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Abstract: Solar energy has become an important energy source in recent years as it 
generates less pollution than other energies. A photovoltaic (PV) system, which typically has 
many components, converts solar energy into electrical energy. With the development of 
advanced engineering technologies, the transfer efficiency of a PV system has been 
increased from low to high. The combination of components in a PV system influences its 
transfer efficiency. Therefore, when predicting the transfer efficiency of a PV system, one 
must consider the relationship among system components. This work accurately predicts 
whether transfer efficiency of a PV system is high or low using a novel hybrid model that 
combines rough set theory (RST), data envelopment analysis (DEA), and genetic 
programming (GP). Finally, real data-set are utilized to demonstrate the accuracy of the 
proposed method. 
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1. Introduction 

Although traditional energy resources, such as oil and coal, account for the largest proportion of 
energy worldwide, they also produce more pollution than solar energy. As environmental awareness 
and the need to reduce pollution have increased, solar energy has become an important energy source 
in industrialized countries. Photovoltaic systems convert solar energy into electrical energy. However 
PV systems are not yet popular and their transfer efficiency must be improved. Hence, engineers have 
used various combinations of system components to increase the transfer efficiency of PV systems. 
Generally, the transfer efficiency of a PV system is only 6–20% [1]. According to the options of 
experts in PV energy of Taiwan, a transfer efficiency exceeding 9% is considered high and that ≤9% is 
considered low [2]. Generally, engineers or energy managers must judge if a PV system belongs to one 
category or the other, thus, a reliable prediction model is needed to determine whether the transfer 
efficiency of a PV system is high or low. Managers or decision-makers in the PV field will then be able 
to identify the critical components using the prediction model and improve to transfer efficiencies. 
Thus, this work develops a novel and efficient prediction model to determine whether transfer 
efficiency of a PV system is high or low. 

In applications of discriminating models, most studies utilized different approaches to construct an 
effective prediction model [3–7]. These models were constructed using conventional statistical 
methods, such as discriminant analysis and logistic regression, or artificial intelligence (AI) methods, 
such as artificial neural networks (ANNs) and support vector machines (SVMs). Ong et al. [8] 
demonstrated that a discriminating model constructed using an ANN-based method is more accurate 
than a model constructed using traditional statistical methods, especially when data-sets are non-linear. 
However, ANN-based discriminating models have poor prediction accuracy when applied to small 
samples and input variables are irrelevant [9]. Additionally, hidden layers in an ANN are difficult to 
explain and the relationship between input variables and output variables in an ANN or SVM cannot 
be expressed by a mathematical equation. Genetic programming (GP) has recently been applied in 
many fields to construct classification or prediction models. Since GP does not require any 
assumptions about the relationships between dependent and independent variables to construct a prediction 
model [10], GP can be applied to both small and large samples [8]. In some applications, GP has better 
prediction accuracy than ANN-based methods. For examples, Ong et al. [8] utilized GP to construct a 
more satisfactory credit scoring model than ANN model; Muttil and Lee [11] utilized GP to predict 
coastal algal blooms and claimed GP can obtain more effective prediction model than ANN in their 
analytical case. In prediction or classification applications, GP can be used to construct a mathematical 
equation [10–12]. Moreover, a comparison of the performance of classification models indicated that 
GP outperforms conventional statistical methods and ANNs [13]. 

Measuring and monitoring energy efficiency have become important issues in many fields [14]. 
Some studies have utilized data envelopment analysis (DEA) to assess energy efficiency. For instance, 
Boyd and Pang [15] examined the relationship between productivity and energy intensity utilizing 
DEA to assess productivity. Hu and Kao [16] developed an energy efficiency index utilizing DEA. 
This index is used to determine the energy-saving target ratio (ESTR) for seventeen APEC countries. 
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Based on the importance of energy efficiency and the ability of DEA to determine the ratio between 
input and output variables, this work adopts DEA to evaluate the input/output efficiency of PV systems 
using multiple inputs, such as texture type, selection of a PV module, and PV module capacity, and one 
output (transfer efficiency of PV systems). 

Moreover, identifying significant input variables is important when constructing an effective 
prediction model. Many conventional methods, such as correlation analysis, have been utilized to 
identify the significant input variables for predicting the output variable. However, such methods are 
restricted by some assumptions, such as a linear relationship among variables and normality, and large 
data-sets. Thus, a technique that provides a knowledge system contained in a data-set and clear 
attribute selection under different classes is desirable. Rough set theory (RST) can be utilized as a soft 
computing tool to deal with data-sets with poor information and remove irrelevant attributes from a 
data-set [17]. Notably, RST has been applied in many real-world classification problems [18–20]. 

