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Abstract: Driving patterns exert an important influence on the fuel economy of vehicles, 

especially hybrid electric vehicles. This paper aims to build a method to identify driving 

patterns with enough accuracy and less sampling time compared than other driving pattern 

recognition algorithms. Firstly a driving pattern identifier based on a Learning Vector 

Quantization neural network is established to analyze six selected representative standard 

driving cycles. Micro-trip extraction and Principal Component Analysis methods are 

applied to ensure the magnitude and diversity of the training samples. Then via 

Matlab/Simulink, sample training simulation is conducted to determine the minimum 

neuron number of the Learning Vector Quantization neural network and, as a result, to help 

simplify the identifier model structure and reduce the data convergence time. Simulation 

results have proved the feasibility of this method, which decreases the sampling window 

length from about 250–300 s to 120 s with an acceptable accuracy. The driving pattern 

identifier is further used in an optimized co-simulation together with a parallel hybrid 

vehicle model and improves the fuel economy by about 8%. 

Keywords: hybrid electric vehicles; LVQ; neural network; driving pattern recognition; 

simulation; fuel economy 
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1. Introduction 

The use of hybrid electric vehicles (HEVs) is one of the most effective ways to improve fuel 

economy and reduce vehicle emissions. Since the powertrain control strategy plays a very important 

role in improving the performance of HEVs, the study of new control theories that can be applied to 

the power trains of HEVs is very significant [1,2]. Many control strategies, such as fuzzy control, logic 

threshold control, dynamic programming and artificial neural network control, have been developed 

and successfully applied in HEVs [2–10]. Comparative studies have shown that the flexibility of the 

control strategies is very important for the improvement of the control effects [2,3]. This paper 

attempts to achieve an identification of vehicle driving patterns to improve the control flexibility, and 

eventually improve the fuel economy of HEVs. 

A kind of multi-mode driving control strategy has been accomplished in [4,5] through applying the 

concept of driving pattern recognition (DPR). DPR can provide integrated driving information for the 

vehicle main controller to make decisions and the control strategy can be more adaptive to a variety of 

driving conditions. There are two main methods to identify vehicle driving patterns at present. One is 

to predict future conditions using the traffic environment information provided by 3S (GPS, GIS,  

ITS) [6–8]. The other is to predict future conditions through analyzing the driving information 

gathered by vehicle-carrying sensors. As the second type of driving pattern identification method relies 

only on the theoretical study of the control algorithms, which can be applied more easily, this paper 

focuses only on method two [9]. Lin et al. [5] and Won et al. [10] have both realized a kind of DPR 

based on the analysis of feature parameters extracted from the velocity data. The control effects  

are impressive. 

Langari and Won proposed an intelligent energy management agent (IEMA) for parallel hybrid 

vehicles, which contained a Learning Vector Quantization (LVQ) network roadway type identifier [11]. 

During their research, 47 parameters were selected for LVQ classification and most of the drive cycle 

segments could be correctly classified [12]. 

Lei et al. analyzed the impacts on identification results caused by the dissimilarity measures used in 

DPR, including the Euclidean distance, Chebyshev distance, cosine distance, correlation distance and 

Mahalanobis distance [13]. Research results show that realizing DPR through calculating the 

Euclidean distance is more adaptable [13,14]. In fact, the LVQ neural network recognition algorithms 

are exactly based on the calculation of Euclidean distances. This paper is based on the researches of 

LVQ recognition above, and new mathematical methods are been used to increase the identification 

performance of LVQ network. 

The selection of representative features has a great impact on the effect of DPR. Sixty two driving 

parameters that might have influences on fuel economy and emissions of HEVs have been studied  

in [15], concluding that nine of them had a great effect. In subsequent studies, the number of 

representative features, though selected differently, has tended to decrease. For example, [4] used 

about 24 features for DPR in 2002, but [16] and [11] decreased them to 17 and 15 in 2009 and  

2012 respectively. 

In this paper, micro-trip extraction and Principal Component Analysis (PCA) methods are applied 

to increase the LVQ training sample quantity and reduce the input vector dimension. The number of 

representative features for principal component analysis is reduced to seven. As a result, the LVQ 
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neural network pattern recognition model is optimized and the recognition accuracy is improved with 

less computing space and sampling time. 

Figure 1 demonstrates the HEV control logic based on LVQ driving pattern recognition suggested 

in this paper. The control parameters of several specific driving cycles are optimized to develop a logic 

threshold library. When a certain driving cycle is identified, the corresponding control parameters will 

be selected from the logic threshold library and updated into the ECU in real time. 

