆஼்ு = ൬12 + ݊ௗ௥௚൰ ܨ݅ − ݀௪(Λ஺ே஽ଶ − Λ஼்ுଶ ߴ(  (59)

3.3. Coupling of General Solutions in Domains 

Coupling of general solutions in domains is done by fulfilling the conditions of continuity of species 

activity, of species molar fluxes, of net molar gas flows and of pressure at those boundaries that are 

shared by two domains. In the gas part the continuity of species activity simply requires continuity of 

species concentration. The two couplings between gas part domains are thus straight forward: At the 

boundary between the GDL#1 and the GDL#2, domain continuity of activity requires that: ܿଵ(ݔ, ݕ = (1ݓ = ܿଶ(ݔ, ݕ = (60) (1ݓ

continuity of molar flux, using Equation (21), requires that:  ߲(ீܦ஽௅ܿଵ(ݔ, (ݕ − ܿ̃ଵ ଵܷ(ݔ, ݕ߲((ݕ ቤ௬ୀ௪ଵ = ,ݔ)஽௅ܿଶீܦ)߲ (ݕ − ܿ̃ଶܷଶ(ݔ, ݕ߲((ݕ ቤ௬ୀ௪ଵ (61)

and continuity of net molar gas flow, using Equation (14), requires that: ߲ ଵܷ(ݔ, ݕ߲(ݕ ฬ௬ୀ௪ଵ = ߢ ߲ܷଶ(ݔ, ݕ߲(ݕ ฬ௬ୀ௪ଵ (62)

continuity of pressure, using Equation (22), requires that: 

ଵܷ(ݔ, ݕ = (1ݓ = ܷଶ(ݔ, ݕ = (1ݓ (63)
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Similarly, using Equations (23), (31) and (32), the coupling between GDL#1 and channel domain 

requires that: ܿ஼(ݔ = ℎ1, (ݕ = ܿଵ(ݔ = ℎ1, ,ݔ)௖ܿܦ)߲(64) (ݕ (ݕ − ܿ̃௖ ௖ܷ(ݔ, ݔ߲((ݕ ቤ௫ୀ௛ଵ = ߢ ,ݔ)஽௅ܿଵீܦ)߲ (ݕ − ܿ̃ଵ ଵܷ(ݔ, ݔ߲((ݕ ቤ௫ୀ௛ଵ (65)߲ ௖ܷ(ݔ, ݔ߲(ݕ ฬ௫ୀ௛ଵ = ߢ ߲ ଵܷ(ݔ, ݔ߲(ݕ ฬ௫ୀ௛ଵ (66)

where the continuity of pressure is already comprehended in the boundary condition (24). 

Coupling the MEA domain to the GDL domains has to take into account the fact that water in 

membrane is in absorbed liquid phase while in GDL it is in gaseous phase. Activity ܽ of water vapour 

is simply its relative humidity: ܽ = ܿܿ௦௔௧ (67)

where ܿݐܽݏ is concentration of saturated water vapor, while activity of absorbed water in membrane 

follows the relationship from [23]: ߉ = (ܽ)߉ = 0.043 + 17.8 ܽ + 39.85 ܽଶ + 36 ܽଷ (68)

Assumption XVI requires continuity of water activity also at the membrane/GDL interface meaning 

that the activity of liquid water in membrane at that interface is equal to the activity of water vapour in 

GDL at that interface. This equality together with Equation (67) leads to the activity continuity 

condition at the boundary between the MEA domain and the domains of anode and cathode GDL: 

Λ஺ே஽(ݕ) = Λ൫ܽ஺ே஽(ݕ)൯ = ۔ۖەۖ
Λۓ ቆܿଵ஺ே஽(ݔ = 0, ௦௔௧ܿ(ݕ ቇ , 0 ≤ ݕ < 1஺ே஽Λݓ ቆܿଶ஺ே஽(ݔ = 0, ௦௔௧ܿ(ݕ ቇ , 1஺ே஽ݓ ≤ ݕ < (69) ݓ

Λ஼்ு(ݕ) = Λ൫ܽ஼்ு(ݕ)൯ = ۔ۖەۖ
Λۓ ቆܿଵ஼்ு(ݔ = 0, ௦௔௧ܿ(ݕ ቇ , 0 ≤ ݕ < 1஼்ுΛݓ ቆܿଶ஼்ு(ݔ = 0, ௦௔௧ܿ(ݕ ቇ , 1஼்ுݓ ≤ ݕ < (70) ݓ

where ܽ஺ே஽(ݕ) and ܽ஼்ு(ݕ) are water activity at the anode and cathode MEA/GDL interface and ܦܰܣ and ܪܶܥ in superscript or subscript denote values pertaining to the anode and the cathode side 

respectively. The continuity of molar fluxes of water vapour from MEA to the anode and the cathode 

side, defined as: ݆஺ே஽(ݕ) = ቊ݆ெ→ଵ஺ே஽(ݕ), 0 ≤ ݕ < ,(ݕ)1஺ே஽݆ெ→ଶ஺ே஽ݓ 1஺ே஽ݓ ≤ ݕ < (71) ݓ

݆஼்ு(ݕ) = ቊ ݆ெ→ଵ஼்ு ,(ݕ) 0 ≤ ݕ < 1஼்ு݆ெ→ଶ஼்ுݓ ,(ݕ) 1஼்ுݓ ≤ ݕ < ݓ (72)

and continuity of molar fluxes of reactant consumed at the anode and cathode defined as: 
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ሶ݊ ுమ(ݕ) = ቊ݆௥ଵ஺ே஽(ݕ), 0 ≤ ݕ < ,(ݕ)1஺ே஽݆௥ଶ஺ே஽ݓ 1஺ே஽ݓ ≤ ݕ < (73) ݓ

ሶ݊ ைమ(ݕ) = ቊ݆௥ଵ஼்ு(ݕ), 0 ≤ ݕ < ,(ݕ)1஼்ு݆௥ଶ஼்ுݓ 1஼்ுݓ ≤ ݕ < ݓ (74)

lead, according to Equations (57), (59), (17) and (18), to equations for water vapour molar fluxes: ݀௪൫Λ஺ே஽ଶ (ݕ) − Λ஼்ுଶ ߴ൯(ݕ) − ݊ௗ௥௚ ܨ(ݕ)݅ 
= ۔ۖەۖ

,ݔ)஽௅ܿଵ஺ே஽ீܦ൫߲ ߢۓ (ݕ − ܿ̃ଵ஺ே஽ ଵܷ஺ே஽(ݔ, ݔ൯߲(ݕ ቤ௫ୀ଴ , 0 ≤ ݕ <   1஺ே஽ݓ
,ݔ)஽௅ܿଶ஺ே஽ீܦ൫߲ ߢ (ݕ − ܿ̃ଶ஺ே஽ܷଶ஺ே஽(ݔ, ݔ൯߲(ݕ ቤ௫ୀ଴ , 1஺ே஽ݓ ≤ ݕ < (75)   ݓ

൬12 + ݊ௗ௥௚൰ ݅(ݕ)ܨ − ݀௪൫Λ஺ே஽ଶ (ݕ) − Λ஼்ுଶ ߴ൯(ݕ)
=

۔ۖۖەۖۖ
,ݔ)஽௅ܿଵ஼்ுீܦቀ߲ ߢۓ (ݕ − ܿ̃ଵ஼்ு ଵܷ஼்ு(ݔ, ݔቁ߲(ݕ ቮ௫ୀ଴ , 0 ≤ ݕ <   1஼்ுݓ

,ݔ)஽௅ܿଶ஼்ுீܦቀ߲ ߢ (ݕ − ܿ̃ଶ஼்ுܷଶ஼்ு(ݔ, ݔቁ߲(ݕ ቮ௫ୀ଴ , 1஼்ுݓ ≤ ݕ <    ݓ
(76)

and according to Equations (19), (20), (53), (55), (57), (59) to equations for total gas flow: 

݀௪൫Λ஺ே஽ଶ (ݕ) − Λ஼்ுଶ ߴ൯(ݕ) − ൬12 + ݊ௗ௥௚൰ ܨ(ݕ)݅ = ۔ۖەۖ
ߢ଴ܿۓ ߲ ଵܷ஺ே஽(ݔ, ݔ߲(ݕ ቤ௫ୀ଴ , 0 ≤ ݕ < 1஺ே஽ݓ

ܿ଴ߢ ߲ܷଶ஺ே஽(ݔ, ݔ߲(ݕ ቤ௫ୀ଴ , 1஺ே஽ݓ ≤ ݕ < ݓ  (77)

൬14 + ݊ௗ௥௚൰ ݅(ݕ)ܨ − ݀௪൫Λ஺ே஽ଶ (ݕ) − Λ஼்ுଶ ߴ൯(ݕ) = ۔ۖەۖ
ߢ଴ܿۓ ߲ ଵܷ஼்ு(ݔ, ݔ߲(ݕ ቤ௫ୀ଴ , 0 ≤ ݕ < 1஼்ுݓ

ܿ଴ߢ ߲ܷଶ஼்ு(ݔ, ݔ߲(ݕ ቤ௫ୀ଴ , 1஼்ுݓ ≤ ݕ < ݓ  (78)

Equations (75) and (76) couple boundary values of water vapour concentration, membrane water 

content and current density. The coupling of species concentrations and current density is also required 

by the electrochemical Equations (48) and (51). As defined by Equation (3) the concentration of reactant ܿ௥ at the cathode catalyst is an explicit function of the concentration of product i.e., ܿ௥ = ܿ଴ − ܿ௣. The 

Butler-Volmer function can therefore be treated as a function of two variables: ܤ൫Φ, ܿ௥, ܿ௣൯ = ,൫Φܤ ܿ௣൯. 

Furthermore, since ܿ௣  is the water vapor concentration at the cathode catalyst surface and since 

according to Equation (67) it can be expressed in terms of ܽ஼்ு, i.e., ܿ௣ = ܿ௦௔௧ ܽ஼்ு the Butler-Volmer 

function can be expressed as a function of Φ and ܽ஼்ு i.e.,: ܤ൫Φ, ܿ௣൯ = ,Φ)ܤ ܽ஼்ு). 

The main governing equations and corresponding boundary conditions are summarised in Table 1. 
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Table 1. Summary of key governing equations and their boundary conditions. 

GDL domains 

Species transport 

Governing equation ∇ଶ൫ீܦ஽௅ ܿଵ(ݔ, (ݕ − ܿ̃ଵ ,ݔ)ܷ ൯(ݕ = 0 

Boundary conditions 

߲ܿଶ(ݔ, ݔ߲(ݕ ቤ௫ୀ௛ଵ = ߲ܿଶ(ݔ, ݕ߲(ݕ ቤ௬ୀ௪ = ߲ܿଵ(ݔ, ݕ߲(ݕ ቤ௬ୀ଴ = 0 ߲൫ீܦ஽௅ܿଵ(ݔ, (ݕ − ܿ̃ଵ ଵܷ(ݔ, ݕ൯߲(ݕ ቤ௬ୀ௪ଵ = ߲൫ீܦ஽௅ܿଶ(ݔ, (ݕ − ܿ̃ଶܷଶ(ݔ, ݔ൯߲(ݕ ቤ௬ୀ௪ଵ 

ߢ ߲൫ீܦ஽௅ܿଵ(ݔ, (ݕ − ܿ̃ଵ ଵܷ(ݔ, ݔ൯߲(ݕ ቤ௫ୀ଴ = ݆ெ→ଵ(ݕ) 

ߢ ߲൫ீܦ஽௅ܿଶ(ݔ, (ݕ − ܿ̃ଶܷଶ(ݔ, ݔ൯߲(ݕ ቤ௫ୀ଴ = ݆ெ→ଶ(ݕ) 

ߢ ߲൫ீܦ஽௅ܿଵ(ݔ, (ݕ − ܿ̃ଵ ଵܷ(ݔ, ݔ൯߲(ݕ ቤ௫ୀ௛ଵ = ݆ଵ→஼(ݕ) 

Velocity profile 

Governing equation ∇ଶܷ(ݔ, (ݕ = 0

Boundary conditions 

߲ܷଶ(ݔ, ݔ߲(ݕ ቤ௫ୀ௛ଵ = ߲ܷଶ(ݔ, ݕ߲(ݕ ቤ௬ୀ௪ = ߲ ଵܷ(ݔ, ݕ߲(ݕ ቤ௬ୀ଴ = 0 

ܿ଴ߢ ߲ ଵܷ(ݔ, ݔ߲(ݕ ቤ௫ୀ଴ = ݆ெ→ଵ(ݕ) − ݆௥ଵ(ݕ) 

ܿ଴ߢ ߲ܷଶ(ݔ, ݔ߲(ݕ ቤ௫ୀ଴ = ݆ெ→ଶ(ݕ) − ݆௥ଶ(ݕ) ߲ ଵܷ(ݔ, ݕ߲(ݕ ቤ௬ୀ௪ଵ = ߲ܷଶ(ݔ, ݔ߲(ݕ ቤ௬ୀ௪ଵ 

ଵܷ(ݔ = ℎ1, (ݕ = − ߤ݇  ௖݌

Channel domain 

Species transport 

Governing equation ∇ଶ൫ܦ ܿ௖(ݔ, (ݕ − ܿ̃௖ ,ݔ)ܷ ൯(ݕ + ,ݔ)௦௥௖ݏ (ݕ − ,ݔ)௦௡௞ݏ (ݕ = 0 

Boundary conditions 

,ݔ)௦௥௖ݏ (ݕ = 1݈ ,ݔ)௣௥ݒ ,ݔ)௖௣௥ܿ(ݕ ,ݔ)௦௡௞ݏ (ݕ (ݕ = 1݈ ,ݔ)ݒ ,ݔ)௖ܿ(ݕ ,ݔ)௖߲ܿ (ݕ ݔ߲(ݕ ቤ௫ୀ௛ = ߲ܿ௖(ݔ, ݕ߲(ݕ ቤ௬ୀ௪ଵ = ߲ܿ௖(ݔ, ݕ߲(ݕ ቤ௬ୀ଴ = 0 

ܦ ߲൫ܿܦ௖(ݔ, (ݕ − ܿ̃௖ ௖ܷ(ݔ, ݔ൯߲(ݕ ቤ௫ୀ௛ଵ = ݆ଵ→஼(ݕ) 

Velocity profile 

Governing equation ∇ଶܷ(ݔ, (ݕ = ൫ݔ)ݒ, ,ݕ ݖ = (௘௡௧௘௥ݖ − ,ݔ)ݒ ,ݕ ݖ = ௘௫௜௧)൯݈ݖ  

Boundary conditions 

,ݔ)ݒ ,ݕ (ݖ = ,ݔ)Υ(ݖ)෤ݒ ߲ ,(ݕ ௖ܷ(ݔ, ݔ߲(ݕ ቤ௫ୀ௛ = ߲ ௖ܷ(ݔ, ݕ߲(ݕ ቤ௬ୀ௪ଵ = ߲ ௖ܷ(ݔ, ݕ߲(ݕ ቤ௬ୀ଴ = 0 ߲ ௖ܷ(ݔ, ݔ߲(ݕ ቤ௫ୀ௛ଵ =  (ݕ)ଵ→஼ߚ

MEA domain 

Species transport 

Governing equation ݆௪ = ݀௪ ൫Λ஺ே஽ଶ − Λ஼்ுଶ ൯ߴ − ݊ௗ௥௚  ܨ݅ 

Boundary conditions 

Λ஺ே஽(ݕ) = ۔ۖەۖ
ۓ Λ ቆܿଵ஺ே஽(ݔ = 0, ௦௔௧ܿ(ݕ ቇ , 0 ≤ ݕ < 1஺ே஽Λݓ ቆܿଶ஺ே஽(ݔ = 0, ௦௔௧ܿ(ݕ ቇ , 1஺ே஽ݓ ≤ ݕ <  ݓ

Λ஼்ு(ݕ) = ۔ۖەۖ
ۓ Λ ቆܿଵ஼்ு(ݔ = 0, ௦௔௧ܿ(ݕ ቇ , 0 ≤ ݕ < 1஼்ுΛݓ ቆܿଶ஼்ு(ݔ = 0, ௦௔௧ܿ(ݕ ቇ , 1஼்ுݓ ≤ ݕ <  ݓ

Electrochemical kinetics ݅ = ൫Φ − ௢ܸ௣൯ ା(Λ஺ே஽݀ܨ + Λ஼்ு)2ߴ = ݅௘௫ ቆ ܿ௥ܿ௥௘௙ ݁ிఈோ்൫ΦబିΦ൯ − ቆ ܿ௣ܿ௥௘௙ቇ௦ ݁ି ி(ଵିఈ)ோ் ൫ΦబିΦ൯ቇ 
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Similarly, the membrane ohmic resistance can, according to Equations (69) and (70), be expressed 
as a function of ܽ஺ே஽  and ܽ஼்ு  i.e., ܴ(Λ஺ே஽, Λ஼்ு) = ܴ൫Λ(ܽ஺ே஽), Λ(ܽ஼்ு)൯ = ܴ(ܽ஺ே஽, ܽ஼்ு). The 

system of Equations (52) thus reads: ݅(ݕ) = ,(ݕ)൫Φܤ ܽ஼்ு(ݕ)൯ (ݕ)݅(79)  = Φ(ݕ) − ௢ܸ௣ܴ൫ܽ஺ே஽(ݕ), ܽ஼்ு(ݕ)൯  (80)

Equations (75) to (80) therefore couple the species transport in membrane and electrochemical 

reactions on the cathode catalyst to species transport in both gas parts.  

