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Abstract: Accurate power generation forecasting provides the basis of decision making for 

electric power industry development plans, energy conservation and environmental 

protection. Since the power generation time series are rarely purely linear or nonlinear, no 

single forecasting model can identify the true data trends exactly in all situations. To 

combine forecasts from different models can reduce the model selection risk and 

effectively improve accuracy. In this paper, we propose a novel technique called the 

Harmony Search (HS) algorithm-based joint parameters optimization combination model. 

In this model, the single forecasting model adopts power function form with unfixed 

exponential parameters. The exponential parameters of the single model and the combination 

weights are called joint parameters which are optimized by the HS algorithm by optimizing 

the objective function. Real power generation time series data sets of China, Japan, Russian 

Federation and India were used as samples to examine the forecasting accuracy of the 

presented model. The forecasting performance was compared with four single models and 

four combination models, respectively. The MAPE of our presented model is the lowest, 

which shows that the proposed model outperforms other comparative ones. Especially, the 

proposed combination model could better fit significant turning points of power generation 

time series. We can conclude that the proposed model can obviously improve forecasting 
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accuracy and it can treat nonlinear time series with fluctuations better than other single 

models or combination models.  

Keywords: power generation; joint parameter optimization; Harmony Search algorithm; 

combination forecasting method 

 

1. Introduction 

The electric power industry is the basic industry for both national economy and social development. 

Electrification is an important index for assessing a country’s level of modernization. The rapid 

development of the power industry means the rapid growth of installed capacity and generation 

capacity. Power generation forecasting plays an important role in national and international electric 

power planning, which also provides the basis of decision making for the government and the power 

industry development plan.  

First, due to the increase in continuous sustainable positive economic growth rate and large scale 

industrialization, worldwide electricity consumption is quickly rising [1]. In order to meet growing 

electricity demand, more accurate power generation forecasting is needed for future power planning. 

Second, the power generation sector, mainly based on fossil-fueled generation forms, is a typical 

high energy consumption section. The accelerating economic development leads to increasing energy 

demand for power generation which results in a series of adverse effects such as air pollution and 

greenhouse gas (GHG) emission [2]. A particularly large fraction of CO2 emissions, the most 

important anthropogenic GHG, comes from combustion of fossil fuels at power plants [3]. The 

contribution of power generation systems to global energy-related CO2 emissions increased from  

32.67% (7.41 Gt CO2) in 1997 to 41% (11.9 Gt CO2) in 2007 [4]. The effect of power generation on 

climate change has become a key current issue for researchers and policymakers, so for the national 

energy conservation and environmental protection, accurate power generation is also required.  

Third, to respond to global climate change and GHG emissions, measures to realize low carbon 

electric power sector have been taken, including fuel switching, improving energy efficiency, renewable 

energy development and deployment and demand side management (DSM) programs, etc. [5]. On the 

power generation side, many countries have enacted decrees to raise the renewable energy generation 

share in their power generation systems. The characteristics of renewable energy sources, such as 

unstability and intermittence cause many difficulties for power generation forecasting. It is meaningful 

and challenging to obtain more accurate power generation predictions under the circumstance of mixed 

existence of traditional generation forms and various renewable energy generation forms.  

In the last few decades, abundant literature [6–8] has focused on power generation forecasting using 

different classical methods so as to avoid electricity shortages and guarantee adequate infrastructures. 

The major shortcoming of traditional methods such as regression and time series is their limited 

accuracy, partially resulting from the use of linear model structures or the predominant use of static 

nonlinear function relationships. Due to the development of artificial intelligence techniques, artificial 

neural network (ANN) forecasting models and ANNs combining wavelet, optimization and fuzzy 

techniques are developed for power generation forecasting [9–14]. The ANN technique, which is 
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inspired on the biological neural system, represents higher nonlinearity between independent and 

dependent variables [15]. The ANN models can treat nonlinear issues with capability to learn, store 

and recall information based on a given training dataset [16]. However, the accuracy of ANN models 

is limited because the forecasting accuracy depends on the scale of the training data sets and the 

inadequacy of these data sets will reflect over the entire problem. Moreover, the hidden layers in 

ANNs are difficult to explain and they easily achieve local optimal solutions due to the random 

selection of initial weights [17]. 

No single forecasting method has been found to outperform other models in all situations since each 

single model with its own particular advantages and disadvantages cannot identify the true process 

exactly [18]. The purpose of combining forecasts from different models is that this can synthesize the 

information of each individual forecast into a composite one, which is often regarded as a successful 

alternative to just using an individual method [19]. The combination technique was pioneered by Bates 

and Granger [20], and applications of combination forecasting can be found in many fields. It is less 

risky in practice to combine forecasts than to select an individual forecasting method. Moreover, it is 

proved that the combination forecasting model outperforms the poorest individual forecast, and 

sometimes even performs better than the best individual model [21].  