To construct an efficient prediction model that determines whether the transfer efficiency of a PV 
system is high or low, this work uses input/output efficiency of a PV system as the predictive variable 
and enhances prediction accuracy using a novel hybrid model combining RST with GP; this model is 
called the RST-GP model. Because of its robust reliability in knowledge systems, RST is utilized 
during the first stage to identify significant input variables. During the second stage, significant 
independent variables obtained from RST are utilized as input variables for GP to construct a 
prediction model that can determine whether the transfer efficiency of a PV system is high or low. This 
remainder of this paper is organized as follows. Section 2 reviews the PV system literature. Section 3 
briefly reviews the DEA model used to evaluate the input/output efficiency of a PV system. Section 4 
describes RST and GP. Section 5 elucidates the proposed hybrid model. Section 6 analyzes and 
compares the outcomes of the proposed and existing hybrid models. Section 7 gives conclusions. 

2. An Overview of PV System 

This section introduces the structure of PV system and factors influencing PV system 
transfer efficiency. 

Figure 1. A diagram of a PV system [21]. 
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2.1. PV System 

A PV system primarily consists of a solar cell, an electrical conditioner, an inverter, and a system 
controller. A PV system uses an inverter to transform light energy into electrical energy. Figure 1 
shows the PV system process. 

2.2. Factors Influencing PV Systems 

Gregg et al. [22] noted that numerous complex factors influence the efficiency of PV systems. 
These factors can be classified as internal or external factors. Internal factors include PV system 
texture, the azimuthal angle, transformation of the PV inverter, and selection of direct current (DC) 
voltage and an inverter. Among the internal factors, PV system texture, the most important factor, 
influences PV system transfer efficiency. Single crystal and polycrystals are common in PV systems. 
The azimuthal angle of a PV system is that at which most light is received given the absence of 
obstacles; thus, azimuthal angle varies with PV system location. The PV inverter transforms light 
energy into electrical energy. Selection of DC voltage and the inverter both influence PV system 
transfer efficiency. However, in the real world, the transformation of light energy into electrical energy 
is affected by dynamic changes in sunshine. Accordingly, the optimal transfer efficiency of a PV 
inverter cannot be attained in practice. 

The two major external factors are described as follows: first, the amount of solar radiation strongly 
influences PV system transfer efficiency. Thus, the degree of solar radiation must also be considered 
when determining PV system transfer efficiency. Second, the temperature of a PV system affects the 
amount of electrical energy converted from light energy. Thus, determining the optimal temperature in 
a real environment is a major goal for energy experts. 

2.3. Evaluating PV System Transfer Efficiency 

Transfer efficiency of a PV system is the percentage of energy converted from light energy. The 
transfer efficiency formula is: 

Transfer efficiency ( %) = 100%mou

in

P
P

×  (1)

where mouP  is maximum output electrical energy, and inP  is input light energy. As transfer efficiency 
increases, the amount of energy a PV system generates increases.  

3. Using DEA to Determine Efficiencies 

Notably, DEA is a linear programming (LP)-based technique for evaluating decision-making units 
(DMUs) and deals with many decision-making problems by converting multiple output and input 
variables into a single comprehensive performance measure [23]. DEA is an extensively utilized 
non-parametric data analysis technique. For instance, Hu and Kao [16] utilized DEA to construct an 
energy efficiency index. This index is used to determine the energy-saving target ratio (ESTR) for 
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seventeen Asia-Pacific Economic Cooperation (APEC) countries. Tsai et al. [23] applied DEA with 
other measures to assess the magnitude of performance differences between leading telecom carriers. 
Guo and Tanaka [24] utilized a fuzzy DEA model to solve an efficiency evaluation problem with given 
fuzzy input and output data. Wu et al. [25] used the DEA-neural network approach to evaluate branch 
efficiency for a large Canadian bank. Additional detailed descriptions of DEA can be found 
elsewhere [26–28]. 