3.4. Solution for the Whole Cell 

A full 3D solution for the whole representative unit is obtained as series of consecutive 2D analytic 

solutions for slices. Each solution for a slice is coupled to the solution for the neighbouring upstream 

slice by taking the anode and cathode sink terms of the upstream slice as the source terms for the slice 

in question. Obtaining the analytic 2D solution for a slice requires knowing the value of the mean gas 

velocity ݖ component in the sink term defined in Equation (29). The mean gas velocity ݖ component is 

calculated by equations of 1D gas-flow given in the Subsection 3.4.2. Description of obtaining the 

analytic 2D solution for a slice is given in the following Subsection 3.4.1. 

3.4.1. 2D Analytic Solution for a Slice 

A general solution of the 2D diffusion problem in each of the seven computational domains of  

a given slice (Figure 1d) is obtained by finding the domain specific eigen functions (also called 

harmonics) of the ܦ∇ଶ  operator. These harmonics are 2D trigonometric functions characterised by 

mode numbers ݊ and ݉: ݊ numbering modes along ݔ coordinate and the ݉ modes along ݕ coordinate. 

(Fully detailed construction of the eigen functions is given in Appendix A). For each domain the full 

solution comes in the form of a specific linear combination of its eigen functions, i.e., a type of 2D 

Fourier series (Equations (A53) to (A60) in Appendix A). Finding the full solution for water 

concentration and velocity potential in a slice thus means finding all Fourier coefficients in the linear 

combinations of eigen functions of the seven computational domains. These Fourier coefficients are 

defined by the couplings between domains. Two types of coupling are distinguished: coupling between 

domains within a slice and coupling between channel domains in consecutive slices. 

• Within a slice the coupling of two domains at their common boundary via the coupling 

conditions described in Section 3.3 is, on the level of eigen functions, manifested in algebraic 

coupling of the two sets of Fourier coefficients pertaining to the two linear combinations of 

harmonics in the two domains as described in Section A.3.1 of Appendix A. 

• Coupling to the neighbour upstream slice via the two source terms in cathode and anode 

channel domain fully defines the solution for a slice (at a given operational voltage). Coupling 

to the downstream slice has no influence on the solution in the slice in question since sink 

terms are fully defined by concentration distribution in the two channel domains and are, due to 

assumption VIII, not influenced by the conditions in the neighbour downstream slice. Source 

terms, defined in Equation (28), also come in the form of a linear combination of eigen 
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functions [Equation (A27)] thus the seven linear combinations that constitute the full solution 

for a slice are an algebraic function of the two linear combinations of the two source terms. 

Equations (27) and (13) that govern species transport in gas parts are linear differential equations 

and, within a slice, the couplings between linear combinations of eigen functions of the coupled 

domains of gas parts are handled by linear algebra as described in Section A.4 of Appendix A. 

Contrary to this, the couplings between MEA and the two gas parts contain the electrochemical 

equations and the relationship of activity to water content dependence which are nonlinear. In order to 

handle also these nonlinear phenomena with linear algebra the approach of derivative approximation 

and estimation-iteration, described in the following paragraph, is used. 
The approach of derivative approximation and estimation-iteration is applied to linearly approximating 

nonlinear functions such as ܤ൫Φ(ݕ), ܽ஼்ு(ݕ)൯, ܴ൫ܽ஺ே஽(ݕ), ܽ஼்ு(ݕ)൯, Λ൫ܽ஺ே஽(ݕ)൯ and Λ൫ܽ஼்ு(ݕ)൯. 

This approach assumes that within a slice each argument of these nonlinear functions (i.e., Φ(ݕ), ܽ஺ே஽(ݕ) or ܽ஼்ு(ݕ)) has only small deviations from its average along the ݕ coordinate. Let ே݂௅ stand 

for any of the aforementioned nonlinear functions and argଵ, argଶ, … stand for its arguments: 

ே݂௅(ݕ) = ே݂௅(argଵ(ݕ) , argଶ(ݕ) , … ) (81)

Each argument is split into two parts: arg(ݕ) = Π + Δarg(ݕ) (82)

where arg  stands for any of the arguments, Π  is a predictor of the average of arg  over ݕ  (not 

necessarily the average itself but a close enough estimate of it) and Δarg(ݕ) is its deviation from the 

predictor Π along ݕ. The assumption of small deviations means that Δarg(ݕ) is sufficiently small to 

justify the following derivative approximation: ݂ܰ(ݕ)ܮ ,Π1)ܮ݂ܰ ≅ Π2 … ) + ⋯arg1 ቤarg1=Π1arg2=Π2߲ܮ݂߲ܰ
 Δarg1(ݕ) + ⋯arg2 ቤarg1=Π1arg2=Π2߲ܮ݂߲ܰ

 Δarg2(ݕ) + ⋯ = 

(ݕ)൫Δarg1ܮ݂ ,Δarg2(ݕ) … ൯ 

(83)

where ݂ܮ is a linear function of Δargଵ(ݕ) ,Δargଶ(ݕ) … and due to linear Equation (82) it is thus also a 

linear function of argଵ(ݕ) , argଶ(ݕ) , …. A nonlinear function ே݂௅ is therefore linearised by substituting 
it with its corresponding ݂ܮ  (pink box in Figure 4). The specific linearization equations for the 

nonlinear functions are given in Section A.2 of Appendix A. 

Having all nonlinear functions linearised in this way, all coupling equations become linear and a 

fully linear algebraic solution for species concentration distribution in a slice is sought (blue box in  

Figure 4). The obtained algebraic solution gives, among others, values of Φ(ݕ), ܽ஺ே஽(ݕ) and ܽ஼்ு(ݕ) 

i.e., the arguments argଵ(ݕ) , argଶ(ݕ) , ….. The derivative approximation is repeated this time taking the 

average over the ݕ coordinate of each of the arguments as the new value for the corresponding predictors: Π = argതതതത = ׬ arg(ݕ) ௪଴ݕ݀ ݓ  (84)

Additionally, the average species concentrations in the corresponding domains, required by 

Equations (13), (27) and others, are calculated in this step. 
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Figure 4. Calculation procedure for obtaining the solution for the whole fuel cell  

as a sequence of solutions for individual slices. Symbols in bold denote sets of variables  

of the same type i.e., ݏ௦௡௞ = ஺ே஽௦௡௞ݏ} , ஼்ு௦௡௞ݏ } ෤ݒ , = ,෤஺ே஽ݒ} {෤஼்ுݒ , ሶ݊ = { ሶ݊஺ே஽, ሶ݊ ஼்ு} ,  argതതതത = {argതതതതଵ, argതതതതଶ} , Π = {Πଵ, Πଶ} ෤ஈݒ ;  is the predictor value for mean ݖ -component 

velocity. The blue box represents solving the set of linear algebraic equations  

described in Subsection A.4 of Appendix A, the pink box represents the derivative 

approximation of all nonlinear functions according to (general) Equation (83) or (specific) 

Equations (A71), (A75) and (A76) in Appendix A. Purple box represents calculating the 

1D gas-flow Equations (85) and (86). 

 

This procedure of linearising the problem using predictors and re-evaluating the predictors using the 

solution of the linearised problem is represented in the flowchart in Figure 4 as the repetition loop that 

follows a negative (red box) test of convergence criteria (yellow box). This loop is iterated until 

sufficient convergence i.e., until positive outcome (green box) of convergence criteria test. It has to be 

noted that the derivative approximation is done only on the level of a slice requiring that the variation 

of arguments of nonlinear functions is small only along the ݕ coordinate. Variation of these arguments 

along the length of the representative unit (ݖ direction) need not be small since the nonlinear variation 

from slice to slice is fully captured through the estimation-iteration procedure. 

3.4.2. 1D Gas-Flow Equations 

Within the iterative procedure described in previous subsection and depicted in Figure 4 the channel 

domain mean gas velocity ݒ෤, needed in Equation (30), is also repeatedly re-evaluated (purple box) 

according to the following equations: 
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෤஺ே஽ݒ = ෤஺ே஽௣௥ݒ + ஺ே஽ܣ݌ܴܶ ሶ݊஺ே஽ (85)ݒ෤஼்ு = ෤஼்ு௣௥ݒ + ஼்ுܣ݌ܴܶ ሶ݊ ஼்ு (86)

where ݒ෤௣௥  is the gas ݖ-component velocity of gas in channel domain in previous upstream slice, ܣ = 1ݓ × ℎ2 , as discernible from Figure 2, is the area of channel cross-section  

஺ே஽ܣ) = 1஺ே஽ݓ  × ℎ2஺ே஽  for anode channel and ܣ஼்ு = 1஼்ுݓ  × ℎ2஼்ு  for cathode) and ሶ݊  is the 

net molar flux added or taken from the gas flow within the slice depth defined as: 

ሶ݊஺ே஽ = ሶ݊ ுమ + ݈ න ݆஺ே஽(ݕ) ௪ݕ݀
଴  (87)

ሶ݊ ஼்ு = ሶ݊ ைమ + ݈ න ݆஼்ு(ݕ) ௪ݕ݀
଴  (88)

where ݓ = 1஺ே஽ݓ + 2஺ே஽ݓ = 1஼்ுݓ + 2஼்ு is the width of a slice, ݆஺ே஽ and ݆஼்ுݓ  are the molar 

fluxes of water from the membrane to the anode and cathode gas parts as defined by Equations (57) 
and (59) and ሶ݊ ுమ and ሶ݊ ைమare the changes in molar flux of hydrogen and oxygen due to consumption at 

the catalyst as defined by Equations (53) and (55). Once a converged solution for a slice is obtained, 

the sink terms of the anode and cathode channel domains are passed on to the next downstream slice to 

serve as the two source terms. 

3.5. HAN Concept Extendibility 

Assuming no liquid water in the channels and GDL the model is readily applicable to high 

temperature PEM fuel cells (HT-PEM) that typically feature only single phase flow. This is owed to 

the fact that PBI membranes that are used in HT-PEMs feature linear relationship between 

conductivity and relative humidity [38] and no electroosmotic drag [39], making the equations for 

membrane species transport as given in Section 3.2 directly applicable also to the PBI membranes. 

The presented framework of solving the diffusion equation on rectangular definition regions can be 

applied to treat also other phenomena governed by diffusion-type mechanisms such as heat transport, 

multi-component diffusion and Darcy-type flow of liquid water induced by gradients of capillary 

pressure, leading to a comprehensive treatment of also low temperature PEM fuel cells. 

The principles of HAN model have been demonstrated on a simple straight channel fuel cell, 

however, the HAN model can be further extended to model also fuel cells with more complex 

geometries. In serpentine channel geometries the pressure difference between neighbor channel 

menders leads to a bulk gas cross-flow between the meanders, i.e., nonzero flow across the yellow 

plane in Figures 1 and 2 (which is thus no longer a symmetry plane). Having a routine for calculating 

the pressure drop along the channel as given in [33] and noting that the channel pressure directly 

translates to the velocity potential boundary condition, as defined by Equation (24), the velocity field 

of this cross-flow is obtained using the formalism in Section 2.1. This leads to coupling each slice not 

only to its upstream neighbor but also to its two side neighbor slices. 
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4. Simulation Setup 

To make the simulation setup of HAN-FC and CFD models as identical as possible all material and 

operational parameters, with the exception of exchange current density, were set to the same values in 

both HAN-FC and CFD model settings. The parameter defining the effective exchange current density, 

for which the user manual of the CFD software gives insufficient information, was obtained through 

calibration procedure performed on a case of higher operational voltage (low current densities) while 

the comparative analysis was performed for a case of lower operational voltage (high current densities). 

Calibration of HAN-FC for obtaining the parameter of effective exchange current density is described in 

Section 5.1 while other parameters used in HAN-FC and CFD models are summarised in Table 2. 

Table 2. Operational, geometrical and material parameters used in CFD and HAN-FC models. 

Parameter Symbol Value 

Operational voltage ௢ܸ௣ 
0.95 V, 0.9 V, 0.85 V, 
0.8 V, 0.75 V 

Temperature ܶ 343.15 K 

Pressure * 105 × 1.0 ݌ Pa 

Inlet gas velocity (anode and cathode) ݒ෤଴ 0.3 m/s 

saturated water vapour partial pressure at 343.15 K ܿ௦௔௧ 3.12 × 104 Pa 

Inlet gas relative humidity (anode and cathode) ܽ, ܿ/ܿ௦௔௧ 0.5 

H2O(g)/O2 binary diffusion coeff. (at 343.15 K) ** 5−10 × 3.01 ܦ m2/s 

H2O(g)/H2 binary diffusion coeff. (at 343.15 K) ** 4−10 × 1.12 ܦ m2/s 

Coefficient of proportionality to water content of water diffusion 
coefficient in membrane (at 343.15 K) 

ु௪ 2.1 × 10−7 m2/s 

Coefficient of proportionality to water content of proton diffusion 
coefficient in membrane (at 343.15 K) 

ुା 1.6 × 10−8 m2/s 

Membrane sulphonic group concentration ܿ∙ுௌைయ  1900 mol/m3 

GDL gaseous phase volume fraction (anode and cathode) 0.78 ߢ 
GDL tortuosity (anode and cathode) ீܦ/ܦ஽௅ 1.34 

Cathode charge transfer coefficient 0.855 ߙ 
Channel height (anode and cathode) ℎ2 1.5 × 10−3 m 

Half of anode channel width 1ݓ஺ே஽ 2.5 × 10−4 m 

Half of cathode channel width 1ݓ஼்ு 3.75 × 10−4 m 

GDL thickness (anode and cathode) ℎ1 2.85 × 10−4 m 

width of representative unit  4−10 × 7.5 ݓ m 

length of Representative unit  2−10 × 2.7 ܮ m 

Membrane thickness ߴ 3.5 × 10−4 m 

* In CFD this is the value of outlet pressure, maximal deviations from this value anywhere in the 

representative unit are +0.53% and −0.28% justifying assumption V of isobaric HAN-FC; ** In CFD these 

are the mean values since the CFD simulation takes into account the dependence of binary diffusion 

coefficient on the ratio of two the components. However, the relative standard deviation is below 0.09% with 

maximal deviations from the mean value anywhere in the representative unit being +0.45%and −0.26% 

justifying the assumption VI, i.e., the use of component ratio independent diffusion coefficient in HAN-FC. 
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The gas composition was, according to assumption VI, taken as bi-componential, i.e., H2 with H2O(g) for 

the anode and O2 with H2O(g) for the cathode. The parameters for membrane assumed no gas crossover. 