In electric power systems, power generation time series are rarely pure linear or nonlinear, as they 

often contain both linear and nonlinear patterns, so no single model is best to treat these uncertain data 

sequences. That is the main purpose to propose a power generation combination forecasting model. In 

the existing combination forecasting field, much of the literature has focused on how to determine the 

combination forecasting weights. The common combination weights determination methods include 

simple average combination, variance covariance combination, Granger and Ramanthan regression 

method, and the Discounted Mean Square Forecast Error (DMSFE) combination. No researcher has 

yet paid attention to the form of a single model in combination forecasting methods, i.e., the single 

forecast model often adopts a fixed form. In other words, the combination forecasting weights and the 

form of the single forecasting model are not combined to adjust and adapt to different forecasting 

issues. In this paper, we proposed a novel Harmony Search (HS) algorithm-based joint parameters 

optimization combination model. The motivation of the combination model comes from the following 

aspects: first, the single forecasting model adopts a power function form instead of the traditional fixed 

form, and the exponential parameter in power functions can be adjusted under certain criteria. Second, 

the exponential parameter and the combination weights, called joint parameters, are adjusted 

simultaneously. Through adjusting these joint parameters, the combination forecasting model can 

reach the best results. Third, the optimal values of joint parameters are determined by using the  

HS algorithm.  

The Harmony Search (HS) algorithm, as a recently emerging metaheuristic technique mimicking 

the improvisation behavior of musicians [22], is considered a novel successful evolutionary algorithm. 

The HS algorithm has been successfully applied to many optimization problems in the computation 

and engineering fields [23–25]. One of key successful factors of the algorithm is the use of a novel 

stochastic derivative which can be used even for discrete variables. Instead of a traditional calculus-based 

gradient, the HS algorithm utilizes a musician’s experience as a derivative in searching for an optimal 

solution. The advantages of the HS algorithm are that it may escape local optima and overcome the 

drawback of GA’s building block theory which works well only if the relationship among variables in 
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a chromosome is carefully considered. Therefore, this paper attempts to use a HS algorithm to 

optimize the joint parameters in a combination forecasting model in order to improve the forecasting 

accuracy. Cases are then employed to test the performance of the proposed model. The rest of the 

paper is organized as follows: Section 2 introduces the joint parameters optimization combination 

model, Harmony Search algorithm and the HS based joint parameters optimization combination 

model. The empirical simulation and results analysis are presented in Section 3. Finally, Section 4 

gives our conclusions. 

2. HS-Based Joint Parameters Optimization Combination Model  

2.1. Joint Parameters Optimization Combination Model (JPOC) 

From the point of view of system identification and modeling, the objective of modeling of a certain 

system is to determine a model similar to the measured system from a given set of model classes on the 

basis of the input and output data [26]. In other words, the task of system modeling is to find a model 

which can describe the system characteristics and fit future development trends as accurately as 

possible. For a practical forecasting issue, it is not easy to exactly identify the future trends of the time 

series sequence, so a single forecast model cannot always fit the series data better for all situations [18].  

Inspired by the system identification and modeling theory, a nonlinear combination model is 

proposed in our work to forecast the power generation sequence. Adopting a nonlinear model to 

describe the power generation forecasting model is more appropriate than a linear one since in essence 

the power generation growth trend is nonlinear. In the nonlinear combination model, the single model 

adopts a power function form. It is very hard to solve a nonlinear model using the traditional analytical 

methods. The process of finding the coefficients and exponents of the nonlinear model could be 

regarded as an optimization problem. Artificial intelligence methods provide an effective approach to 

solve such optimization problems. A novel intelligence optimization method—Harmony Search 

algorithm—is introduced to access the optimal exponential parameters of the single power function 

model and the combination forecasting weights simultaneously.  

In this section, the joint parameters optimization combination model is described. The joint 

parameters optimization combination model includes single model parameter optimization and 

combination weight optimization.  

The form of joint parameters optimization combination model is written as follows: 
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where ty


 denotes the combined forecasting value for the time period t, )(ˆ i
ty is the ith forecasting value 

for the same period, k is the number of forecasts to be combined, ùi is the combination forecasting 

weight assigned to the ith participating model, ni is the exponent of the ith single model. The optimal 

value of ùi and ni can be determined by the Harmony Search algorithm optimization technique.  

In all, the advantages of the proposed HS algorithm-based joint parameters optimization 

combination model are as follows: first, it is presented based on nonlinear theory which reflects the 

nonlinear essence of the power generation sequence. Second, the joint optimal parameters, including 

exponent coefficient and combination weights, could only be determined simultaneously through 



Energies 2012, 5 3952 

 

 

artificial intelligence techniques and cannot be solved through traditional analytical methods. Third, 

the HS algorithm imitates the musical improvisation process in which seeking a perfect state of 

harmony between different instruments according to aesthetic standard is analogous to seeking a global 

optimum between different variables according to an objective function in optimization techniques. 

This means the HS algorithm is easily understood compared with other optimization algorithms. 

2.2. Harmony Search (HS) Algorithm 

The Harmony Search (HS) algorithm, proposed by Geem et al., is a phenomenon-mimicking 

algorithm inspired by the improvisation process of musicians [22]. Compared with other heuristic 

optimization algorithms, it behaves with excellent effectiveness and robustness and presents lots of 

advantages when applied to optimization problems [27,28]. Scheme 1 shows the HS algorithm 

optimization procedures consisting of Steps 1–5. 