Figure 1. Control logic based on DPR. 
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2. Driving Cycle Analysis and Training Sample Collection 

The target of DPR is to analyze the velocity information and classify practical driving patterns as 

similar standard driving cycles. Recognized driving cycles should be included in the representative 

driving cycle group. Six representative standard driving cycles, shown in Table 1 and Figure 2a–f, 

were selected in this paper to cover most of the different street types, driving behaviors and  

weather conditions. 

Table 1. Representative standard driving cycles. 

Driving Cycle Type Name Driving Cycle Number 

Urban Road 
MANHATTAN Driving Cycle 1 

NYCC Driving Cycle 2 

Suburb Road 
WVUSUB Driving Cycle 3 

CSHVR Driving Cycle 4 

Highway Road 
HWFET Driving Cycle 5 

HS06_HWY Driving Cycle 6 
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Figure 2. Velocity-time profiles of the six representative cycles; (a) MANHATTAN;  

(b) NYCC; (c) WVUSUB; (d) CSHVR; (e) HWFET; (f) US06_HWY. 

 
(a) (b) (c) 

 
(d) (e) (f) 

2.1. Representative Feature Analysis for DPR 

Seven representative features are selected for PCA, in which four principal components are 

eventually retained. The principal components are imported as inputs of the driving pattern identifier 

which is based on LVQ neural network. 

2.1.1. Representative Features 

Average cycle speed: 

avg

vdt
V

t
=   (1) 

Maximum cycle speed: 

max max( , 1, 2, , )iV v i k= =   (2) 

Maximum cycle acceleration: 

max max( ,1, 2, , )a aia a k=   (3) 

Maximum cycle deceleration: 

max max( , 1, 2, , )d dia a i k= −   (4) 

Average acceleration: 

( )a

aavg
trip

a t dt
a

T

⋅
=   (5) 
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Average deceleration: 

( )d

davg
trip

a t dt
a

T

⋅
=   (6) 

Percentage of idle time: 

100%idel
per

trip

T
id

T
= ×  (7) 

where: k—sampling point number; tripT —cycle total time. Calculation results of the representative 

features are shown in Table 2. 

Table 2. Representative features of six standard driving cycles. 

 MANHATTAN NYCC WVUSUB CSHVR HWFET US06_HWY 

avgV  10.98 11.41 25.87 21.86 77.58 97.91 

maxV  40.72 44.58 72.10 70.49 96.40 129.23 

maxaa  2.06 2.68 1.29 1.16 1.43 3.08 

maxda  −2.5 −2.64 −2.16 −1.79 −1.48 −3.08 

aavga  0.54 0.62 0.33 0.39 0.19 0.34 

davga  −0.67 −0.61 −0.42 −0.46 −0.22 −0.41 

perid  36.18% 35.12% 25.23% 21.63% 0.78% 3.26% 

2.1.2. Principal Component Analysis 

Suppose that the sample data matrix is X and the sample correlation coefficient matrix is R. The 

principal component matrix would be Z = RX. Considering 1,2, ,7i = ⋅⋅⋅  and 1,2, ,6j = ⋅⋅⋅ . 

According to Table 2, the sample data matrix X is: 

11 12 16

21 22 26

71 72 76

ij

x x x

x x x
X

x x x

 
 
 =
 
 
 




   


 (8) 

This can be standardized as: 

*

var( )

jij
ij

j

x x
X

x

−
=  (9) 

where 
7
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=
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The sample correlation coefficient matrix is: 
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Suppose the standardized original data matrix is still represented by X, the standardized correlation 

coefficient of the data can be calculated as: 

6

1

6 6
2 2

1 1

( )( )

( ) ( )

ki i kj j
k

ij

ki i kj j
k k

x x x x
r

x x x x

=

= =

− −
=

− −



 
 (11) 

where , 1, 2, ,6i j =  . 

The Jacobi iteration method is applied to compute the eigenvalue 1 2 6( , , , )λ λ λ  of the correlation 

coefficient matrix R and the corresponding eigenvectors 1 2 6( , , , )i i i ia a a a=  . 

The contribution rate of the principal component is: 

6

1

i
CONTRIBUTION

i
i

RATIO
λ

λ
=

=


 
(12) 

Principal component matrix Z can be calculated as: 

1 11 1 12 2 16 6

2 21 1 22 2 26 6

1 1 2 2 6 6p p p p

Z a x a x a x

Z a x a x a x

Z a x a x a x

= + + +
 = + + +


 = + + +







 (13) 

Calculation results of the principal component matrix Z are shown in Table 3. Six principal 

components can be obtained by PCA (Z1–Z6). The entire principal components are rearranged 

according to the descending of the CONTRIBUTION RATIO, as shown in Figure 3. The maximum four 

principal components (accumulative ratio = 98.92%) are finally selected as inputs of the identifier. 