CFD simulation was done using AVL FIRE® v2011 with the “Fuel cell” module (validation of which 

is found in references [40] and [41]). Two meshes differing in meshing density shown in Figure 5 were 

used for simulations. The denser mesh was used for obtaining results with high spatial resolution 

needed for plotting smooth 3D graphs in Section 5. The coarser mesh was used for estimating the 

shortest computational times of a CFD simulation that still gives accurate results on current density. 

Meshing of the representative unit for CFD simulation shown in Figure 5 was done as follows 

(numbers apply to the denser/coarser mesh): the mesh of the representative unit is made of anode and 

cathode side meshes containing equal number of subdivisions. Both GDLs are thus sectioned into 12/6 

sections along GDL thickness ℎ1, 12/6 along the width of representative unit ݓ and both channels are 

sectioned into 12/6 sections along channel height ℎ2, 6/3 along the channel width 1ݓ and the whole 

model is sectioned into 80/40 sections along the direction of gas flow (i.e., along the length of the 

representative unit ܮ). Meshing of the membrane is done internally by the AVL FIRE fuel cell module as 

described in [42] and [33]. AVL FIRE fuel cell module treats the catalyst layers as zero-thickness 

surfaces. The isothermal conditions were obtained by omitting calculation of energy equation. 

Figure 5. CFD simulation mesh of representative unit as presented in Figure 1. Left is the 

coarser mesh, right the denser. Volume elements of cathode channel are coloured blue, 

cathode GDL magenta, anode GDL green and the anode channel red. The same symmetry 

boundary conditions as presented in Figure 1 apply also to CFD simulation settings. 

 

HAN-FC model was programmed in Wolfram Mathematica 9.0.1. In HAN-FC the representative 

unit was sliced into 40 sections (slices) along the direction of gas flow. To study the dependency of 

computational efficiency and accuracy of results on the number of harmonics taken into account in the 

linear combinations of analytic solutions three HAN-FC models differing in the number of harmonics 

taken into account were studied. The three models are labelled HAN3, HAN6 and HAN9 and are defined as: 

• In HAN3 only first 3 modes per each coordinate. (i.e., 3 modes along y and 3 modes along x 

coordinate) are taken into account in harmonics in each gas part computational domain. 
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• In HAN6 first 6 modes per each coordinate are taken into account in harmonics in each gas part 

computational domain. 

• In HAN9 first 9 modes per each coordinate are taken into account in harmonics in each gas part 

computational domain. 

Taking into account a greater number of harmonics brings higher accuracy but also requires longer 

computational times as presented at the end of Subsection 5.2 and in Subsection 5.3. 

5. Calibration and Results 

HAN-FC was calibrated by finding the value of effective exchange current density that leads to the 

best agreement between HAN-FC and CFD results on current density at operational voltage of 0.85 V. 

The HAN-FC model with the so obtained exchange current density parameter was then evaluated 

globally by a comparative plot of the polarisation curve and locally by a detailed comparative analysis 

of spatial distribution of key variables at the operating point of highest current. 

To aid the interpretation of the graphs in the following figures. Figure 6 shows the modelled 

representative unit placed in the coordinate system with respect to which all graphs of CFD and  

HAN-FC results are plotted. It should be noted that the choice of directions and origins of coordinates 

in Figure 6 is such that it enables easy interpretation of graphs in Section 5.2 and differs from the 

choice in Figure 2 or Figure 3 where the coordinate directions and origins are chosen in such a way to 

best suit expressions of governing equations in Section 3. Additionally it should be noted that the gap 

between anode and cathode GDL in Figure 6 does not reflect the thickness of the membrane but only 

the positioning of the meshes of the anode and cathode side in the CFD model as seen in Figure 5. 

Figure 6. Representative unit in coordinate system. Cathode channel is coloured blue, 

cathode GDL magenta, anode GDL green and anode channel red. The central symmetry 

plane of a rib and the symmetry plane between ribs (respectively depicted as green and 

yellowish surfaces in Figure 1) that define representative unit are at y = 0 and at y = 0.75 mm 

respectively. Anode and cathode inlets are at, z = −13.5 mm outlets at z = 13.5 mm and the 

cross-sectional plane midway between inlet and outlet is at z = 0. 
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5.1. Calibration 

At operational voltages of 0.85 V and lower the Butler-Volmer Equation (51) is well approximated 

by the Tafel equation: ݅ = ,൫Φܸܤ ܿ௥, ܿ௣൯ = ݅௘௫ ቆ ܿ௥ܿ௥௘௙ ݁ிఈோ்(஍బି஍) − ቆ ܿ௣ܿ௥௘௙ቇ௦ ݁ି ி(ଵିఈ)ோ் (஍బି஍)ቇ ≅ ݅௘௫ ܿ௥ܿ௥௘௙ ݁ிఈோ்൫஍బି஍൯ (89)

By defining: ݅௘௫∗ = ݅௘௫ ݁ிఈோ்൫஍బି஍⦵൯ (90)

where ݅݁ݔ∗  represents a renormalized current density and Φ⦵ = 1.229 V is the cathode open circuit 

Galvani potential at standard conditions, the Tafel equation can be expressed as: ݅ = ݅௘௫∗ ܿ௥ܿ௥௘௙ ݁ிఈோ்൫஍⦵ି஍൯ (91)

Finding the best fit of HAN-FC to CFD is done by adjusting the parameter ݅0∗  in Equation (91) 

which avoids the need to define the exact value of Φ଴ . The best fit of current density results of  

HAN-FC to those of CFD, graphically depicted in Figure 7, is found at  ݅௘௫∗ =  .ଶ݉/ܣ 0.1195

Figure 7. Best fit of results on current density distribution at 0.85 V of operational voltage. 

Green are CFD results and brown HAN6 results. 

 

5.2. Plots of Comparative Results 

In this subsection a number of comparative results are presented where in all graphs the CFD results 

are coloured green and are obtained using the denser mesh and HAN-FC results are coloured brown 

and are obtained using HAN6 model. At the end of this subsection also a plot comparing results of 

HAN3 and HAN6 is shown. 

Figure 8 shows the polarisation curve as calculated by the CFD and by the HAN-FC where the 

points representing the CFD results are obtained by calculating current density at five predefined 

operational voltages (with all other operational parameters fixed) whereas the points representing the 
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HAN-FC results are obtained by finding the values of voltages that give the same current densities as 

the CFD results. The lowest operational voltage chosen for CFD simulation was 0.75 V, since at  

lower voltages liquid water, which cannot be comprehended by the HAN-FC model, starts occurring at 

the outlets. 

Figure 8. Polarisation curve. Green are CFD results of current density obtained at voltages: 

0.95 V, 0.9 V, 0.85 V, 0.8 V and 0.75 V. Brown are HAN6 results of voltages that give 

current densities that match those of CFD. 

 

Comparison of Figure 7 and Figure 9 shows that the operational voltage of 0.75 V, i.e., the 

operational point with highest current density, leads to considerably different operational conditions 

compared to the calibration case of 0.85 V. All following analyses are done for the operational point 

with the highest current density that fully exposes all governing phenomena that are comprehended in 

governing equations of Section 3. These analyses are thus aimed at validating the capability of  

HAN-FC to accurately treat these governing phenomena in a general straight parallel channel fuel cell. 

As the most important simulation result Figure 9 shows graph of current density distribution. The 

primary objective of a fuel cell simulation is obtaining the net eclectic current at given operational 

conditions and in this respect the close agreement between HAN-FC and CFD results in Figure 9 

speaks of high level of fidelity of the HAN-FC model. However it is instructive to analyse the 

underlying physical phenomena responsible for the shape of plots in Figure 9 and validate HAN-FC 

model under higher level of scrutiny. 

The trend of current density rising with increasing values of ݖ  (i.e., from inlet to outlet), as 

discernible from Figures 9a,b, and rising with increasing values of ݕ, as discernible from Figured 9b,c, 

can be explained by first using the Tafel equation [Equation (91)]. According to this equation the 

current density falls with decreasing reactant surface concentration ܿ௥ (plotted in Figure 10) and rises 

with decreasing cathode Galvani potential Φ (plotted in Figure 11). Since the dependence of current 

density on ܿ௥  is linear and dependence on Φ  is exponential the influence of decrease of Galvani 

potential measuring a few hundredths of a volt, as observed in Figure 11, has a much larger effect than 

the decrease in oxygen concentration of around ten percent as observed in Figure 10. The decrease  

of Galvani potential is, according to Equation (50), equal to decrease of membrane overpotential. A 

decrease in membrane overpotential comes as a consequence of decreased membrane ohmic resistance 

that is inversely proportional to the mean membrane water content [Equation (48)]. Figure 12 shows 
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that the two gas-flows get increasingly more saturated with water vapour on their way from inlet to 

outlet and consequentially also the membrane water content rises from inlet to outlet as discernible 

from Figure 13. Altogether this means that the increase in membrane hydration increases current 

density and indeed the plots of mean water content in Figure 12 and current density in Figure 9a are 

very similar. The trend of the increasing current density on the way from inlet to outlet thus reflects the 

influence of membrane hydration on fuel cell performance. 

Figure 9. Current density distribution at the lowest operational voltage. Green are CFD 

results and brown HAN-FC results. (a) 3D plot of current density distribution over whole 

catalyst surface of the representative unit (b) 2D plot of current density distribution over 

the width of the representative unit at the inlet (z = −13.5 mm), midway (z = 0 mm) and 

outlet (z = 13.5 mm) represented by bottom, middle and top curves respectively;  

(c) Close-up 2D plot of current density distribution over the width of the representative unit 

midway between inlet and outlet. 

 
(a) 

(b) (c) 
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Figure 10. Cathode catalyst surface mole fraction of oxygen ߳(ܱଶ)  at 0.75 V of 

operational voltage. Green plot are CFD results and brown HAN-FC results. 

 

Figure 11. Cathode Galvani potential distribution at 0.75 V of operational voltage. Green 

plot are CFD results and brown HAN-FC results. 

 

Figure 12. Water activity (relative humidity) on the central symmetry plane of a rib. 

Values in the membrane are obtained by interpolating values at the anode and cathode 

GDL/MEA interfaces. 
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Figure 13. Mean membrane water content at 0.75 V of operational voltage. Green plot are 

CFD results and brown HAN-FC results. 

 

Additionally, Figure 13 reveals that the membrane water content rises slightly also with increasing 

values of y. This is explained with the help of Figure 2: Water diffusing from MEA into GDL at lower ݕ values enters GDL#1 domain (as indicated by the left narrower vertical blue arrow) and from there it 

diffuses into the channel domain (as indicated by the wider vertical blue arrow) where the stream of 

gas-flow caries it away. Water diffusing into GDL at higher ݕ  values enters GDL#2 domain (as 

indicated by the right narrower vertical blue arrow) and from there it first has to diffuse into GDL#1 

domain (as indicated by the horizontal blue arrow) before reaching the gas stream in channel domain. 

This leads to a higher water vapour build-up in the GDL#2 domains compared to GDL#1 domains and 

consequently regions of membrane adjacent to GDL#2 domains feature higher water content than 

regions adjacent to GDL#1 domains. This in turn also explains the higher current densities observed at 

higher values of ݕ in Figure 9c. 

All comparative graphs of the MEA variables in the ݖݕ plane presented in Figure 9, 10, 11 and 13 

show close agreement between HAN-FC and CFD results and thus show important agreement of 

results on distribution of cathode Galvani potential and mean membrane water content, shown in 

Figures 11 and 13, that directly reflect the nonlinear phenomena of membrane ohmic resistance, 

electrochemical reaction kinetics and membrane water activity [reflected for example in  

Equations (48), (51) and (68)]. This validates the capability of HAN-FC to accurately treat the coupled 

linear and nonlinear phenomena through the estimation-iteration loop described in Section 3.4.1. 

Furthermore Figure 9b and especially Figure 9c show that HAN-FC with its derivative approximation 

is also capable of accurately capturing variation of variables along the y coordinate. 

It is also valuable to comparatively validate HAN-FC with results on species concentration 

distribution presented in Figures 12 and 14. The brown plot in Figure 14 represents HAN-FC’s full 2D 

analytic solution for water vapour concentration distribution in the slice that is midway between inlet 

and outlet. Figure 15 shows the ݔ component of net molar gas velocity (i.e., component perpendicular 

to membrane) at the GDL/MEA interface. The discontinuity and the notable ondulations in the  

HAN-FC plot in Figure 15 are inherent to the domain approach and the finite number of harmonics 

used in the HAN-FC model. The comparative graphs in Figure 14 and 15 validate the approach of 

splitting diffusion problem into computational domains and finding solutions as linear combinations of 



Energies 2013, 6 5461 

 

 

eigen functions. Figure 12 shows the species concentration distribution on the rib’s central symmetry 

plane and thus shows the variations along the length of the representative unit. The variation of  

HAN-FC’s results along the length of representative unit reflects the variation of the 2D analytic 

solution from slice to slice. Since 2D solutions in consecutive slices depend on the coupling between 

slices via sink and source terms the close agreement between HAN-FC and CFD in Figure 12 validates 

the approach to treating the convective gas-flow with source and sink terms in conjunction with the 1D 

bulk gas-flow model. 

Figure 14. Relative humidity in the slice that is midway between inlet and outlet i.e.,  

z = 0. Green plot are CFD results and brown HAN-FC results. 

 

Figure 15. 2D plot of distribution of the ݔ component of net molar velocity over the width 

of the representative unit at the midway between inlet and outlet (z = 0 mm). 

 

As a CFD simulation result Figure 16 shows a profile of z-component velocity of cathode gas on 

the cross section that is midway between inlet and outlet. It is discernible from this plot that gas  

z-component velocity in GDL is negligible and that the velocity profile in the channel assumes the 

dome shape of laminar flow. This shape of the velocity profile is the same for any cross section 

meaning that only the height of the dome shape varies and that z-component velocity in GDL is always 

negligibly small. Since the same also holds true for anode gas, this justifies assumption IX. 

Overall Figures 9–15 show a very good agreement between CFD and HAN-FC in terms of trends in 

analysed variables and in terms of their absolute values. It has been shown that by calibrating the 

model on a case where the resulting current density is relatively uniform (Figure 7), very good 
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agreement with CFD results were achieved for a case where the variation of current density is 

substantial (Figure 9), confirming the capability of HAN-FC to model coupled 3D species transport 

and electrochemical phenomena with high fidelity. 

Figure 16. Cross-sectional profile of absolute velocity of cathode gas at cross-section 

midway between inlet and outlet as obtained by CFD simulation. 

 

Figure 17 shows a comparison between two analytic HAN-FC solutions for a slice where one takes 

into account three modes along each coordinate within a domain and the other six modes. The two 

analytic solutions are hardly distinguishable from one another with the difference in accuracy being 

noticeable only at the interfaces between computational domains where the analytic solutions for 

domains are sewed together. This means that as little as three modes per coordinate taken into account 

in harmonics of each computational domain already capture the essential features of the concentration 

distribution. Furthermore plots of HAN-FC results in Figures 9–15 stay practically identical when 

plotted using results obtained with HAN3 instead of HAN6 indicating that HAN-FC can give accurate 

results at low computational demands. 

Figure 17. Comparison between HAN6 (brown) and HAN3 (yellow). Close-up of the 

concentration distribution in cathode GDL domains and part of cathode channel domain of 

the slice that is midway between inlet and outlet is shown. 
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5.3. Computational Times 

Table 3 shows computational times for models with different spatial resolution. The spatial 

resolution in case of CFD models is defined by the number of volume elements of the mesh whereas 

the spatial resolution of HAN-FC model is defined by the number of harmonic modes per coordinate 

taken into account in each computational domain. 

Table 3. Calculation times (on a desktop computer). 

Model Resolution No. of iterations * CPU cores used CPU time (s) Total time (s)

CFD(denser) 34,560 vol. el. 10,000 4 38,000 13,000 
CFD(coarser) 4320 vol. el. 5000 4 2400 640 

HAN3 3 modes 1 1 0.85 0.85 
HAN6 6 modes 1 1 3.7 3.7 
HAN9 9 modes 1 1 6.0 6.0 

* Iterations of obtaining solution for whole representative unit. 