DEA, developed by Charnes, Cooper, and Rhodes (CCR) [28], was based on Farrell’s (1957) 
pioneering study of efficiency measures (relative efficiency or productivity of a specific DMU) [29]. 
Suppose data for each DMU, 1,2,...,j n= , comprise q positive outputs, rjy , 1, 2,...,r q= , and  
p positive inputs, ijx , 1, 2,...,i p= . Let ho ( 1,2,...,o n= ) be the DMU whose relative efficiency is to 
be maximized. The DEA model is displayed as LP as follows: 

Maximize 1

1
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where ,rou iov  are the variable weights of given to the rth output and ith input of the oth DMU, 
respectively. Furthermore, rou and iov  are decision variables of LP modeling used to determine the 
relative efficiency of DMUo. Obviously, the maximum value (efficiency score), oh , cannot exceed 1. 
If 1oh = , the DMUo is called the constant returns to scale (CRS) frontier [30]. There are two CCR 
models in practice. One minimizes input variables, and the other maximizes output variables. In this 
work, in order to obtain maximum energy efficiency, the maximized output variables of the CCR 
model are utilized to obtain the optimal value for the objective function, oh . 

4. Rough Set Theory and Genetic Programming 

This section reviews the basic concepts of RST and GP. 

4.1. Basic Concepts of Rough Set Theory 

Pawlak [31] developed RST as a data-mining approach in 1982. RST has proved effective for 
data-sets with poor information or ambiguity and it can be applied in many fields [32–34]. Walczak 
and Massart [35] provided a detailed description of RST.  

An information system can be represented as S=(U, R, V, f), where U is the universe (a finite set of 
objects, U = {x1,x2,…,xn}), R is a finite set of attributes (features and variables), rr R

V V
∈

= ∪ , where Vr is 

the domain of attribute r, and :f U R V× →  is an information function such that ( ), rf x r V∈  for all 

x U∈  and r R∈ . In RST, highly accurate good-quality approximations are very important when 



Energies 2012, 5                            
 

550

extracting decision rules. Let P R⊆  and X U⊆ , the lower approximation of X in S by P is denoted 
as PX , and the upper approximation of X in S by P is denoted as PX  and are derived as follows: 

{ | ( ) }PX x U Ind R X= ∈ ⊂  (3)

{ | / ( ) }PX x U U Ind R X φ= ∈ ∩ ≠  (4)

where:  

{ }/ ( ) ( , ) , ( , ) ( , ),i j i jU Ind R x x U U f x r f x r r R= ∈ ⋅ = ∀ ∈  (5)

From Equations (3),(4), the boundary can be represented as follows: 

( )pPN X PX PX= −  (6)

Hence, reducts can be obtained utilizing approximation spaces. Given an information system 
( ),S U R= , and then the reduct RED(P), the minimal set of attributes is P R⊆ , such that 

( ) ( )P Rr U r U=  where:  

1 1
( ( )) | ( ) |

( )
( ) | |

n n

i i
i i

P

card P X P X
r U

card U U
= =
∑ ∑

= =  (7)

where ( )pr U  is the ratio of all P-correctly classified objects to all objects (U) in the system. 

Furthermore, core is common to all reducts. For instance, COR(P) is the core of P when 
( ) ( )COR P RED P= ∩ . Reduction is a feature subset selection process. The selected feature subset 

retains its explanation ability and has minimal redundancy [36]. Core analysis results can be 
represented as a reference of important attributes in a knowledge system. Several RST-based reduction 
and feature-selection algorithms have been developed. For instance, Wen et al. [37] applied RST and 
a grey model to analyze the factors influencing gas breakdown. Li et al. [38] developed a 
grey-based rough set approach to solve a supplier-selection problem. Thangavel and Pethalakshmi [39] 
reviewed studies using RST-based feature selection. 

4.2. Genetic Programming 

Koza [40] developed GP as a novel algorithm for computer programs that exploits evolution in 
solving model structure identification problems and performs symbolic regression [41]. The basic 
concepts of GP resemble those of genetic algorithms (GAs), and include mutation, crossover, and 
reproduction [10]. Unlike GAs, GP uses a generic parse-tree representation to replace the logic number 
of the genetic state (0 and 1). Additionally, GP can construct an optimal forecasting equation through 
symbolic regression. The main advantage of symbolic regression is that it is not limited to any 
functional form or normality assumption for data-sets. For instance, GP is more flexible in symbolic 
setting than conventional regression method or data-mining approach (e.g., ANN). Notably, GP is also 
widely utilized in practical applications such as in forecasting [10–12,42] and classification [8,43]. 