Figure 3. CONTRIBUTION RATIO distribution of the principal components. 
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Table 3. Calculation results of the principal component matrix Z. 

ija  x1 x2 x3 x4 x5 x6 

Z1 −0.4161 0.3039 0.1756 −0.2419 −0.4373 0.6574 
Z2 −0.4181 0.2808 −0.3934 −0.1847 0.6006 0.1368 
Z3 0.0801 0.6356 0.5199 0.2099 −0.0885 −0.2639 
Z4 −0.1655 −0.5997 0.5562 −0.2915 0.1059 0.0873 
Z5 0.4481 0.1735 0.3656 −0.1302 0.5942 0.3736 
Z6 −0.4516 −0.1502 0.2040 0.7894 0.2349 0.1333 

2.2. Micro-Trip Extraction and Sample Collection 

A sufficient number of samples can ensure the training effect and ultimately affect the DPR results. 

Micro-trip extraction can increase the number of training samples greatly. Micro-trips refer to a 

continuously driving period from an idle segment to the next idle segment [17–19]. 

Considering driving cycles 1–4, the two urban road cycles and two suburb road cycles, each of 

them contains at least seven micro-trips, which can be collected for statistical analysis. The velocity 

information collection window length is determined according to the concentrated length of the 

operating time of most micro-trips. Researches show that the operating time of 80% of the micro-trips 

maintains within 120 seconds [20], as shown in Figure 4. 

Figure 4. Statistics of micro-trips of driving cycle 1–4. 

 

However, the two highway driving cycles, driving cycles 5–6, cannot be segmented in terms of 

idling time, because there are few, or even no idling periods. This paper proposes a method to divide 

highway driving cycles into seven micro-trips. As illustrated in Figure 5, driving cycle 5 is quartered to 

obtain four micro-trips (1–4) first, and the midpoints of adjacent micro-trips can shape three other  

micro-trips (5–7). The same method is used to partition driving cycle 6. Representative features of each 

micro-trip will be imported as training sample data. Thus, the entire number of the training samples 

increases from 6 to 85, which can provide an essential precondition for high-accuracy recognition. 
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Figure 5. Micro-trip partition of driving cycle 5. 

 

3. Driving Pattern Recognition based on LVQ Neural Network 

3.1. LVQ Neural Network 

An LVQ network can adjust the weights of the competition layer through self-organization, with a 

large number of training samples imported, to reflect the distribution of the sample data patterns in the 

output layer [21]. LVQ pattern recognition algorithm evolved from the Kohonen competitive algorithm 

and has been applied widely in the field of pattern recognition [22]. The architecture of the LVQ 

network is as illustrated in Figure 6 [12,23]. 

Figure 6. Architecture of LVQ neural network. 

 

where: p—R-dimensional input; 1S —number of the competition layer neurons; 1.1IW —connection 

weight coefficient matrix between input and competition layer; 1n —input of competition layer neuron; 
1a —output of competition layer neuron; 2.1LW —connection weight coefficient matrix between 

competition layer and linear output layer; 2n —input of linear output layer neuron; 2a —output of 

linear output layer neuron; 1 1.1n IW p= − − ; 2 2.1 1n LW a= ∗ ; 1 1( )a compet n= ; 2 2( )a purelin n= . 
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3.2. Driving Pattern Identifier Model 

3.2.1. Model Structure  

A driving pattern identifier model is established via Matlab/Simulink as shown in Figure 7. The 

LVQ neural network can classify input vectors into one of the target patterns and output recognition 

results directly. The competition layer is used to identify the subclasses of input vectors and the 

subclasses are all connected to the final target patterns or classes through linear output layer. By 

calculating the Euclidean distances of input vectors and the competition layer neurons, neurons in the 

competition layer can classify input vectors into subclasses rapidly. The closest competition neurons 

are marked as “1” and others as “0”. 

Figure 7. Identifier model based on LVQ neural network. 