The denser CFD mesh features twice as many divisions along each coordinate as coarser one thus 

featuring eight times more volume elements. Larger number of volume elements also requires more 

iterations to reach adequate convergence. The large difference between computational times of  

HAN-FC and those of CFD originates from the fact that CFD requires from a few hundred to a few 

thousand iterations of the solution for the whole mesh to reach convergent results, whereas the 

isothermal and isobaric HAN-FC calculates everything in one go. This single iteration of the solution 

for the whole representative unit is not to be confused with iterations performed within each slice that 

are performed by the estimation-iteration routine for treating nonlinear functions. Typically 5 to 6 of 

these iterations were required in each slice to reach relative accuracy of 10−4 (convergence criteria in 

yellow box in Figure 4). 

Recalling from Figure 17 the high accuracy of the lower resolution HAN-FC together with Table 3 

reveals that HAN-FC gives accurate results at computational times that are two to three orders of 

magnitude shorter than that of CFD. The core of computational operations of HAN-FC is the linear 

algebraic solving for eigen function coefficients, described in Appendix A, which is in the case of 

simulations presented in this paper done using vector algebra as introduced in HAN-ST of [33]. 

Furthermore, the computational times of HAN-FC model evaluated in this paper have a considerable 

margin for additional improvement by programming the model in a programming language such as C 

or Fortran that are more suitable for numerical computation than Mathematica and by executing the 

simulation on multiple CPU cores. 

6. Conclusions 

The paper presented a Hybrid Analytic-Numerical approach to fuel cell modelling (HAN-FC) 

efficiently applied to modelling a realistic straight parallel channel fuel cell. The HAN-FC approach 

efficiently combines three main features: 

• The 1D numerical treatment of gas flow; 
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• The analytic 2D solution for the species concentration profile in the plane perpendicular to the 

gas flow and 

• The electrochemical sub-model. 

The key to the hybrid 3D solution is constructing it as a series of consecutive 2D analytic solution 

that are obtained by splitting the 2D diffusion problem onto separate computational domains which  

on one hand enables modelling of realistic fuel cell geometries and on the other hand gives 

computationally efficient results with high accuracy already at very moderate number of harmonic 

modes taken into account. The efficiency of incorporation of the electrochemical sub-model lies in  

the derivative approximation and estimation-iteration approach and is reflected in the fact that 

electrochemical calculations do not need a separate routine but are performed alongside calculations of 

the nonlinear coupling of water activity in gas to the water activity in membrane. Overall, HAN-FC 

proves to be very accurate and computationally efficient and as such a very promising standalone fuel 

cell model for system level simulations. Further challenges in developing HAN-FC for system level 

simulations remain the treatment of liquid water in GDLs and channels. 
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Appendix A 

A steady state solution for the whole representative unit is made of consecutive steady state 

solutions for each slice. In this Appendix a derivation of the full solution for a slice is presented. First, 

general solutions for the seven computational domains (indicated in Figure 1d) shall be constructed 

and then the full solution shall be obtained by applying appropriate coupling among the seven 

computational domains. The derivation makes the assumptions described in Section 2. 

A.1. Gas Part 

This subsection deals with obtaining the three general solutions for the three computational domains 

of the gas part, schematically depicted in Figure 2, and with coupling of these general solutions. First 

the species transport equation in each computational domain shall be split onto sub-equations, 

following with the construction of the two types of eigen functions: eigen functions dealing with 

species transport induced by the convective transport along the z coordinate (source and sink terms) 

and eigen functions dealing with species transport induced by the boundary conditions at the 

boundaries of the 2D computational domains. Finally general solutions shall be expressed in form of 

Fourier series as linear combinations of eigen functions.  

A.1.1. Diffusion Differential Equation 

2D species molar flux in the xy plane ࢐ can be, analogously to Equation (1), defined as: ࢐ = ܿࢼ − ܿ∇ܦ = ܿ∇ܦ− − ܿ̃∇ܷ (A1)
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where approximation (10) and neglect of any non-potential part of velocity field have been taken  

into account. 

By defining a new quantity ℤ: ℤ = ܷܿ̃ + (A2) ܿܦ

both species transport equations and total gas flow equations are translated into the same diffusion 

equation, namely: 

Gradients of both ܷ and ℤ define vector flows: −∇ܷ = ℤ∇−(A3) ࢼ = (A4) ࢐

which are the gas velocity that measures the net gas flow and the species molar flow respectively. 

Furthermore the zero velocity divergence requirement (8) in the GDL where the z-component velocity 

is zero (ݒ = 0) reads: −∇ࢼ = ∇ଶܷ = 0 (A5)

Equation (13) for species transport in the GDL transforms into the same form when expressed with ℤ: ߲௧ℤ = ∇ଶℤ = 0 (A6)

where the diffusion constant assumes value ீܦ஽௅ and steady state conditions are taken into account 

(i.e., ߲௧ܷ = ߲௧ܿ = 0 ). Similarly the expression for species transport in channel (27) becomes: ߲௧ℤ = ∇ଶℤ + ௦௥௖ݏ − ௦௡௞ݏ = 0 (A7)

Using Equation (8) and finite-difference approximation (26) (i.e., ݈ ௭߲ݒ ≅ ݒ −  ௣௥) the exact sameݒ

form is obtained for velocity potential ܷ in the channel: ∇ࢼ = − ௭߲ݒ ⇒ ∇ଶܷ + ௦௥௖ߪ − ௦௡௞ߪ = 0 (A8)

where the corresponding source and sink terms are defined as ߪ௦௥௖ = ௩೛ೝ௟  and ߪ௦௡௞ = ௩௟ . Since both ܷ 

and ℤ obey the exact same equations, the following derivation of general solutions for gas part shall be 

shown only for ℤ. Furthermore, because Equations (A4), (A6) and (A7) are classical equations of the 

steady state diffusion problem with source and sink terms the quantity ℤ shall in the following be 

referred to as concentration and the corresponding species flux as diffusion. 

In the following derivation the subscript position will be used for indexing eigen functions and their 

corresponding Fourier coefficients, thus the distributions of concentration ℤ and velocity potential ܷ 

in the channel domain,,GDL#1 domain and GDL#2 domain are renamed: 

௖ܷ = ࣛ, ଵܷ = ℬ, ܷଶ = ࣝ (A9)ܿܦ௖ + ܿ̃௖ ௖ܷ = ८, ஽௅ܿଵீܦ + ܿ̃ଵ ଵܷ = ९, ஽௅ܿଶீܦ + ܿ̃ଶܷଶ = ℂ (A10)

Each computational domain in the gas part is coupled to the neighbour domains via the molar flux 

across the boundary reflected in the boundary conditions (17), (18), (21), (23) and (31). Additionally 

the channel domain is also coupled to the two channel domains in the upstream and downstream 

neighbour slices via the source and sink terms [Equations (28) and (29)]. Each of these couplings  

has its own contribution to the inflow (or outflow) of species into (out of) the domain. Thus the 



Energies 2013, 6 5466 

 

 

concentration distributions in the channel domain ८, GDL#1 domain ९ and GDL#2 domain ℂ can be 

split into independent contributions reflecting the influx contribution of each of the couplings: ८(ݔ, (ݕ = ८௦௥௖(ݔ, (ݕ + ८ௗ(௕௧௠)(ݔ, (ݕ − ८௦௡௞(ݔ, ,ݔ)९(A11) (ݕ (ݕ = ९ௗ(௕௧௠)(ݔ, (ݕ + ९ௗ(௥௚௛)(ݔ, (ݕ + ९ௗ(௧௢௣)(ݔ, ,ݔ)ℂ(A12) (ݕ (ݕ = ℂௗ(௕௧௠)(ݔ, (ݕ + ℂௗ(௟௙௧)(ݔ, (ݕ (A13)

where superscript ܿݎݏ denotes the contribution to the concentration distribution in respective domain 

solely from the source term, ݇݊ݏ the contribution solely from the sink term and ݀(ܾ݉ݐ), ݀(݌݋ݐ), ݀(݈݂ݐ) and ݀(݃ݎℎ) the contribution solely from the diffusion from the bottom, top, left and right 

boundaries respectively as seen from the viewpoint of Figure 2. The key idea for making the coupling 

of general solutions in domains computationally efficient is constructing these contributions in such a 

way that each contribution does not interfere with the influx coupling conditions of other contributions. 

By doing this each contribution is fully defined solely by its corresponding influx coupling condition. 

Thus the overall concentration distribution in a domain is a sum of the individual contributions. The 

interdependence of the contributions within a domain is limited to only two conditions: Their sum 

must be a stationary solution (i.e., time independent) and the value of their sum at the boundaries with 

other domains has to couple appropriately to the water activity in these other domains at those boundaries. 

Due to linearity of the diffusion equation, Equation (A7) that applies to the channel domain can 

simply be split into sub equations: ߲८௦௥௖(ݔ, ݐ߲(ݕ = ∇ଶ८௦௥௖(ݔ, (ݕ + ,ݔ)௦௥௖ݏ ,ݔ)८௦௡௞߲(A14) (ݕ ݐ߲(ݕ = ∇ଶ८௦௡௞(ݔ, (ݕ + ,ݔ)௦௡௞ݏ (ݕ (A15)߲८ௗ(௕௧௠)(ݔ, ݐ߲(ݕ = ∇ଶ८ௗ(௕௧௠)(ݔ, (ݕ (A16)

and similarly Equation (A6) that holds for GDL#1 and GDL#2 domains: ߲ॳௗ(ఈ)(ݔ, ݐ߲(ݕ = ∇ଶॳௗ(ఈ)(ݔ, (ݕ (A17)

where ॳ stands for either ९ or ℂ (GDL#1 or GDL#2) and ߙ stands for any of the ܾݐ݂݈ ,݌݋ݐ ,݉ݐ and ݃ݎℎ representing the four boundaries. Equations (A14) and (A15) already reveal that ८ܿݎݏ and ८݇݊ݏ do 

not interfere with each other’s influx coupling condition since ८ܿݎݏ  assumes no outflow and thus  

does not add anything to the ݏ௦௡௞  term and vice-versa for the ८݇݊ݏ. The three contributions to the 

concentration distribution in channel domain satisfy the following boundary conditions: ߲८ௗ(௕௧௠)(ݔ, ݔ߲(ݕ ቤ௫ୀ௛ଵ = ߲८ௗ(௕௧௠)(ݔ, ௕௧௠߲݊(ݕ ቤ௕௧௠ = ݆८,௕௧௠(ݕ) (A18)߲८ௗ(௕௧௠)(ݔ, ௕௧௠!߲݊(ݕ ቤ!௕௧௠ = 0 (A19)߲८௦௥௖(ݔ, ఈ߲݊(ݕ ቤఈ = ߲८௦௡௞(ݔ, ఈ߲݊(ݕ ቤఈ = 0 (A20)
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where ݆८,ܾ݉ݐ is the molar flux into the channel domain from the bottom boundary, ݔ = ℎ1 represents 

the position at the bottom boundary ܾ݉ݐ of the channel domain, !  represents any of the other three ݉ݐܾ

boundaries (i.e., ݐ݂݈݁ ,݌݋ݐ or ݃ݎℎ) and ܾ݊݉ݐܾ!݊ ,݉ݐ and ݊ߙ represent coordinates normal to boundaries ܾ݉ݐ, ! ߙ and ݉ݐܾ  (as discernible from Figure 2 ݊௕௧௠ = ݊௧௢௣ = ݔ  and ݊௟௙௧ = ݊௥௚௛ =  Similar to .(ݕ

Equations (A18) and (A19) the influx contributions in GDL satisfy the following boundary conditions:  ߲ॳௗ(ఈ)(ݔ, ఈ߲݊(ݕ ቤఈ = ݆ॳ,ఈ(ݕ)ߢ (A21)߲ॳௗ(ఈ)(ݔ, ఈ!߲݊(ݕ ቤ!ఈ = 0 (A22)

where ݆ॳ,ߙ is the molar flux into the respective GDL domain from boundary ߙ. Equations (A21) and (A22) 

state that each contribution from an influx from a boundary has a nonzero derivative normal to the 

boundary only at that one boundary and Equation (A20) states that the channel flow contributions (i.e., ८ܿݎݏ and ८݇݊ݏ) have zero normal gradient to all four boundaries. In this way all of the flux that enters 

the relevant gas part domain from boundary ߙ, schematically represented by the blue arrows in Figure 

2, is accounted for by its respective ८݀(ܾ݉ݐ) or ॳ݀(ߙ) concentration distribution contribution and both 

channel flow contributions assume no species influx from any of the four boundaries. In other words ८ܿݎݏ and ८݇݊ݏ do not interfere with influx coupling conditions of ८ௗ(௕௧௠), and ॳௗ(!ఈ)does not interfere 

with ॳௗ(ఈ). The requirement that ८ௗ(௕௧௠) also does not interfere with the influx coupling conditions of ८ܿݎݏ and ८݇݊ݏ shall be fulfilled after constructing eigen functions for diffusive flux from boundary in 

Subsection A.1.2.2. 

Referring to the boundary conditions for the overall concentration distribution in each gas part 

domain defined in Section 3.1 the molar fluxes into gas part domains are identified as: ݆८,௕௧௠ = ݆ଵ→௖ (A23)݆९,௧௢௣ = −݆ଵ→௖ , ݆९,௕௧௠ = ݆ெ→ଵ, ݆९,௥௚௛ = ݆ଶ→ଵ (A24)݆ℂ,௕௧௠ = ݆ெ→ଶ, ݆ℂ,௟௙௧ = −݆ଶ→ଵ (A25)

It should be noted that while steady state condition requires expressions in diffusion Equations (A6) 

and (A7) to equal zero the expressions in their individual sub Equations (A14), (A15), (A16) and 

(A17) by themselves do not necessarily equal zero. Only the corresponding sum of the sub equations 

needs to equal zero. 