Functions or statements in GP have operators ({+, −, ×, ÷, log, and exp}) and a trigonometric 
function ({sin, cos, and tan}). Hence, a GP parse tree (Figure 2) can be applied to a simple example: 
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cos[8x] − sec[5y]. When selecting input variables, GP automatically finds variables that contribute 
most to the model [11,42] and does not have any restriction for data size, as compared to an ANN or 
large data-set [8,43]. 

Figure 2. Example of GP parse tree representation. 

 

5. The Proposed Hybrid Prediction Model 

This work develops a four-step procedure for predicting whether the transfer efficiency of a PV 
system is high or low. The proposed prediction model is as follows: 

Step 1: Collect transfer efficiencies of PV systems with various component combinations. These 
components are independent variables and transfer efficiency is a binary output variable (i.e., high or 
low) in the proposed prediction model. 

Step 2: RST selects the significant independent variables of a PV system based on its robust 
reliability in knowledge system [36–39]. The importance of feature selection based on RST (i.e., core 
analysis) can be explained as follows [44]: 

( ) ( )
( ) { } ( )

( )
{ } ( )
( ), 1C C a C a

C D
C C

D D D
a

D D

γ γ γ
σ

γ γ
− −−

= = −  (8)

where ( )C Dγ  denotes the degree of dependence between conditional features C (the variables of PV 
systems) and decision feature D (i.e., the high or low PV transfer efficiency), ( ){ }C a Dγ −  denotes the 
degree of dependence between removing a conditional feature (such as a condition feature) from C and 
decision feature D. ( ) ( ),C D aσ  denotes the variation of degree of dependence between removing a 

from C with all condition features C. When ( ) ( ),C D aσ  is large, feature a importantly affects the 
decision attribute D. 

Step 3: The DEA evaluates energy efficiency (i.e., the input/output ratio) of a PV system. The input 
variables in DEA are obtained in Step 2 and the output variable in DEA is transfer efficiency of a PV 
system. The DMU values obtained from DEA represent energy efficiencies of PV systems.  

Step 4: GP constructs a classification model for predicting whether transfer efficiency of a PV 
system is high or low. For the GP model, this work utilizes the significant independent variables 
obtained in Step 2 and the input/output ratio obtained in Step 3 as input variables of GP and binary 
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transfer efficiency (i.e., high or low) of a PV system is the output variable of GP. Table 1 presents 
parameter settings of the GP model. The parameters of GP are obtained by trial-and-error approach. 

Table 1. The settings of GP model. 

Items Content 
Population size 400 

Maximum number of generation 1000 
Function set +, −, ×, ÷, sin, cos, exp, log constant 

Crossover rate 0.8 
Mutation rate 0.02 

In Step 2, RST is utilized to select the significant independent variables of PV systems because 
adopting significant independent variables can yield good accuracy for constructing a prediction model [36]. 
Moreover, RST can not only deal with small data-sets but also requires no statistical assumptions (such 
as a linear relationship between input variables with output variable). In Step 3, DEA is utilized to 
evaluate the energy efficiency of PV systems because the index (energy efficiency of PV systems) 
efficiently provides sufficient information for evaluating the economic-value of PV systems. In Step 4, 
GP is utilized to construct a prediction model because of its high performance in forecasting and 
classification. Furthermore, GP yields good forecasts using only small data-sets [42]. Hence, RST, 
DEA, and GP are integrated herein to predict the high or low transfer efficiency of PV systems, and the 
model thus developed is called the RST-DEA-GP model.  

6. Empirical Analysis 

A real data-set of transfer efficiency of PV systems collected from a Taiwanese research 
organization is utilized to demonstrate the effectiveness of the proposed model. The data used in Step 1 
concern 38 PV systems. Each PV system contains 18 variables (e.g., texture type, capacity for 
PV-transfer, and number of inverters) and binary transfer efficiency (e.g., low or high). The low and 
high transfer efficiencies of the PV systems are coded as 0 and 1, respectively. The data-set comprises 
38 PV systems–15 with low and 23 with high transfer efficiencies.  

Table 2. Selected significant variables from RST and DMU variable from DEA. 