 

Figure 8 shows the internal structure of the driving pattern identifier. The upper section is the 

computing process model from input layer to competition layer and the second section is the 

computing process model from competition layer to linear output layer. There are four importing nodes 

corresponding to the four principal components calculated by the seven characteristic parameters of the 

velocity data. To be more specific, the neurons of the competition layer are used to classify input 

vectors through competitive learning and the neurons of linear output layer are used to transfer the 

classification information, which will be delivered from competition layer, into the defined expectation 

categories. Though within a certain range, the more neurons there are, the more accurate the pattern 

recognition will be. The recognition effect could not be improved obviously when the neuron number 

is above five and the training time will become much longer according to the simulation conducted for 

neuron number optimization. The number of the neurons in the competition layer is set as four in this 

paper via a three-time sample training simulation and the number of the neurons in linear output layer 

is set as six because six kinds of standard cycles are expected to be identified by LVQ neural network. 
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Figure 8. Internal structure of the driving pattern identifier. 

 

3.2.2. Sample Training 

Principal components computed from the characteristic parameters of six standard driving cycles 

and 79 micro-trips are imported as training sample data. The training process is under supervision and 

the competition layer weights are adjusted continually according to the learning results of the LVQ 

neural network, as shown in Figure 9. 

Figure 9. Sample training process. 

 

Calculation steps are as follows:  

Step 1. Initialize the competition layer weight and the learning efficiency η (η > 0); 
Step 2. Enter input vector 1 2( , , , )T

RX x x x=   into input layer and calculate the Euclidean distance 

of the competition layer neurons and the input vector according to Equation (14): 

2 1

1

( ) 1,2, ,
R

i i ij
j

d x w i S
=

= − =   (14) 

where: ijw —competition layer weight between input layer neuron j and competition layer neuron i ; 
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Step 3. Select two closest competition layer neurons m and n. If md  is the minimum distance to 

input vector, mark the class label of the corresponding linear output layer neuron connected as mC .  

If nd  is the second minimum distance to input vector, mark the class label of the corresponding linear 

output layer neuron connected as nC ; 

Step 4. If neuron m and neuron n can satisfy the following two conditions: 

(1) Neuron m and neuron n correspond with different patterns or categories; 
(2) The distances (to input vector) md  and nd  meet Equation (15): 

min ,m n

n m

d d

d d
ρ

 
> 

 
 (15) 

where ρ —the window width that the input vector may fall into , usually about 2/3. 

Then:  
(1) If the category of neuron m, supposed as mC , is consistent with the input vector category xC , 

the competition weights of neuron m and neuron n will be updated according to Equation (16): 

( )

( )

new old old
m m m

new old old
n n n

w w a x w

w w a x w

 = + −


= − −
 (16) 

(2) If the category of neuron n, supposed as nC , is consistent with the input vector category xC , the 

competition weights of neuron m and neuron n will be updated according to Equation (17): 

( )

( )

new old old
m m m

new old old
n n n

w w a x w

w w a x w

 = − −


= + −
 (17) 

Step 5. If neuron m and neuron n can not meet the conditions in Step 4, only the competition 
weights of the closest neuron i (or m) will be updated. Suppose the category of neuron i is xC  and the 

correct category of input vector is iC . If i xC C= : 

_ _ _( )ij new ij old ij oldw w x wη= + −  (18) 

or else: 

_ _ _( )ij new ij old ij oldw w x wη= − −  (19) 

3.3. Identifier Model Verification 

A composite testing driving cycle of “NYCC+ WVUSUB+ HS06_HWY+ UDDS+ NewYorkBus+ 

INDIA_HWY” is established to verify the driving pattern identifier model, as shown in Figure 10. The 

testing cycle contains three kinds of standard driving cycles which are used for network training and 

three kinds of new standard driving cycles to increase the credibility of the verification result. The 

established composite testing driving cycle lasts 5487 s. 
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Figure 10. Composite testing driving cycle. 

 

In the first 120-s phase of the composite testing cycle, the driving cycle category is initialized as “0” 

and the logic threshold parameters are set according to default values. The data collected in the first 

120-s driving phase is used to optimize the logic threshold parameters of the second  

120-s driving phase, and so on. Verification results are illustrated in Figure 11. Contrast  

Figure 11 with Figure 10, the pattern identification results of different types of driving cycles are 

relatively more accurate and stable. The identification accuracy of same-type driving cycles is lower. 

Figure 11. Driving pattern recognition result. 

 

Main reasons for the identification errors are: 

Selected representative features cannot reflect the characteristic differences between similar driving 

cycles, so feature selection needs to be optimized and the features need to be more representative; 

competition neurons are insufficient; some of the standard driving cycles, cycles 5–6 for example, are 

too similar to each other, the recognition of the two cycles is not necessary. 