A.1.2. Eigen Functions 

Any distribution of concentration that satisfies the sub equation and boundary conditions  

for a specific contribution can be represented by a linear combination of eigen functions of the  

Laplace ∇ଶ operator. There are two types of sub equations: the ones that include sorce/sink term, i.e., 

Equations (A14) and (A15), and the ones that do not, i.e., Equations (A16) and (A17), leading to two 

types of families of eigen functions. Respectively, the two types are named eigen functions for channel 

flow terms and eigen functions for flow from boundary. 
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A.1.2.1. Eigen Functions for Channel Flow Terms 

The source and sink terms apply only to channel domains thus the eigen functions for channel flow 

terms are defined only in the channel domain. The two channel flow contributions ८௦௥௖ and ८௦௡௞ are 

governed by diffusion Subequations (A14) and (A15) and satisfy boundary conditions (A20). Let ߰௠,௡(ݔ,  be an eigen function of the ∇ଶ operator satisfying the boundary conditions (A20), than a (ݕ

general channel flow concentration distribution satisfying these boundary conditions can be written as: ८௖௡௩(ݔ, (ݕ = ෍ ८௠,௡௖௡௩ ߰௠,௡(ݔ, ௠,௡(ݕ (A26)

where the superscript ܿ݊ݒ stands for either ܿݎݏ or ݇݊ݏ and ८௠,௡௖௡௩  are the coefficients of the series. Any 

function defined on ℎ2 × 1ݓ  definition region of channel domain as defined in Figure 2 can be 
expressed as a linear combination of ψ௠,௡(ݔ, ,ݔ)௖௡௩ݏ eigen functions and so can be (ݕ ,ݔ)௖௡௩ݏ :(ݕ (ݕ = ෍ ௠,௡௖௡௩߰௠,௡௠,௡ݏ ,ݔ) (ݕ (A27)

where ݏ௠,௡௖௡௩  are the coefficients. Let ߣ௠,௡  be the eigen value of ߰௠,௡(ݔ, (ݕ , than Equations (A14)  

(or (A15)) and (A27) give: ߲८௖௡௩(ݔ, ݐ߲(ݕ = ∇ଶ ෍ ८௠,௡௖௡௩ ߰௠,௡(ݔ, ௠,௡(ݕ + ෍ ,ݔ)௠,௡௖௡௩߰௠,௡ݏ =௠,௡(ݕ ෍ ௠,௡८௠,௡௖௡௩ߣ ߰௠,௡(ݔ, ௠,௡(ݕ + ෍ ,ݔ)௠,௡௖௡௩߰௠,௡ݏ ௠,௡(ݕ  (A28)

If all eigen functions have nonzero eigen values (ߣ௠,௡ ≠ 0)  steady state solution 
డ८೎೙ೡడ௧ = 0  is 

obtained when: ८௠,௡௖௡௩ = − ௠,௡ߣ௠,௡௖௡௩ݏ (A29)

leading to: ८௖௡௩(ݔ, (ݕ = − ෍ ௠,௡ߣ௠,௡௖௡௩ݏ ߰௠,௡(ݔ, ௠,௡(ݕ (A30)

However, when ݏ௖௡௩(ݔ, ,ݔ)contains among its components also the ߰௭௘௥௢ (ݕ  eigen function with (ݕ

the eigen value ߣ௭௘௥௢ = 0  than its corresponding coefficient ८௭௘௥௢௖௡௩  in ८௖௡௩(ݔ, (ݕ  needs special 
treatment which will be presented after first defining the complete family of ߰௠,௡  eigen functions 

which are: ߰௠,௡(ݔ, (ݕ = cos ቀ݊ ℎ2ߨ ቁݔ cos ቀ݉ 1ݓߨ ቁݕ (A31)

with the definition region ℎ1 < ݔ < ℎ ∧  0 < ݕ < 1ݓ , as discernible from Figure 2. ߰௠,௡  are 

numbered by a double index with ݊ numbering modes in ݔ coordinate and ݉ numbering modes in y 

coordinate. The zero gradient normal to the boundary required by (A20) is reflected in the choice of cos and modes with wavelengths of multiples of ℎ2 and 1ݓ leading to zero normal derivative at all  

the boundaries. 
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Setting ݉ = ݊ = 0 gives the eigen function ߰଴,଴(ݔ, (ݕ = 1 which, having the eigen value of zero, is 

identified as the aforementioned ߰௭௘௥௢ eigen function. The source (or sink) term ݏ௖௡௩(ݔ,  specifies (ݕ

the ݖ-component convective flow of species into (or out of) the channel domain. With the exception of ߰଴,଴ all ߰௠,௡ harmonics have zero average on the definition region meaning that the corresponding ݏ௠,௡௖௡௩߰௠,௡(ݔ, (ݕ  components of ݏ௖௡௩(ݔ, (ݕ  have zero net inflow (or outflow) contribution. The 

exception is the ݏ଴,଴௖௡௩߰଴,଴(ݔ, (ݕ  component that defines how much species overall is convectively 

entering (exiting) the channel domain along the ݖ-coordinate. With constant net inflow (outflow) the ८௖௡௩ contribution rises (falls) linearly with time as is revealed by reducing Equation (A14) [or (A15)] 
onto the ߰଴,଴(ݔ, ߲ :component (ݕ ቀ८଴,଴௖௡௩߰଴,଴(ݔ, ݐቁ߲(ݕ = ଶߘ ቀ८଴,଴௖௡௩߰଴,଴(ݔ, ቁ(ݕ + ,ݔ)଴,଴௖௡௩߰଴,଴ݏ (ݕ ⇒  ߲८଴,଴௖௡௩߲ݐ ߰଴,଴(ݔ, (ݕ = 0 + ,ݔ)଴,଴௖௡௩߰଴,଴ݏ (ݕ ⇒ ߲८଴,଴௖௡௩߲ݐ = ଴,଴௖௡௩ݏ (A32)

Equation (A32) is solved by an ansatz ८଴,଴௖௡௩ = ८௧௖௡௩ݐ + ८௜௡௧௚௖௡௩  with a simple solution for ८௧௖௡௩: ८௧௖௡௩ = ଴,଴௖௡௩ݏ (A33)

The definition of the remaining integration constant ८௜௡௧௚௖௡௩  is left for later when it will be treated 

together with the integration constants of other contributions. Altogether ८௖௡௩(ݔ, ,ݔ)can be expressed as: ८௖௡௩ (ݕ ,ݕ (ݐ = ෍ ८௠,௡௖௡௩ ߰௠,௡(ݔ, ௠,௡௠∧௡ஷ଴(ݕ + ൫८௧௖௡௩ ݐ + ८௜௡௧௚௖௡௩ ൯߰଴,଴(ݔ, (ݕ
= − ෍ ௠,௡ߣ௠,௡௖௡௩ݏ ߰௠,௡(ݔ, ௠,௡௠∧௡ஷ଴(ݕ + ݐ ଴,଴௖௡௩ݏ + ८௜௡௧௚௖௡௩  (A34)

where the latter expression acknowledges that ߰଴,଴(ݔ, (ݕ = 1. The second last term in (A34) contains 

explicit time dependence which may seem to work against finding a steady state solution, however this 

equation applies to one concentration distribution contribution not the total concentration distribution 

and since a steady state solution of the total concentration distribution in a domain is sought this leads 

to the requirement that the time dependant terms of all the contributions must cancel each other out. 

Before defining this condition more concretely the other type of eigen functions needs to be constructed. 

A.1.2.2. Eigen Functions for Flow from Boundary 

The flux from boundary gives rise to six contributions (pertaining to the three different gas  

part domains): ८ௗ(௕௧௠), ९ௗ(௕௧௠), ९ௗ(௧௢௣), ९ௗ(௥௚௛), ℂௗ(௕௧௠), ℂௗ(௟௙௧). The six families of eigen functions 

behind this six contributions are practically the same differing only in their orientation or dimensions 

of their definition regions. Thus, as an example, only the family of eigen functions for ९ௗ(௧௢௣) will be 

derived in this subsection with the other five given in Appendix B. The ९ௗ(௧௢௣) contribution is 

governed by Equation (A17) and satisfies boundary conditions (A21) and (A22). Let ݆९,௧௢௣(ݕ) be the 

molar flux of species from the top boundary into the GDL#1 domain as defined by this boundary 

condition, than, expressed as linear combination of cos harmonics i.e., a cos Fourier series,  ݆௧௢௣(ݕ) reads: 
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݆९,௧௢௣(ݕ) = ෍ ݆௠९,௧௢௣ cos ቀ݉1ݓߨ ቁஶݕ
௠ୀ଴ (A35)

where ݆௠९,௧௢௣ are the corresponding coefficients. Let ߮௠९,௧௢௣(ݔ,  be an eigen function satisfying the (ݕ

boundary condition: ߲߮௠९,௧௢௣(ݔ, ௧௢௣!߲݊(ݕ ቤ!௧௢௣ = 0 

ߢ   ߲߮௠९,௧௢௣(ݔ, ݔ߲(ݕ ቤ௫ୀ௛ଵ = ߢ ߲߮௠९,௧௢௣(ݔ, ௧௢௣߲݊(ݕ ቤ௧௢௣ = cos ቀ݉1ݓߨ ቁ (A36)ݕ

then a linear combination of eigen functions: ९ௗ(௧௢௣)(ݔ, (ݕ = ෍ ९௠ௗ(௧௢௣)߮௠९,௧௢௣(ݔ, ஶ(ݕ
௠ୀ଴ (A37)

with: ९௠ௗ(௧௢௣) = ݆௠९,௧௢௣ (A38)

satisfies the boundary condition: ߢ ߲९ௗ௙௙(௧௢௣)(ݔ, ݔ߲(ݕ ቤ௫ୀ௛ଵ = ෍ ݆௠९,௧௢௣ cos ቀ݉1ݓߨ ቁஶݕ
௠ୀ଴ = ݆९,௧௢௣(ݕ) (A39)

Let, for ݉ ≠ 0, the ߮௠९,௧௢௣ satisfy also the stationary diffusion equation: ߲߮௠९,௧௢௣߲ݐ = ∇ଶ߮௠९,௧௢௣ = 0 (A40)

The latter implies that for ݉ ≠ 0 all ߮௠९,௧௢௣ eigen functions have zero eigen value. Here again the case 

of ݉ = 0 is special and will be dealt with separately. The family of eigen functions ߮௠९,௧௢௣(ݔ, ,(ݕ ݉ ≠ 0 

satisfying boundary conditions (A21) and (A22) is constructed in the following way: 

߮௠९,௧௢௣(ݔ, (ݕ = cosh ቀ݉1ݓߨ ቁݔ cos ቀ݉1ݓߨ ߢቁݕ cosh ቀ݉ߨℎ11ݓ ቁ (A41)

with the definition region 0 < ݔ < ℎ1 ∧  0 < ݕ < 1ݓ  as discernible from Figure 2. ߮९݉,݌݋ݐ  being 

harmonics of the type cos(݇ݕ) cosh(݇ݔ) indeed have eigen values of zero ൫∇ଶ߮௠९,௧௢௣ = 0, ݉ ≠ 0൯, 

again the exception being the ݉ = 0 case. 

In the special case of  ݉ = 0, i.e., the constant term in expression (A35) for the molar flux of 

species from the top boundary, there can be no nonzero steady state solution. The rationale is similar to 

the case of ߰଴,଴: All the cos ቀ௠గ௪ ݉ ቁ components, withݕ ≠ 0, in ݆९,௧௢௣(ݕ) have zero net contribution 

to the flow of species from the top boundary into the GDL#1 domain (the average of cos is zero). The 

only term in the Fourier series of ݆९,௧௢௣(ݕ) that has nonzero average is the constant term which is the 

one with index ݉ = 0 . Thus the ݉ = 0  term is the only one that accounts for the net species inflow. 

Again, since ९ௗ(௧௢௣) assumes no exchange of species across other three boundaries, the constant net 
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inflow means that ९ௗ(௧௢௣) contribution rises linearly with time. Therefore, Equation (A40) does not 

hold for ݉ = 0 because the linear rising with time means a constant nonzero temporal derivative, giving: ߲߮଴९,௧௢௣߲ݐ = ∇ଶ߮଴९,௧௢௣ = ߱९,௧௢௣ (A42)

where ߱९,݌݋ݐ is a geometrical factor to be defined after constructing ߮0९,݌݋ݐ. The boundary conditions 

(A21) and (A22) for ߮0९,ݔ)݌݋ݐ, ,ݔ)read: ߲߮଴९,௧௢௣ (ݕ ௧௢௣!߲݊(ݕ ቤ!௧௢௣ = 0, ߢ ߲߮଴९,௧௢௣(ݔ, ݔ߲(ݕ ቤ௫ୀ௛ଵ = 1 (A43)

and the solution for ߮0९,݌݋ݐ satisfying conditions (A42) and (A43) is constructed as a sum of a spatial 

part that is independent of time and a temporal part independent of space: ߮଴९,௧௢௣(ݔ, ,ݕ (ݐ = ℎ1ଶߢଶݔ + ߦ + ߱९,௧௢௣ݐ = ߮଴,௦௣௖९,௧௢௣(ݔ, (ݕ + ߦ + ߱९,௧௢௣ݐ (A44)

where ߦ  is an integration constant and the spatial part ߮଴,௦௣௖९,௧௢௣(ݔ, (ݕ  and temporal part ߱९,ݐ݌݋ݐ  are 

defined as: ߮଴,௦௣௖९,௧௢௣(ݔ, (ݕ = ℎ1ଶߢଶݔ (A45)߱९,௧௢௣ = ߢ2 ℎ1ଶ (A46)

Summing all up Equation (A37) in more detail reads: ९ௗ(௧௢௣)(ݔ, ,ݕ (ݐ = ෍ ९௠ௗ(௧௢௣)߮௠९,௧௢௣(ݔ, ஶ(ݕ
௠ୀ଴ = 

= ෍ ९௠ௗ(௧௢௣)߮௠९,௧௢௣(ݔ, ஶ(ݕ
௠ୀଵ + ९଴ௗ(௧௢௣)൫߮଴,௦௣௖९,௧௢௣(ݔ, (ݕ + ߱९,௧௢௣ݐ൯ + ९௜௡௧௚ௗ(௧௢௣) (A47)

where: ९௜௡௧௚ௗ(௧௢௣) = ९଴ௗ(௧௢௣)ߦ
(A48)

The integration constant ९௜௡௧௚ௗ(௧௢௣) is, together with other ९௠ௗ(௧௢௣) coefficients, defined in the process of 

obtaining the full solution for a slice by coupling general solutions of domains. 

The derivation of family of eigen functions for ९ௗ(௧௢௣) has been shown as an example of family of 

eigen functions for flow from boundaries and, as discernible from expressions (B1) to (B6) in 

Appendix B, all eigen functions for boundary inflow contributions with ݉ ≠ 0 are of the ܿݏ݋ −  ℎݏ݋ܿ

type having eigen values of zero. The zero eigen values also mean that in the channel domain the eigen 

functions for influx from the bottom boundary, i.e., the ८ௗ(௕௧௠)contribution, do not interfere with the 

influx coupling conditions of ८௖௡௩ since, due to their Laplace being zero, adding them to ८௦௥௖ or ८௦௡௞ 

has no influence on Equation (A14) or (A15). The only interfering components are the ones with the 

temporal term pertaining to the ݉ = 0 eigen function which is dealt with in the next subsection. 
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A.1.2.3. Additional Conditions for Sum of all Contributions in a Domain 

Each contribution contains two terms (the integration constant and the time dependant term)  

that must satisfy additional conditions when all contributions in a domain are put together. All 

contributions in a domain bring about integration constants that amount to: ८௜௡௧௚ = ८௜௡௧௚௦௥௖ − ८௜௡௧௚௦௡௞ + ८௜௡௧௚ௗ(௕௧௠)
(A49)९௜௡௧௚ = ९௜௡௧௚ௗ(௕௧௠) + ९௜௡௧௚ௗ(௧௢௣) + ९௜௡௧௚ௗ(௥௚௛)
(A50)ℂ௜௡௧௚ = ℂ௜௡௧௚ௗ(௕௧௠) + ℂ௜௡௧௚ௗ(௟௙௧)
(A51)

Since only the overall integration constant in each domain is relevant for the full solution for a slice, 

its value can be arbitrary distributed among its contributions. The following is chosen:  ८௜௡௧௚ = −८௜௡௧௚௦௡௞ , ९௜௡௧௚ = ९௜௡௧௚ௗ(௥௚௛), ℂ௜௡௧௚ = ℂ௜௡௧௚ௗ(௟௙௧) ८௜௡௧௚௦௥௖ = ८௜௡௧௚ௗ(௕௧௠) = ९௜௡௧௚ௗ(௕௧௠) = ९௜௡௧௚ௗ(௧௢௣) = ℂ௜௡௧௚ௗ(௕௧௠) = 0 
(A52)

Using expressions (A29), (A33) and (A34) and applying the pattern of expression (A47) to obtain 

expressions for other contributions of flux from boundary the general solutions for contributions in the 

three domains read: 

• Channel domain ८௦௥௖(ݔ, ,ݕ (ݐ = ෍ ८௠,௡௦௥௖ ߰௠,௡(ݔ, ௠,௡௠∧௡ஷ଴(ݕ + ८௧௦௥௖ ݐ
(A53)

८௦௡௞(ݔ, ,ݕ (ݐ = ෍ ८௠,௡௦௡௞߰௠,௡(ݔ, ௠,௡௠∧௡ஷ଴(ݕ + ८௧௦௡௞ ݐ − ८௜௡௧௚ 
(A54)

८ௗ(௕௧௠)(ݔ, ,ݕ (ݐ = ෍ ८௠ௗ(௕௧௠)߮௠८,௕௧௠(ݔ, ஶ(ݕ
௠ୀଵ + ८଴ௗ(௕௧௠)൫߮଴,௦௣௖८,௕௧௠(ݔ, (ݕ + ߱८,௧௢௣ݐ൯ (A55)

• GDL#1 domain ९ௗ(௧௢௣)(ݔ, ,ݕ (ݐ = ෍ ९௠ௗ(௧௢௣)߮௠९,௧௢௣(ݔ, ஶ(ݕ
௠ୀଵ + ९଴ௗ(௧௢௣)൫߮଴,௦௣௖९,௧௢௣(ݔ, (ݕ + ߱९,௧௢௣ݐ൯ (A56)