Variables Description Importance (obtained from RST)
X1 Texture type 0.6424 
X2 The output power of inverter 0.5715 
X3 The selection of PV module 0.4817 
X4 The number of inverter 0.3914 
X5 The weights of PV module 0.3367 
X6 The selection of inverter 0.2893 
X7 PV module capacity 0.2567 
X8 The selection of DC voltage 0.2638 
X9 The location of PV setting 0.2476 
X10 DMU (obtained from DEA) － 
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In Step 2 of the proposed hybrid model, RST is utilized to identify significant independent variables 
of PV systems. The RST algorithm can be constructed using MATLAB software. The RST results 
indicate that nine independent variables (X1–X9) are significant (Table 2) because that the importance 
value of nine independent variables are greater than 0.2. It has not a clear criterion to determine the 
threshold value (importance value). Moreover, the nine independent variables (X1–X9) have high 
correlation to output variable (the low or high transfer efficiencies of PV systems). The correlation 
coefficient are greater than 0.6. Also, based on the opinion of experts in PV energy in Taiwan, these 
nine variables importantly influence for the transfer efficiency of PV systems.  

In Step 3, DEA is utilized to evaluate the DMU value of each PV system. Table 2 shows the DMU 
value (X10). In applying DEA, input variables of DEA are the nine significant variables obtained in 
Step 2 and the output variable of DEA is PV system transfer efficiency. The DEA algorithm can be 
executed by LINGO software. Table 3 lists the DMU values of the PV systems. In Step 4, the 
significant independent variables obtained in Step 2 and DMU obtained in Step 3 are utilized as input 
variables for GP to predict the high or low level of PV system transfer efficiency. To demonstrate the 
effectiveness of the proposed hybrid model, some basic classification models such as K Nearest 
Neighbor (KNN), Naive Bayes (NB), SVM, ANN, and GP are utilized as benchmark models. The 
basic classification models belong to data-mining techniques and can obtain better prediction 
performance than traditional linear statistical method (e.g., linear regression) [8,10].  

Table 3. The results of DMU value of each PV system by utilizing DEA. 

No DMU No DMU 
PV001 1.0000 PV023 0.7735 
PV002 0.9482 PV024 0.8059 
PV003 0.9879 PV025 1.0000 
PV004 0.8392 PV026 1.0000 
PV005 1.0000 PV027 1.0000 
PV006 1.0000 PV028 1.0000 
PV007 1.0000 PV029 1.0000 
PV008 1.0000 PV030 0.6981 
PV009 1.0000 PV031 0.6417 
PV010 0.6902 PV032 0.6608 
PV011 0.9215 PV033 0.4919 
PV012 0.5153 PV034 1.0000 
PV013 0.4955 PV035 0.8274 
PV014 0.9667 PV036 0.4947 
PV015 0.7484 PV037 0.8405 
PV016 1.0000 PV038 0.9944 
PV017 0.6144   
PV018 0.8630   
PV019 1.0000   
PV020 0.8630   
PV021 1.0000   
PV022 0.8832   
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Although some studies [36] have also adopted hybrid classification models that combine RST, DEA, 
and SVM to predict business failures, the RST of their proposed methodology did not identify how to 
obtain the important variables based on a clear equation. This study [36] only adopted the RSES 
software tool [45] to select important variables. Furthermore, the SVM model performs well only with 
large data-sets, and collecting large data-sets for PV systems is difficult. Hence, the use of a suitable 
classification model for small data-sets is important for constructing a high-precision prediction model. 

In order to compare the accuracy of hybrid prediction model when adding DEA or nor, this work 
does some design of experiments for prediction models. The proposed model, named RST-DEA-GP 
model, which adopts the significant variables obtained by RST and the DMU variable obtained in DEA 
as input variables for GP (model I). The RST-GP model adopts only the significant variables, X1–X9, as 
the input variables for GP (model II). In both models I and II, this work adopts leave-one-out cross 
validation to test the accuracy of the prediction model. 

Tables 4 and 5 show the analytical results for hybrid models I and II, respectively. Model I has an 
average correct classification rate of 92.10%, and that of model II is 84.21%. Hence, adding DEA 
provides more information than adopting significant input variables only and enhances prediction 
model accuracy. 

Table 4. RST-DEA-GP model (model I) results with both significant variables and DMU. 

Actual class Classified class 
1 (High-level) 2 (Low-level) 

1 (High-Level) 22 (95.65%) 1 (4.35%) 
2 (Low-Level) 2 (13.33%) 13 (86.67%) 

Average correct classification rate: 92.10%. 

Table 5. RST-GP model (model II) results with only significant variables. 