Verification results have proved the validity of the driving cycle identifier model preliminarily, but 

further validation work is also very necessary. The final evaluation criterion of the performance of the 

driving pattern identifier is the fuel economy improvement of a HEV, which is the main focus of 

Section Four. 
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4. Simulation Experiment on the DPR Application 

A co-simulation of the LVQ neural network identifier together with a parallel HEV model [24] is 

conducted in this section. Input driving cycle is still the composite testing cycle provided by Section 

Three. The vehicle powertrain and main technical parameters are shown in Figure 12 and listed in 

Table 4 respectively. 

Table 4. Main technical parameters of the parallel HEV powertrain. 

System Parameter Value 

Vehicle 

Curb Weight 3025 kg 
Front Face Area 3.042 m2 
Rolling Resistance 0.008 
Air Resistance 0.4 
Transmission Efficiency 0.90 
Driving Wheel Rolling Radius 0.325 m 

AMT Gear Ratio [4.452, 2.269, 1.517, 1, 0.854] 

Engine 
Maximum Power Rating 76 kW/6000 
Torque Capacity 131 N/5000 

Motor 
Motor Type PMSM 
Nominal Power Capacity 10 kW 
Peak Power Capacity 24 kW 

Battery 
Battery Type Lithium Iron Phosphate 
Nominal Voltage 336 V 
Nominal Capacity 20 Ah 

Figure 12. Structure of the parallel HEV powertrain. 

 

Figure 13 indicates the comparison of velocity data between the testing cycle and the co-simulation 

result. We can see that the simulation speed follows the testing cycle sensitively, which means that the 

vehicle has enough power to follow the driving cycle. Moreover, the participation of the driving 

pattern identifier does not cause any delay of the powertrain control. This provides a good foundation 

for the comparison study of the control performance with and without DPR optimization. 
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Figure 13. Cycle following comparison between the testing cycle and the simulation. 

 

Figure 14 shows the comparison curves of the engine torque, the motor torque results with and 

without DPR. It can be seen that the engine output torque fluctuates less with DPR optimization than 

without DPR. 

Figure 14. (a) Simulation results of the engine torque; (b) Simulation results of the  

motor torque. 

 
(a) 

 
(b) 
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The fuel consumption caused by frequent changing of the engine load has decreased due to the 

optimization of the responsiveness of motor. When the motor is in assisting mode, the torques of the 

engine and the motor both change little with and without DPR. However, when the motor is in 

generating mode, the engine outputs more torque to charge the battery with DPR optimization, which 

can improve the fuel economy globally as a result. Figure 15 shows the distribution map of the engine 

operating points with and without DPR. Obviously, there are less operating points distributed in the 

high fuel consumption area after the control algorithm is optimized by DPR. 

Figure 15. (a) Engine operating map without DPR; (b) Engine operating map with DPR. 

 
(a) 

 
(b) 

To illustrate the dependence of the control strategy performance on DPR, an extended application 

concept of DPR in HEV control is proposed. Firstly control parameters of the standard driving cycles 

are specially optimized to build a control parameter library, then according to the DPR result, the 

control parameters, or even control strategies are adjusted in real time based on the optimized control 

parameter library, and a nearly global optimized control strategy is realized. As a comparison, the 

specific logic threshold parameters after being optimized based on NYCC are chosen. The fuel 

consumption results for the above composite testing cycle are listed in Table 5, which shows the  
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fuel consumption in case of the DPR optimized is reduced by 8.51% compared to the case of only the 

NYCC optimized. 

Table 5. Fuel consumption comparison of the DPR optimization. 

 NYCC Optimized DPR Optimized 

Fuel Consumption 10.22 L/100km 9.35 L/100km 
Reduction Ratio 0.0% 8.51% 

5. Conclusions 

An identification method of driving patterns based on LVQ neural network is proposed in this paper 

to increase the fuel economy of HEVs. 

(1) A micro-trip extraction method is used to optimize the training of the LVQ identifier. The 

amount of training samples is substantially increased and the velocity sampling window length 

of DPR is reduced within 120 s. As a result, the sampling time is reduced during a  

recognition process; 

(2) Principal Component Analysis (PCA) method is used to optimize the calculation burden of the 

LVQ identifier. The four principal components extracted from the seven representative features 

act as the inputs of the LVQ neural network. As a result, the computing space and time of LVQ 

identifier is reduced and the identification accuracy can still be safeguarded; 

(3) Co-simulation of the LVQ driving pattern identifier together with a parallel HEV model is 

conducted. Simulation results show that the engine works in high-efficiency areas more 

frequently and the fuel economy can be improved by up to 8.51%. 

In the future, hardware-in-the-loop and real-vehicle experiments will be designed and conducted to 

further verify the recognition effect of the LVQ driving pattern identifier. 
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