९ௗ(௕௧௠)(ݔ, ,ݕ (ݐ = ෍ ९௠ௗ(௕௧௠)߮௠९,௕௧௠(ݔ, ஶ(ݕ
௠ୀଵ + ९଴ௗ(௕௧௠)൫߮଴,௦௣௖९,௕௧௠(ݔ, (ݕ + ߱९,௕௧௠ݐ൯ (A57)

९ௗ(௥௚௛)(ݔ, ,ݕ =(ݐ ෍ ९௡ௗ(௥௚௛)߮௡९,௥௚௛(ݔ, ஶ(ݕ
௡ୀଵ + ९଴ௗ(௥௚௛)൫߮଴,௦௣௖९,௥௚௛(ݔ, (ݕ + ߱९,௥௚௛ݐ൯ + ९௜௡௧௚ (A58)

• GDL#2 domain ℂௗ(௕௧௠)(ݔ, ,ݕ (ݐ = ෍ ℂ௠ௗ(௕௧௠)߮௠ℂ,௕௧௠(ݔ, ஶ(ݕ
௠ୀଵ + ℂ଴ௗ(௕௧௠)൫߮଴,௦௣௖ℂ,௕௧௠(ݔ, (ݕ + ߱ℂ,௕௧௠ݐ൯ (A59)



Energies 2013, 6 5473 

 

 

ℂௗ(௟௙௧)(ݔ, ,ݕ (ݐ = ෍ ℂ௡ௗ(௟௙௧)߮௡ℂ,௟௙௧(ݔ, ஶ(ݕ
௡ୀଵ + ℂ଴ௗ(௟௙௧)൫߮଴,௦௣௖ℂ,௟௙௧ ,ݔ) (ݕ + ߱ℂ,௟௙௧ݐ൯ + ℂ௜௡௧௚ (A60)

The diffusion Equation (A7) [or (A6)], being a steady state equation, requires that its solution 

contains no time dependence. This means that the contributions in a domain that do contain time 

dependence by themselves add together in such a way that this time dependence vanishes. In order to 

satisfy the steady state condition for the overall solution of concentration distribution in a gas part 

domain the temporal parts of the contributions in a domain cancel each other out: ߲८(ݔ, ݐ߲(ݕ = ߲ቀ८௧௦௥௖ݐ − ८௧௦௡௞ݐ + ८଴ௗ(௕௧௠)߱८,௧௢௣ݐቁ߲ݐ = 0 (A61)

߲९(ݔ, ݐ߲(ݕ = ߲ ቀ९଴ௗ(௧௢௣)߱९,௧௢௣ݐ + ९଴ௗ(௕௧௠)߱९,௕௧௠ݐ + ९଴ௗ(௥௚௛)߱९,௥௚௛ݐቁ߲ݐ = 0 (A62)

߲ℂ(ݔ, ݐ߲(ݕ = ߲ቀℂ଴ௗ(௕௧௠)߱ℂ,௕௧௠ݐ + ℂ଴ௗ(௟௙௧)߱ℂ,௟௙௧ݐቁ߲ݐ = 0 (A63)

leading to the following conditions for coefficients: ८௧௦௥௖ − ८௧௦௡௞ + ८଴ௗ(௕௧௠)߱८,௧௢௣ = 0 (A64)९଴ௗ(௧௢௣)߱९,௧௢௣ + ९଴ௗ(௕௧௠)߱९,௕௧௠ + ९଴ௗ(௥௚௛)߱९,௥௚௛ = 0 (A65)ℂ଴ௗ(௕௧௠)߱ℂ,௕௧௠ + ℂ଴ௗ(௟௙௧)߱ℂ,௟௙௧ = 0 (A66)

Satisfying conditions (A64), (A65) and (A66) is crucial for obtaining a physically meaningful 

steady state solution presented in Section A.3 that deals with algebraic manipulation. Identical 

derivation applies also to the total gas velocity field  ࢼ : equations for ܷ in the three gas part domains 

are obtained by substituting ८, ९, and ℂ with ࣛ, ℬ and ࣝ in the derivation. 

A.2. MEA Domain 

A general solution for water concentration and flux in membrane is obtained using Equations (42) 

and (43) taking into account that Λ஺ே஽, Λ஼்ு are functions of ܽ஺ே஽(ݕ) and ܽ஼்ு(ݕ): Λ(ݔ, (ݕ = ටݔߴ Λଶ൫ܽ஺ே஽(ݕ)൯ + ቀ1 − ቁݔߴ Λଶ൫ܽ஼்ு(ݕ)൯ (A67)

݆௪(ݕ) = ݀௪ ቀΛଶ൫ܽ஺ே஽(ݕ)൯ − Λଶ൫ܽ஼்ு(ݕ)൯ቁߴ + ݊ௗ௥௚ ܨ(ݕ)݅  (A68)

From Equations (A68) and (68) it follows that ݆௪  is linear in ݅(ݕ) and nonlinear in ܽ(ݕ)ܦܰܣ and ܽ(ݕ)ܪܶܥ. In order to couple ݆௪  to other variables using linear algebra the nonlinear dependence is 

linearised with the derivative approximation described in Section 3.4.1. The following paragraph gives 

derivative approximation specifically for ݆௪. 

First ܽ(ݕ)ܪܶܥܽ , (ݕ)ܦܰܣ and ݅(ݕ) are represented with Fourier series:  ܽா௅஼(ݕ) = ෍ ܽ௞ா௅஼ cos ൬݇ݓߨ ൰ஶݕ
௞ୀ଴  (A69)
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(ݕ)݅ = ෍ ݅௞ cos ൬݇ݓߨ ൰ஶݕ
௞ୀ଴ (A70)

where ܥܮܧ  stands for either ܦܰܣ or ܪܶܥ . Second, recognising ܽ଴ா௅஼ = ܽா௅஼(ݕ)തതതതതതതതതത as the average argതതതത 

defined in (84) and recognising ∑ ܽ௞ா௅஼ cos ቀ௞గ௪ ቁஶ௞ୀଵݕ = Δܽா௅஼(ݕ) as Δ arg(ݕ) defined in (82) then, 

assuming that deviation is small and taking predictor value for ܽ଴ா௅஼, the derivative approximation for ݆௪(ݕ) in Equation (A68) reads: ݆௪(ݕ) = ෍ ݆௞௪ cos ൬݇ݓߨ ൰ஶݕ
௞ୀ଴ ≈ 

௪ߴ݀ ቌቀΛଶ(ܽ଴஺ே஽) − Λଶ(ܽ଴஼்ு)ቁ + ߲൫Λଶ(ܽ)൯߲ܽ ቤ௔ୀ௔బಲಿವ ෍ ܽ௞஺ே஽ cos ൬݇ݓߨ ൰ஶݕ
௞ୀଵ− ߲൫Λଶ(ܽ)൯߲ܽ ቤ௔ୀ௔బ಴೅ಹ ෍ ܽ௞஼்ு cos ൬݇ݓߨ ൰ஶݕ

௞ୀଵ ቍ 

+ ݊ௗ௥௚ܨ ෍ ݅௞ cos ൬݇ݓߨ ൰ஶݕ
௞ୀ଴

(A71)

leading to the following equations for Fourier coefficients: 

݆௞௪ = ۔ۖەۖ
ۓ ௪ߴ݀ ቀΛଶ(ܽ଴஺ே஽) − Λଶ(ܽ଴஼்ு)ቁ + ݊ௗ௥௚ܨ ݅଴, ݇ = ௪ߴ0݀ ൭߲൫Λଶ(ܽ)൯߲ܽ ቤ௔ୀ௔బಲಿವ ܽ௞஺ே஽ − ߲൫Λଶ(ܽ)൯߲ܽ ቤ௔ୀ௔బ಴೅ಹ ܽ௞஼்ு൱ + ݊ௗ௥௚ܨ ݅௞, ݇ ≠ 0  (A72)

This equation is solved assuming a known ݅(ݕ). The variable ݅(ݕ) itself comes as a solution of set 

of Equations (79) and (80) which are also nonlinear and the derivative approximation is done in similar 

manner as follows. The ohmic current in Equation (80) is expressed as ohmic function Ω(ݕ) defined as: Ω(ݕ) = Φ(ݕ) − ௢ܸ௣ݎ ቆΛ൫ܽ஺ே஽(ݕ)൯ + Λ൫ܽ஼்ு(ݕ)൯2 ቇ = Ω൫Φ(ݕ), ܽ஺ே஽(ݕ), ܽ஼்ு(ݕ)൯  
(A73)

Fourier series of Φ(ݕ) is defined as: Φ(ݕ) = ෍ Φ௞ cos ൬݇ݓߨ ൰ஶݕ
௞ୀ଴ (A74)

and again Φ଴ = Φ(ݕ)തതതതതതത  and ∑ Φ௞ cos ቀ௞గ௪ ቁஶ௞ୀଵݕ = ΔΦ(ݕ) are recognised as argതതതത  and Δ arg(ݕ) 

respectively. Assuming given values for ܽ଴஺ே஽ and ܽ଴஼்ு  and predictor value for Φ଴  as defined in 

Equation (84), the Fourier series for Butler-Volmer function, defined in Equation (51), and Fourier 

series for ohmic resistance function, defined in (A73), are expressed with derivative 

approximation: 
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(ݕ)ܤ = ,(ݕ)൫Φܤ ܽ஼்ு(ݕ)൯ = ෍ ௞ܤ cos ൬݇ݓߨ ൰ஶݕ
௞ୀ଴ ≈ 

,Φ଴)ܤ ܿ଴஼்ு) + Φ ฬ߲ܤ߲ ஍ୀ஍బ௔ୀ௔బ಴೅ಹ ෍ Φ௞ cos ൬݇ݓߨ ൰ஶݕ
௞ୀଵ + ஼்ு߲ܽܤ߲ ฬ ஍ୀ஍బ௔ୀ௔బ಴೅ಹ ෍ ܽ௞஼்ு cos ൬݇ݓߨ ൰ஶݕ

௞ୀଵ  (A75)

Ω(ݕ) = ෍ Ω௞ cos ൬݇ݓߨ ൰ஶݕ
௞ୀ଴  

≈  Ω(Φ଴, ܽ଴஺ே஽, ܽ଴஼்ு) + ߲Ω߲Φ ฬ ஍ୀ஍బ௔ಲಿವୀ௔బಲಿವ௔಴೅ಹୀ௔బ಴೅ಹ
 ෍ Φ௞ cos ൬݇ݓߨ ൰ஶݕ
௞ୀଵ

+ ߲Ω߲ܽ஺ே஽ ฬ ஍ୀ஍బ௔ಲಿವୀ௔బಲಿವ௔಴೅ಹୀ௔బ಴೅ಹ
 ෍ ܽ௞஺ே஽ cos ൬݇ݓߨ ൰ஶݕ
௞ୀଵ

+ ߲Ω߲ܽ஼்ு ฬ ஍ୀ஍బ௔ಲಿವୀ௔బಲಿವ௔಴೅ಹୀ௔బ಴೅ಹ
 ෍ ܽ௞஼்ு cos ൬݇ݓߨ ൰ஶݕ
௞ୀଵ  

(A76)

Acknowledging from Equations (79), (80) and (A73) that ݅(ݕ) = Ω(ݕ) =  :the equations for Fourier coefficients ݅௞ and Φ௞ are obtained (ݕ)ܪܶܥܽ and (ݕ)ܦܰܣܽ and assuming given (ݕ)ܤ

For ݇ = ,Φ଴)ܤ :0 ܽ଴஼்ு) = ݅଴ = Ω(Φ଴஼்ு, ܽ଴஺ே஽, ܽ଴஼்ு) 

for ݇ > Φ ฬ߲ܤ߲ :0 ஍ୀ஍బ௔ୀ௔బ಴೅ಹ Φ௞஼்ு + ஼்ு ฬ߲ܽܤ߲ ஍ୀ஍బ௔ୀ௔బ಴೅ಹ ܽ௞஼்ு = 

݅௞ = ߲Ω߲Φ ฬ ஍ୀ஍బ௔ಲಿವୀ௔బಲಿವ௔಴೅ಹୀ௔బ಴೅ಹ
 Φ௞஼்ு + ߲Ω߲ܽ஺ே஽ ฬ ஍ୀ஍బ௔ಲಿವୀ௔బಲಿವ௔಴೅ಹୀ௔బ಴೅ಹ

 ܽ௞஺ே஽ + ߲Ω߲ܽ஼்ு ฬ ஍ୀ஍బ௔ಲಿವୀ௔బಲಿವ௔಴೅ಹୀ௔బ಴೅ಹ
 ܽ௞஼்ு 

(A77)

A.3. Coupling of Linear Combinations of Eigen Functions 

Computational feasibility requires a finite number of harmonics taken into account in the Fourier 
series and series of ߰௠,௡ and ߮௠. Greater number of harmonics taken into account improves accuracy 

but lengthens computational times. Let N +1 be the maximal number of modes in ݕ coordinate and also 

the maximal number of modes in ݔ  coordinate, i.e., both index ݉ and index ݊ running from 0 to N 

(Generally the maximal number of ݊ and ݉ indices need not be the same, however this was chosen in 
this case for simplicity). This means the total number of ߰௠,௡ harmonics is (N + 1)2 and the total number 

of ߮௠ and ߮௡ harmonics is N + 1. Thus, in sums of the following expressions the infinity as the upper 

summation limit shall be replaced by N (or 2N + 1) in case of MEA domain as explained in A.3.1). 

There are two types of couplings: 
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• Couplings between domains of a slice that require continuity of water activity and molar  

fluxes and 

• Couplings between channel domains in consecutive slices that require computing sink terms 

that serve as source terms in neighbour downstream slices. 

A.3.1. Couplings between Domains of a Slice 

The coupling of two domains sharing a boundary is done by equalising the expressions for  

water activity and molar flux in each of the two domains at their common boundary. The boundary 

values are expressed as Fourier series and thus, the coupling is done by equalising the corresponding  

Fourier coefficients. 