Actual class Classified class 
1 (High-level) 2 (Low-level) 

1 (High-Level) 21 (91.30%) 2 (8.70%) 
2 (Low-Level) 4 (26.67%) 11 (73.33%) 

Average correct classification rate: 84.21%. 

The RST-SVM-based models are also utilized to predict whether PV systems have high or low 
transfer efficiency. The RST-DEA-SVM model uses both significant variables obtained from RST and 
DMU as input variables of SVM (model III). The RST-SVM model, which utilizes only significant 
attributes, is model IV. In constructing the SVM model, this work utilizes STATISTICA software to 
generate a classification model. Some studies [46,47] utilized the Gaussian kernel function to enhance 
prediction performance. For the SVM model, parameters settings are the Gaussian kernel function, C = 3, 
and 0.129r = , which can generate an appropriate prediction model. Tables 6 and 7 summarize 
prediction results for the confusion matrix utilizing models III and IV, respectively. Based on 
RST-SVM-based model results, adding DEA improves the correct classification rate from 78.94% 
to 81.57%. 
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Table 6. RST-DEA-SVM model (model III) results with significant variables and DMU. 

Actual class Classified class 
1 (High-level) 2 (Low-level) 

1 (High-Level) 20 (86.96%) 3 (13.04%) 
2 (Low-Level) 4 (26.67%) 11 (73.33%) 

Average correct classification rate: 81.57%. 

Table 7. RST-SVM model (model IV) results with only significant variables. 

Actual class Classified class 
1 (High-level) 2 (Low-level) 

1 (High-Level) 20 (86.96%) 3 (13.04%) 
2 (Low-Level) 5 (33.33%) 10 (66.67%) 

Average correct classification rate: 78.94%. 

Furthermore, two RST-ANN-based prediction models are applied. One uses the significant 
variables obtained from RST and the DMU variable obtained from DEA as input variables for an ANN 
(model V, named RST-DEA-ANN model). The RST-ANN model utilizes only significant variables as 
input variables for the ANN (model VI). This work uses Qnet2000 software to construct the ANN 
classification model. Cybenko [48] demonstrated that utilizing one hidden layer is sufficient when 
modeling any complex system. Hence, the appropriate network models are 10-5-1 and 9-7-1 for nodes 
of the input layer, hidden layer, and output layer for models V and VI, respectively. Tables 8 and 9 
summarize prediction results for the confusion matrix utilizing models V and VI, respectively. 
Similarly, from the results of RST-SVM-based model, RST-ANN is also obvious that adding DEA can 
improve the correct classification rate from 76.31% to 81.57%. 

Table 8. RST-DEA-ANN model (model V) results with both significant variables and DMU. 

Actual class Classified class 
1 (High-level) 2 (Low-level) 

1 (High-Level) 21 (91.30%) 2 (8.70%) 
2 (Low-Level) 5 (33.37%) 10 (66.67%) 

Average correct classification rate: 81.57%. 

Table 9. RST-ANN model (model VI) results with only significant variables. 

Actual class Classified class 
1 (High-level) 2 (Low-level) 

1 (High-Level) 19 (82.61%) 4 (17.39%) 
2 (Low-Level) 5 (33.33%) 10 (66.67%) 

Average correct classification rate: 76.31%. 

With the same analysis of the above classification models (model I to VI), two RST-KNN-based 
and RST-NB-based prediction models are applied to predict whether PV systems have high or low 
transfer efficiency. This work also adopts STATISTICA to construct the KNN and NB classification 
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models, respectively. For KNN classification, one uses the significant variables obtained from RST 
and the DMU variable obtained from DEA as input variables for a KNN (model VII, named 
RST-DEA-KNN model). The RST-KNN model utilizes only significant variables as input variables for 
the KNN (model VIII). Tables 10 and 11 summarize prediction results for the confusion matrix 
utilizing models VII and VIII, respectively. Based on RST-KNN-based model results, adding DEA 
improves the correct classification rate from 73.68 % to 76.31%.  

Table 10. RST-DEA-KNN model (model VII) results with both significant variables and DMU. 

Actual class Classified class 
1 (High-level) 2 (Low-level) 

1 (High-Level) 19 (82.61%) 4 (17.39%) 
2 (Low-Level) 5 (33.33%) 10 (66.67%) 

Average correct classification rate: 76.31%. 

Table 11. RST-KNN model (model VIII) results with only significant variables. 