First let us deal with coupling of the molar fluxes which is due to construction of ߮௠  very 

straightforward. At the boundary between channel domain and GDL#1 domain the continuity 

condition, according Equations (A23) and (A24), is expressed as: ݆८,௕௧௠(ݕ) = −݆९,௧௢௣(ݕ) (A78)

which, following the example in Equation (A35), leads to equality of Fourier coefficients: ݆௠८,௕௧௠ = −݆௠९,௧௢௣ (A79)

and thus according to Equation (A38) this means: ८௠ௗ(௕௧௠) = −९௠ௗ(௧௢௣) (A80)

and similarly for the boundary between GDL#1 and GDL#2 domains: ९௡ௗ(௥௚௛) = −ℂ௡ௗ(௟௙௧) (A81)

Analogously, the same coupling conditions apply to the total gas velocity field giving: ࣛ௠ௗ(௕௧௠) = −ℬ௠ௗ(௧௢௣) (A82)

and: ℬ௡ௗ(௥௚௛) = −ࣝ௡ௗ(௟௙௧) (A83)

At the boundary between MEA and the two GDL domains the molar flux is, according to  

Equations (71) or (72) and (A24) and (A25), defined as: ݆ா௅஼(ݕ) = ቊ݆९,௕௧௠(ݕ) 0 < ݕ < (ݕ)1݆ℂ,௕௧௠ݓ 1ݓ < ݕ < (A84) ݓ

where the Fourier series corresponding to the three molar fluxes are: 

݆ா௅஼(ݕ) = ෍ ݆௞ா௅஼ cos ൬݇ݓߨ ൰ଶேାଵݕ
௞ୀ଴  (A85)

݆९,௕௧௠(ݕ) = ෍ ݆௠९,௕௧௠ cos ቀ݉1ݓߨ ቁேݕ
௠ୀ଴  (A86)
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݆ℂ,௕௧௠(ݕ) = ෍ ݆௠ℂ,௕௧௠ cos ቆ݉2ݓߨ ݕ) − ቇே(1ݓ
௠ୀ଴  (A87)

The Fourier coefficients ݆௠९,௕௧௠ and ݆௠ℂ,௕௧௠ are expressed in terms of coefficients ݆௞ா௅஼: 

݆௠९,௕௧௠ = ෍ ং௞,௠ ݆௞ா௅஼ଶேାଵ
௞ୀ଴ , ݆௠ℂ,௕௧௠ = ෍ ঃ௞,௠ ݆௞ா௅஼ଶேାଵ

௞ୀ଴  (A88)

with: ং௞,௠ = ଵ௪ଵ ׬ cos ቀ௞గ௪ ቁݕ cos ቀ௞గ௪ଵ ቁݕ ௪ଵ଴ݕ݀    ঃ௞,௠ = 2ݓ1 න cos ൬݇ݓߨ ൰ݕ cos ൭݇2ݓߨ ݕ) − ൱(1ݓ ௪ݕ݀
௪ଵ  

(A89)

The corresponding boundary condition for the velocity field is, according to Equations (19), (20) 

and (71) to (74), expressed as: ݆ா௅஼(ݕ) − ሶ݊ ௥(ݕ) = ቊߚ९,௕௧௠(ݕ) 0 < ݕ < (ݕ)ℂ,௕௧௠ߚ1ݓ 1ݓ < ݕ <  ݓ

 

(A90)

where ሶ݊ ௥  represents ሶ݊ ுమ on the anode side and ሶ݊ ைమ on the cathode side, ߚ  is, analogously to ݆ , the 

component of velocity perpendicular to the boundary. The corresponding Fourier series are: 

ሶ݊ ௥(ݕ) = ෍ ݊௞௥ cos ൬݇ݓߨ ൰ଶேାଵݕ
௞ୀ଴  (A91)

݆९,௕௧௠(ݕ) = ෍ ݆௠९,௕௧௠ cos ቀ݉1ݓߨ ቁேݕ
௠ୀ଴  (A92)

݆ℂ,௕௧௠(ݕ) = ෍ ݆௠ℂ,௕௧௠ cos ቆ݉2ݓߨ ݕ) − ቇே(1ݓ
௠ୀ଴  (A93)

The Fourier coefficients ߚ௠९,௕௧௠ and ߚ௠ℂ,௕௧௠ are expressed in terms of coefficients ݆௞ா௅஼ and ݊௞௥ : 

௠९,௕௧௠ߚ = ෍ ং௞,௠ (݆௞ா௅஼ − ݊௞௥ )ଶேାଵ
௞ୀ଴ , ௠ℂ,௕௧௠ߚ = ෍ ঃ௞,௠ (݆௞ா௅஼ − ݊௞௥ )ଶேାଵ

௞ୀ଴  (A94)

In order for Equations (A88) to have a unique nontrivial solution the number of ݆௞ா௅஼ terms must be 

the sum of the number of ݆௠९,௕௧௠ terms and the number of ݆௠ℂ,௕௧௠ terms, i.e., index ݇ must run over 

twice as many values as index ݉.  

Coupling the water activity is less straightforward. First let us deal with continuity of water activity. 

Water vapour concentration in the domains of the gas parts is, according to Equation (A2) obatined as: ܿ = ℤ − ܦܷ̃ܿ  (A95)

At the boundary between channel domain and GDL#1 domain the water vapour concentration 

(which is proportional to water activity) is from the two sides expressed as: 
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• From channel domain side taking into account the definition of ߰௠,௡ in Equation (A31): ܿ௖(ݔ = ℎ݃, (ݕ = ८(ݔ = ℎ݃, (ݕ − ܿ̃௖ࣛ(ݔ = ℎ݃, =ܦ(ݕ ܦ1 ൭෍ ቀ८௠,௡௦௡௞ + ८௠,௡௦௥௖ − ܿ̃௖൫ࣛ௠,௡௦௡௞ + ࣛ௠,௡௦௥௖ ൯ቁ cos ቀ݉1ݓߨ +ቁ௠,௡ݕ ෍ ቀ८௠ௗ(௕௧௠) − ܿ̃௖ࣛ௠ௗ(௕௧௠)ቁ cos ቀ݉1ݓߨ ቁேݕ
௠ୀ଴ ൱ 

(A96)

• And from GDL#1 side taking into account the definition of ߶௠ in Equation (A41): ܿଵ(ݔ = ℎ݃, (ݕ = ९(ݔ = ℎ݃, (ݕ − ܿ̃ଵℬ(ݔ = ℎ݃, =ܦ(ݕ ஽௅ீܦ1 ۇۉ ෍ ቀ९௠ௗ(௧௢௣) − ܿ̃ଵℬ௠ௗ(௧௢௣)ቁ cos ቀ݉1ݓߨ ቁஶݕ
௠ୀ଴+ ෍ ९௠ௗ(௕௧௠) − ܿ̃ଵℬ௠ௗ(௕௧௠)cosh ቀ݉ߨℎ11ݓ ቁ cos ቀ݉1ݓߨ ቁஶݕ

௠ୀ଴+ ෍ ቀ९௡ௗ(௥௚௛) − ܿ̃ଵℬ௡ௗ(௥௚௛)ቁ (−1)௡ cosh ቀ݊ߨℎ1 ቁcoshݕ ቀ݊1ݓߨℎ1 ቁஶ
௡ୀଵ

+ ቀ९଴ௗ(௥௚௛) − ܿ̃ଵℬ଴ௗ(௥௚௛)ቁ 1ଶݓ஽௅ீܦߢଶݕ + ൫९௜௡௧௚ − ܿ̃ଵℬ௜௡௧௚൯൲ 

(A97)

In order to be able to equalize the upper two expressions on the level of equalising the Fourier 

coefficients also the cosh ቀ௡గ௛ଵ  :ଶ functions have to be expressed in terms of Fourier seriesݕ ቁ andݕ

cosh ቀ݊ߨℎ1 ቁݕ = ෍ 1ఓ௡ܻܥܥ cos ቀ1ݓߨߤ ቁெݕ
ఓୀ଴  (A98)

ଶݕ = ෍ 1ఓܻܥܵ cos ቀ1ݓߨߤ ቁெݕ
ఓୀ଴  (A99)

where: 1ܻܥܥఓ௡ = 1ݓ1 න cosh ቀ݊ߨℎ1 ቁݕ cos ቀ1ݓߨߤ ቁ௪ଵݕ
଴ (A100) ݕ݀

1ఓܻܥܵ = 1ݓ1 න ଶݕ cos ቀ1ݓߨߤ ቁ௪ଵݕ
଴ (A101) ݕ݀

Having all terms in form of Fourier series the equation for Fourier coefficients thus reads: 
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ܦ஽௅ீܦ ൭෍൫(८ − ܿ̃௖ࣛ)ఓ,௡௦௡௞ + (८ − ܿ̃௖ࣛ)ఓ,௡௦௥௖൯௡ + (८ − ܿ̃௖ࣛ)ఓௗ(௕௧௠)൱
= (९ − ܿ̃ଵℬ)ఓௗ(௧௢௣) + (९ − ܿ̃ଵℬ)ఓௗ(௕௧௠)cosh ቀ݉ߨℎ11ݓ ቁ+ ෍(९ − ܿ̃ଵℬ)௡ௗ(௥௚௛) (−1)௡1ܻܥܥఓ௡cosh ቀ݊1ݓߨℎ1 ቁஶ

௡ୀ଴ + (९ − ܿ̃ଵℬ)଴ௗ(௥௚௛) +1ଶݓ஽௅ீܦߢ1ఓܻܥܵ (९ − ܿ̃ଵℬ)௜௡௧௚ 

(A102)

where abbreviated notation (ℤ − ܷܿ̃)௕௔ = ℤ௕௔ − ܷܿ̃௕௔  is used. Similar equation is obtained for the 

boundary between GDL#1 and GDL#2 domains: (ℂ − ܿ̃ଶࣝ)ఔௗ(௟௙௧) + ෍ (ℂ − ܿ̃ଶࣝ)௡ௗ(௕௧௠) (−1)௠ାఔ1ܺܥܥఔ௠cosh ቀ݉ߨℎ12ݓ ቁெ
௠ୀଵ+ (ℂ − ܿ̃ଶࣝ)଴ௗ(௥௚௛) (−1)ఔܵ1ܺܥఔீܦߢ஽௅ℎ1ଶ + (ℂ − ܿ̃ଶࣝ)௜௡௧௚= (९ − ܿ̃ଵℬ)ఔௗ(௥௚௛) + ෍ (९ − ܿ̃ଵℬ)௠ௗ(௧௢௣) (−1)௠1ܺܥܥఔ௠cosh ቀ݉ߨℎ11ݓ ቁெ

௠ୀଵ+ (९ − ܿ̃ଵℬ)଴ௗ(௧௢௣) ஽௅ℎ1ଶீܦߢ1ఔܺܥܵ + ෍ (९ − ܿ̃ଵℬ)௡ௗ(௕௧௠) (−1)௠ାఔ1ܺܥܥఔ௠cosh ቀ݉ߨℎ11ݓ ቁெ
௠ୀଵ+ (९ − ܿ̃ଵℬ)଴ௗ(௥௚௛) (−1)ఔܵ1ܺܥఔீܦߢ஽௅ℎ1ଶ + (९ − ܿ̃ଵℬ)௜௡௧௚ 

(A103)

where 1ܺܥܥఔ௠ and ܵ1ܺܥఔ, similar to 1ܻܥܥఓ௡ and ܵ1ܻܥఓ, are defined in Equations (B7) and (B8) in 

Appendix B. 

At the boundary between MEA domain and the two GDL domains the activity to concentration 

relationship (67) is taken into account and same principle as in Equation (A88) is used for coupling 

one MEA domain to two GDL domains: 

GDL#1 domain 

ܿ௦௔௧ ෍ ং௞,௠ ܽ௞ா௅஼ ଶெାଵ
௞ୀ଴ = (९ − ܿ̃ଵℬ)ఓௗ(௕௧௠) + (९ − ܿ̃ଵℬ)ఓௗ(௧௢௣)cosh ቀ݉ߨℎ11ݓ ቁ+ ෍(९ − ܿ̃ଵℬ)௡ௗ(௥௚௛) 1ఓ௡coshܻܥܥ ቀ݊1ݓߨℎ1 ቁஶ

௡ୀ଴ + (९ − ܿ̃ଵℬ)଴ௗ(௥௚௛) +1ଶݓ஽௅ீܦߢ1ఓܻܥܵ (९ − ܿ̃ଵℬ)௜௡௧௚ 

(A104)
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GDL#2 domain 

ܿ௦௔௧ ෍ ঃ௞,௠ ܽ௞ா௅஼ଶெାଵ
௞ୀ଴ = (ℂ − ܿ̃ଶࣝ)ఓௗ(௕௧௠) + ෍(ℂ − ܿ̃ଶࣝ)௡ௗ(௟௙௧) (−1)ఓ2ܻܥܥఓ௡cosh ቀ݊2ݓߨℎ1 ቁஶ

௡ୀ଴+ (ℂ − ܿ̃ଶࣝ)଴ௗ(௟௙௧) (−1)ఓܵ2ܻܥఓீܦߢ஽௅2ݓଶ + (ℂ − ܿ̃ଶࣝ)௜௡௧௚ 

(A105)

where 2ܻܥܥఔ௠ and ܵ2ܻܥఔ, similar to 1ܻܥܥఓ௡ and ܵ1ܻܥఓ, are defined in Appendix B. 

The pressure continuity conditions that apply to the net gas velocity field are somewhat simpler. 

Following Equation (A63) continuity of pressure at the boundary between the two GDL domains 

requires that: 

ࣝఔௗ(௟௙௧) + ෍ ࣝ௡ௗ(௕௧௠) (−1)௠ାఔ1ܺܥܥఔ௠cosh ቀ݉ߨℎ12ݓ ቁெ
௠ୀଵ + ࣝ଴ௗ(௥௚௛) (−1)ఔܵ1ܺܥఔீܦߢ஽௅ℎ1ଶ + ࣝ௜௡௧௚

= ℬఔௗ(௥௚௛) + ෍ ℬ௠ௗ(௧௢௣) (−1)௠1ܺܥܥఔ௠cosh ቀ݉ߨℎ11ݓ ቁெ
௠ୀଵ + ℬ଴ௗ(௧௢௣) ஽௅ℎ1ଶீܦߢ1ఔܺܥܵ

+ ෍ ℬ௡ௗ(௕௧௠) (−1)௠ାఔ1ܺܥܥఔ௠cosh ቀ݉ߨℎ11ݓ ቁெ
௠ୀଵ + ℬ଴ௗ(௥௚௛) (−1)ఔܵ1ܺܥఔீܦߢ஽௅ℎ1ଶ + ℬ௜௡௧௚ 

(A106)

According to Equation (24) the continuity of pressure at the boundary between the GDL and the 

channel requires:  ℬ(ݔ = ℎ݃, (ݕ = 0 ⇒= ℬఓௗ(௧௢௣) + ९ఓௗ(௕௧௠)cosh ቀ݉ߨℎ11ݓ ቁ + ෍ ℬ௡ௗ(௥௚௛) (−1)௡1ܻܥܥఓ௡cosh ቀ݊1ݓߨℎ1 ቁஶ
௡ୀ଴+ ℬ଴ௗ(௥௚௛) 1ଶݓ஽௅ீܦߢ1ఓܻܥܵ + ℬ௜௡௧௚ = 0 

(A107)

The fact that zero can be put on the right hand side of Equation (A107) comes from the fact that the 

velocity field potential ܷ is defined to an arbitrary constant, i.e. ࢼ = ∇ܷ = ∇(ܷ +  Having .(ݐ݊ܽݐݏ݊݋ܿ

uniquely defined velocity potential at the GDL/channel boundary no other additional coupling for 

velocity potential needs to be defined. 

A.3.2. Coupling between Slices 

Coupling between slices is done by taking the sink terms of upstream slice to serve as the source 

terms of the slice in question. This is done by having a general expression for the sink term for anode 

and cathode side and evaluating it once the full 2D solution for the slice in question is obtained and 

passing it to the next downstream slice. 
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Using Equations (A11), (A53), (A54) and (A55) and taking into account that steady state condition 

means the sum of temporal terms is zero the sink term in (29) is expressed as: ݏ௦௡௞(ݔ, (ݕ = 1݈ ,ݔ)ݒ ,ݔ)௖ܿ(ݕ (ݕ
= 1݈ ,ݔ)෤ Υݒ ۈۉ (ݕ

ۇ ෍ ൫(८ − ܿ̃௖ࣛ)௠,௡௦௡௞ + (८ − ܿ̃௖ࣛ)௠,௡௦௥௖ ൯߰௠,௡(ݔ, −௠,௡௠∧௡ஷ଴(ݕ (८ − ܿ̃௖ࣛ)௜௡௧௚ + ෍ (८ − ܿ̃௖ࣛ)௠ௗ(௕௧௠)߮௠८,௕௧௠(ݔ, ஶ(ݕ
௠ୀଵ+ (८ − ܿ̃௖ࣛ)଴ௗ(௕௧௠)߮଴,௦௣௖८,௕௧௠(ݔ,  ൲(ݕ

(A108)

Expressing the product ݔ)ݑ, ,ݔ)௠,௡߰(ݕ as Fourier series: 1݈ (ݕ Υ(ݔ, ,ݔ)௠,௡߰(ݕ (ݕ = ෍ Χఓ,ఔ௠,௡߰ఓ,ఔ(ݔ, ெ(ݕ
ఓ,ఔ  (A109)

where: Χఓ,ఔ௠,௡ = ℎ2 1ݓ 1݈ න න Υ(ݔ, ,ݔ)௠,௡߰(ݕ ,ݔ)ఓ,ఔ߰(ݕ ௛(ݕ
௛ଵ ௪ଵݔ݀

଴ (A110) ݕ݀

and expressing the product ݔ)ݑ, ,ݔ)௠८,௕௧௠߮(ݕ ,ݔ)(ݕ as Fourier series: 1݈ (ݕ Υ(ݔ, ,ݔ)௠८,௕௧௠߮(ݕ (ݕ = ෍ Ξఓ,ఔ௠ ߰ఓ,ఔ(ݔ, ெ(ݕ
ఓ,ఔ  (A111)

where: Ξఓ,ఔ௠ = ℎ2 1ݓ 1݈ න න Υ(ݔ, ,ݔ)௠८,௕௧௠߮(ݕ ,ݔ)ఓ,ఔ߰(ݕ ௛(ݕ
௛ଵ ௪ଵݔ݀

଴ (A112) ݕ݀

the sink term can be expressed in terms of Fourier series as:  ݏ௦௡௞(ݔ, (ݕ = ෍ ,ݔ)௠,௡௦௡௞߰௠,௡ݏ =௠,௡௠∧௡ஷ଴(ݕ ෤ݒ  ൮ ෍ ൫(८ − ܿ̃௖ࣛ)௠,௡௦௡௞ + (८ − ܿ̃௖ࣛ)௠,௡௦௥௖ ൯ ෍ Χఓ,ఔ௠,௡߰ఓ,ఔ(ݔ, ெ(ݕ
ఓ,ఔ௠,௡௠∧௡ஷ଴+ ෍ (८ − ܿ̃௖ࣛ)௠ௗ(௕௧௠) ෍ Ξఓ,ఔ௠ ߰ఓ,ఔ(ݔ, ெ(ݕ

ఓ,ఔ
ஶ

௠ୀଵ ቍ 

(A113)

Renaming ݉, ݊ on the left side of equals sign into ߤ,  gives equation for Fourier coefficients ߥ
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ఓ,ఔ௦௡௞ݏ = ෤ݒ  ൭෍൫(८ − ܿ̃௖ࣛ)௠,௡௦௡௞ + (८ − ܿ̃௖ࣛ)௠,௡௦௥௖ ൯Χఓ,ఔ௠,௡௠,௡ + ෍ (८ − ܿ̃௖ࣛ)௠ௗ(௕௧௠)Ξఓ,ఔ௠ஶ
௠ୀଵ ൱ (A114)

giving a general expression for the sink term Fourier coefficients. 

A similar expression is obtained for ߪ௦௡௞(ݔ,  :term from Equation (A8) (ݕ

,ݔ)௦௡௞ߪ (ݕ = ,ݔ)ݒ ݈(ݕ = ෤ݒ ෍ Χఓ,ఔ଴,଴߰ఓ,ఔ(ݔ, ெ(ݕ
ఓ,ఔ = ෍ ,ݔ)௠,௡௦௡௞߰௠,௡ߪ ௠,௡௠∧௡ஷ଴(ݕ  (A115)

with the equation for Fourier coefficients: ߪఓ,ఔ௦௡௞ = ෤ݒ Χఓ,ఔ଴,଴ (A116)

A.4. Analytic 2D Solution for a Slice 

Equations (A29), (A38), (A72), (A77), (A80), (A81), (A88), (A94), (A102), to (A107), (A114) and 

(A116) that equate Fourier coefficients represent a set of linear algebraic equations. While assuming 

given Fourier coefficients of the anode and cathode source terms and given predictor values for 

derivative approximation solving this set of equations for all remaining Fourier coefficients gives a 

unique nontrivial solution. Solving of this set of equations is repeated with re-evaluated predictors as 

described in Section 3.4 and Figure 4. The computational efficiency of HAN-FC depends to some 

extent also on the approach used for solving this set of equations. The computational times reported in 

Table 3 were achieved using vector algebra as described in reference [33]. 

Appendix B 

In this appendix the definitions of eigen functions and Fourier coefficients that were left out from 

Appendix A for brevity reasons are given. 

List of all types of eigen functions for diffusion from boundary: 

߮௠८,௕௧௠(ݔ, (ݕ =
۔ۖەۖ
coshۓ ൬݉1ݓߨ (ℎ − ൰(ݔ cos ቀ݉1ݓߨ ቁcoshݕ ቀ݉ߨℎ21ݓ ቁ , ݉ > 0(ℎ − ଶℎ2ଶ(ݔ , ݉ = 0 , ߱८,௕௧௠ = 2ℎ2ଶ (B1)

߮௠९,௧௢௣(ݔ, (ݕ = ۔ۖەۖ
coshۓ ቀ݉1ݓߨ ቁݔ cos ቀ݉1ݓߨ ߢቁݕ cosh ቀ݉ߨℎ11ݓ ቁ , ݉ > 0

ℎ1ଶߢଶݔ , ݉ = 0 , ߱९,௧௢௣ = ℎ1ଶ (B2) ߢ2

߮௠९,௕௧௠(ݔ, (ݕ =
۔ۖەۖ
coshۓ ൬݉1ݓߨ (ℎ1 − ൰(ݔ cos ቀ݉1ݓߨ ߢቁݕ cosh ቀ݉ߨℎ11ݓ ቁ , ݉ > 0(ℎ1 − ℎ1ଶߢଶ(ݔ , ݉ = 0 , ߱९,௕௧௠ = ℎ1ଶ (B3) ߢ2
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߮௡९,௥௚௛(ݔ, (ݕ = ۔ۖەۖ
cosۓ ቀ݊ߨℎ1 ቁݔ cosh ቀ݊ߨℎ1 ߢቁݕ cosh ቀ݊1ݓߨℎ1 ቁ , ݊ > 0

1ଶݓ஽௅ீܦߢଶݕ , ݊ = 0 , ߱९,௥௚௛ = 1ଶ (B4)ݓ ߢ2

߮௡ℂ,௟௙௧(ݔ, (ݕ =
۔ۖەۖ
cosۓ ቀ݊ߨℎ1 ቁݔ cosh ൬݊ߨℎ1 ݓ) − ߢ൰(ݕ cosh ቀ݊2ݓߨℎ1 ቁ , ݊ > ݓ)0 − 2ଶݓߢଶ(ݕ , ݊ = 0 , ߱ℂ,௟௙௧ = 2ଶ (B5)ݓ ߢ2

߮௠ℂ,௕௧௠(ݔ, (ݕ =
۔ۖەۖ
coshۓ ൬݉2ݓߨ (ℎ1 − ൰(ݔ cos ቀ݉2ݓߨ ݓ) − ߢቁ(ݕ cosh ቀ݉ߨℎ12ݓ ቁ , ݉ > 0(ℎ1 − ℎ1ଶߢଶ(ݔ , ݉ = 0 , ߱९,௕௧௠ = ℎ1ଶ (B6) ߢ2

List of definitions of Fourier coefficient of Fourier series of square function and cosh function: 1ܺܥܥఔ௠ = 1ℎ1 න cosh ቀ݉1ݓߨ ቁݔ cos ቀߨߥℎ1 ቁ௛ଵݔ
଴ (B7) ݔ݀

1ఔܺܥܵ = 1ℎ1 න ଶݔ cos ቀߨߥℎ1 ቁ௛ଵݔ
଴ (B8) ݔ݀

2ఓ௡ܻܥܥ = 1ℎ1 න cosh ቀ݊ߨℎ1 ቁݕ cos ቀ2ݓߨߤ ቁ௪ݕ
௪ଵ (B9) ݕ݀

2ఓܻܥܵ = 2ݓ1 න ݕ) − ଶ(1ݓ cos ቆ2ݓߨߤ ݕ) − ቇ௪(1ݓ
௪ଵ (B10) ݕ݀

References 

1. Hellman, H.L.; van den Hoed, R. Characterising fuel cell technology: Challenges of the 

commercialisation process. Int. J. Hydrog. Energy 2007, 32, 301–315. 

2. Ly, H.; Birgersson, E.; Vynnycky, M. Fuel cell model reduction through the spatial smoothing of 

flow channels. Int. J. Hydrog. Energy 2012, 37, 7779–7795. 

3. Haraldsson, K.; Wipke, K. Evaluating PEM fuel cell system models. J. Power Sources 2004, 126, 

88–97. 

4. Cheddie, D.; Munroe, N. Review and comparison of approaches to proton exchange membrane 

fuel cell modeling. J. Power Sources 2005, 147, 72–84. 

5. Gurau, V.; Mann, J.A., Jr. A Critical overview of computational fluid dynamics multiphase 

models for proton exchange membrane fuel cells. SIAM J. Appl. Math. 2009, 70, 410–454. 

6. Meng, H. A three-dimensional PEM fuel cell model with consistent treatment of water transport 

in MEA. J. Power Sources 2006, 162, 426–435. 

7. Sivertsen, B.R.; Djilali, N. CFD-based modelling of proton exchange membrane fuel cells.  

J. Power Sources 2005, 141, 65–78. 



Energies 2013, 6 5484 

 

 

8. Al-Baghdadi, M.A.R.S. Three-dimensional computational fluid dynamics model of a tubular-shaped 

ambient air-breathing proton exchange membrane fuel cell. J. Power Energy 2008, 222, 569–585. 

9. Wang, Y.; Wang, C.Y. Ultra large-scale simulation of polymer electrolyte fuel cells. J. Power 

Sources 2006, 153, 130–135. 

10. Campanari, S.; Manzolini, G.; de la Iglesa, F.G. Energy analysis of electric vehicles using batteries or 

fuel cells through well-to-wheel driving cycle simulations. J. Power Sources 2009, 186, 464–477. 

11. Moore, R.M.; Hauer, K.H.; Ramaswamy, S.; Cunningham, J.M. Energy utilization and efficiency 

analysis for hydrogen fuel cell vehicles. J. Power Sources 2006, 159, 1214–1230. 

12. Xue, X.; Smirnova, A.; England, R.; Sammes, N. System level lumped-parameter dynamic 

modeling of PEM fuel cell. J. Power Sources 2004, 133, 188–204. 

13. Lee, C.; Yang, J. Modeling of the Ballard-Mark-V proton exchange membrane fuel cell with 

power converters for applications in autonomous underwater vehicles. J. Power Sources 2011, 

196, 3810–3823. 

14. Pathapati, P.R.; Xue, X.; Tang, J. A new dynamic model for predicting transient phenomena in a 

PEM fuel cell system. Renew. Energy 2005, 30, 1–22. 

15. Moore, R.M.; Hauer, K.H.; Friedman, D.; Cunningham, J.; Badinnarayanan, P.; Ramaswamy, S.; 

Eggert, A. A dynamic simulation tool for hydrogen fuel cell vehicles. J. Power Sources 2005, 

141, 272–285. 

16. Boulon, L.; Agbossou, K.; Hissel, D.; Sicard, P.; Bouscayrol, A.; Pérad, M.C. A macroscopic PEM 

fuel cell model including water phenomena for vehicle simulation. Renew. Energy 2012, 46, 81–91. 

17. Hatti, M.; Tioursi, M. Dynamic neural network controller model of PEM fuel cell system.  

Int. J. Hydrog. Energy 2009, 34, 5015–5021. 

18. Hinaje, M.; Raël, S.; Noiying, P.; Nguyen, D.A.; Davat, B. An equivalent electrical circuit model of 

proton exchange membrane fuel cells based on mathematical modelling. Energies 2012, 5, 2724–2744. 

19. Tirnovan, R.; Giurgea, S.; Miraoui, A.; Cirrincione, M. Corresponding author contact information, 

Surrogate model for proton exchange membrane fuel cell (PEMFC). J. Power Sources 2008, 175, 

773–778. 

20. Zhong, Z.-D.; Zhu, X.-J.; Cao, G.-Y. Modeling a PEMFC by a support vector machine. J. Power 

Sources 2006, 160, 293–298. 

21. Gurau, V.; Barbir, F.; Liu, H. An analytical solution of a half-cell model for PEM fuel cells.  

J. Electrochem. Soc. 2000, 147, 2468–2477. 

22. Maggio, G.; Recupero, V.; Pino, L. Modeling polymer electrolyte fuel cells: An innovative 

approach. J. Power Sources 2001, 101, 275–286. 

23. Springer, T.E.; Zawodzinski, T.A.; Gottesfeld, S. Polymer electrolyte fuel cell model.  

J. Electrochem. Soc. 1991, 138, 2334–2342. 

24. Tirnovan, R.; Giurgea, S.; Miraoui, A.; Cirrincione, M. Proton exchange membrane fuel cell modelling 

based on a mixed moving least squares technique. Int. J. Hydrog. Energy 2008, 33, 6232–6238. 

25. Iftikar, M.U.; Riu, D.; Druart, F.; Rosini, S.; Bultel, Y.; Retière, N. Dynamic modeling of proton 

exchange membrane fuel cell using non-integer derivatives. J. Power Sources 2006, 160, 1170–1182. 

26. Wohr, M.; Bolwn, K.; Schnurnberger, W.; Fischer, M.; Neubrand, W.; Eigenberger, G. Dynamic 

modeling and simulation of a polymer membrane fuel cell including mass transport limitation.  

Int. J. Hydrog. Energy 1998, 23, 213–218. 



Energies 2013, 6 5485 

 

 

27. Xue, X.D.; Cheng, K.W.E.; Sutanto, D. Unified mathematical modelling of steady-state and dynamic 

voltage—Current characteristics for PEM fuel cells. Electrochim. Acta 2006, 52, 1135–1144. 

28. Ee, S.L.; Birgersson, E. Two-dimensional approximate analytical solutions for the direct liquid 

fuel cell. J. Electrochem. Soc. 2011, 158, 1224–1234. 

29. Kim, G.; Sui, P.C.; Shah, A.A.; Djilali, N. Reduced-dimensional models for straight-channel 

proton exchange membrane fuel cells. J. Power Sources 2010, 195, 3240–3249. 

30. Esmaili, Q.; Ranjbar, A.A.; Abdollahzadeh, M. Numerical simulation of a direct methanol fuel 

cell through a 1D + 1D approach. Int. J. Green Energy 2013, 10, 190–204. 

31. Ling, C.Y.; Ee, S.L.; Birgersson, E. Three-dimensional approximate analytical solutions for direct 

liquid fuel cells. Electrochimica Acta 2013, 109, 305–315. 

32. Chang, P.; Kim, G.-S.; Promislow, K.; Wetton, B. Reduced dimensional computational models of 

polymer electrolyte membrane fuel cell stacks. J. Comput. Phys. 2007, 223, 797–821. 

33. Tavčar, G.; Katrašnik, T. A computationally efficient hybrid 3D analytic-numerical approach for 

modelling species transport in a proton exchange membrane fuel cell. J. Power Sources 2013, 

236, 321–340. 

34. Berg, P.; Promislow, K.; Pierre, J.; Stumper, J.; Wetton, B. Water management in PEM fuel cells. 

J. Electrochem. Soc. 2004, 151, 341–353. 

35. Cussler, E.L. Diffusion: Mass Transfer in Fluid Systems, 3rd ed.; Cambridge University Press: 

Cambridge, UK, 2009. 

36. O’Hayre, R.; Cha, S.-W.; Colella, W.G.; Prinz, F.B. Fuel Cell Fundamentals; Wiley: Hoboken, 

NJ, USA, 2009. 

37. Wang, Y.; Feng, X. Analysis of reaction rates in the cathode electrode of polymer electrolyte fuel 

cell I. Single-layer electrodes. J. Electrochem. Soc. 2008, 155, 1289–1295. 

38. He, R.; Qingfeng L.; Xiao, G.; Bjerrum, N.J. Proton conductivity of phosphoric acid doped 

polybenzimidazole and its composites with inorganic proton conductors. J. Membr. Sci. 2003, 

226, 169–184. 

39. Qingfeng, L.; Hjuler, H.A.; Bjerrum, N.J. Phosphoric acid doped polybenzimidazole membrane: 

Physiochemical characterisation and fuel cell applications. J. Appl. Electrochem. 2001, 31, 773–779. 

40. Fink, C.; Fouquet, N. Three-dimensional simulation of polymer electrolyte membrane fuel cells 

with experimental validation. Electrochim. Acta 2011, 56, 10820–10831. 

41. Fouquet, N.; Fink, C.; Tatschl, R. 3D Modeling of PEM Fuel Cell with AVL Fire. In Proceedings 

of the AVL Advanced Simulation Technologies International User Conference 2011, Graz, 

Austria, 28–30 June 2011. 

42. AVL LIST GmbH. Fire v20111—Electrification & Hybridization; In AVL FIRE Version 2011 User 

Manual; Document No. 08.0205.2011; AVL LIST GmbH: Graz, Austria, 2011. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