Actual class Classified class 
1 (High-level) 2 (Low-level) 

1 (High-Level) 18 (78.26%) 5 (21.74%) 
2 (Low-Level) 5 (33.33%) 10 (66.67%) 

Average correct classification rate: 73.68%. 

For NB classification, one uses the significant variables obtained from RST and the DMU variable 
obtained from DEA as input variables for a NB (model IX, named RST-DEA-NB model). The 
RST-NB model utilizes only significant variables as input variables for the NB (model X). Tables 12 
and 13 summarize prediction results for the confusion matrix utilizing models IX and X, respectively. 
Based on RST-NB-based model results, adding DEA improves the correct classification rate 
from 73.68 % to 76.31%. 

Table 12. RST-DEA-NB model (model IX) results with both significant variables and DMU. 

Actual class Classified class 
1 (High-level) 2 (Low-level) 

1 (High-Level) 19 (82.61%) 4 (17.39%) 
2 (Low-Level) 5 (33.33%) 10 (66.67%) 

Average correct classification rate: 76.31%. 

Table 13. RST-NB model (model X) results with only significant variables. 

Actual class Classified class 
1 (High-level) 2 (Low-level) 

1 (High-Level) 19 (82.61%) 4 (17.39%) 
2 (Low-Level) 6 (40%) 9 (60%) 

Average correct classification rate: 73.68%. 
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To compare the performance of models I to XII with that of basic classification models (GP, SVM, 
ANN, KNN, and NB models), the latter, basic classification models are utilized to construct the 
prediction model. Additionally, the original 18 variables of the PV system are taken into account as the 
input variables of each basic classification model and the output variable is the binary transfer 
efficiency (high or low) of a PV system. The results (average correct classification rate) of the basic 
classification models, based on leave-one-out cross validation are: GP (84.21%, model XI), SVM 
(78.94%, model XII), ANN (78.94%, model XIII), KNN (71.05%, model XIV), and NB (68.42%, 
model XV). To determine the computational demands of all classification models (model I to XV), the 
computing time of each is calculated (Table 14).  

Table 14. Computational time of different models (seconds). 

Model Computational time 
Model I (RST-DEA-GP) 65.13 
Model II (RST-GP) 62.34 
Model III (RST-DEA-SVM) 60.17 
Model IV (RST-SVM)  56.49 
Model V (RST-DEA-ANN) 63.28 
Model VI (RST-ANN) 60.67 
Model VII (RST-DEA-KNN) 55.23 
Model VIII (RST-KNN) 53.28 
Model IX (RST-DEA-NB) 54.87 
Model X (RST-NB) 52.81 
Model XI (GP) 51.78 
Model XII (SVM) 50.46 
Model XIII (ANN) 51.39 
Model XIV (KNN) 48.23 
Model XV (NB) 46.26 

These analytical results demonstrate that the proposed hybrid model is more accurate than other 
hybrid models in predicting whether the transfer efficiency of PV systems is high or low. Although the 
computational time of the proposed model exceeds that of the other models, its prediction of whether 
the transfer efficiency of PV systems is low or high is very precise. Notably, adding the DMU variable, 
obtained from DEA, as an independent variable to the GP, SVM, ANN, KNN and NB models yields 
more information than considering only significant variables, and enhances the classification accuracy 
rate of the proposed model. Finally, the proposed model can obtain greater performance than only 
adopting one classification model (GP). 

7. Conclusions 

Accurately predicting high or low transfer efficiency of a PV system is difficult since many 
uncertain factors may influence correct classifications of real-world data. This work makes four 
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important contributions to the existing literature. First, adding DEA provides additional information 
for constructing a model that can predict high or low transfer efficiency of PV systems. Second, the 
results of RST can allow managers or decision-makers in the PV field to identify the critical 
components. Third, the proposed hybrid model has better classification results than existing hybrid 
models, regardless of whether only significant variables are adopted or significant variables and the 
DMU variable are adopted. Fourth, the proposed model also has the lowest misclassification rate 
among all models tested. Therefore, the proposed RST-DEA-GP model can accurately predict whether 
a PV system has high or low transfer efficiency. 

Future work can apply grey theory to determine whether a PV system has high or low transfer 
efficiency based on uncertain information. Second, in order to demonstrate the effectiveness of the 
proposed hybrid prediction model, it will be utilized to predict more different country PV systems.  
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