Scheme 1. Harmony Search (HS) optimization procedures. 
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Step 1. Initialize the optimization problem and algorithm parameters: 

Minimize f(x)  
s.t. NiXx ii ,,2,1   

where f(x) is the objective function; x is the set of each design variable (xi); Xi is the set of the possible 

range of values for each design variable; N is the number of design variables. In addition, the HS 

algorithm parameters including harmony memory size (HMS), harmony memory considering rate 

(HMCR), pitch adjusting rate (PAR), the lower bounds (lb) and upper bounds (ub) for each decision 

variable and termination criterion should also be specified in this step.  
Step 2. Initialize the Harmony Memory (HM). 

The HM is a location storing all the solution vectors. In this step, the HM matrix is filled with 

randomly generated solution vectors and sorted by the values of the objective function f(x).  

Step 3. Improvise a new harmony from the HM. 

A new harmony vector is generated based on three rules: memory consideration, pitch adjustment 

and random selection.  

Step 4. Update the HM. 

On condition that the new harmony vector showed better fitness function than the worst harmony in 

the HM, the new harmony is included in the HM and the existing worst harmony is excluded from  

the HM.  

Step 5. Repeat steps 3 and 4 until the termination criterion is satisfied. 

2.3. HS Based Joint Parameters Optimization Combination Model (HS Based JPOC Model) 

The HS-based joint parameters optimization combination model (HS-based JPOC model) is 

described in this section. The optimization objective function is specified as the mean absolute 

percentage error (MAPE). The MAPE is measure of accuracy in a fitted time series value in statistics, 

specifically trending. It usually expresses accuracy as a percentage, eliminating the interaction between 

negative and positive values by taking absolute operation [29], shown in Equation (2):  
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where ty is the actual value for tth period; ty


represents its forecasting result which can be calculated 

through Equation (1); and T is the number of data used for the MAPE calculation. Then the 

optimization objective function is expressed as follows: 
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The optimal values of the joint parameters ùi and ni for the ith separate model are obtained by using 

HS algorithm. The modeling design procedures are shown in Scheme 2. 
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Scheme 2. Harmony Search Based JPOC model design procedures. 

 

Step 1. Choose single forecasting model and calculate separate forecasting results. Before the  

HS-based JPOC model is set up, the single forecasting model should be first selected according to the 

practical problem. For each model, the corresponding separate forecasting results can be calculated.  

Step 2. Establish the joint parameters optimization combination (JPOC) model. Based on the single 

forecast, the JPOC combination model can be built up according to Equation (1).  

Step 3. Determine the optimal values of the joint parameters ùi and ni by using the HS algorithm.  

Step 4. Obtain the combination forecasting results from the HS-based JPOC model.  

3. Empirical Simulation and Results Analysis 

3.1. Data Sources  

This section describes how to apply the HS algorithm to searching for the optimal values of 

exponential parameters and the combination forecasting weights and then establish the HS-based 

JPOC forecasting model. The yearly power generation data (Terawatt-hours, TWh for short) for China, 

Japan, Russian Federation and India from 2000 to 2010 obtained from the website of British Petroleum 

(BP) [30] were collected to validate the aforementioned method. The BP Statistical Review of World 

Energy which is one of the most widely respected and authoritative publications in the field of energy 

economics, provides high-quality, objective and globally consistent data on world energy markets. In 

2010, the power generation for China, Japan and India accounted for 19.7%, 5.4% and 4.3% of the total 

power generation in the World, respectively. Combined, these top three countries constitute 29.4% of 

the global power generation and 76.36% of Asian power generation. The power generation in the 

Russian Federation accounts for 4.9% of the World total and nearly one fifth in the total of Europe and 

Eurasia in 2010.  

Since China’s reform and opening-up policy in 1980s, the average annual growth rate of GDP has 

been about 10%. Rapid and sustainable development of the economy has led to increased power 

generation, thus the power generation has grown rapidly from 300 TWh in 1980 to 4604 TWh in 2011. 

Now, the installed capacity ranks second in the World and the power generation ranks the first. 

Furthermore, the power generation in China will remain at high speed for decades since China is just 

in the process of industrialization and urbanization.  
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Japan is a country with rapid economic development. The Japanese economy has experienced a 

period of post-war economic recovery and rapid economic development in nineteenth century. And 

Japan has also experienced an atrophy period since the first 10 years of the 21st century. The power 

generation in Japan also shows fluctuating trends in typical years. How to accurately forecast power 

generation is difficult due to this fluctuating-type growth. 

For a long time, India’s power generation has found it difficult to meet the lighting needs of the 

residents and industrial electricity consumption due to the rapid economic development in the nation. 

Especially, blackouts have affected northern India, eastern and northeastern regions since 30 July, 

2012. After years of rapid economic growth, electricity supply has become the bottleneck constraining 

growth. It is reported that during the 12th Five-Year Plan, India will make efforts to develop its power 

industry since 2012. The increase of India’s power generation will accelerate in the future. To forecast 

future power generation in India has important theoretical and practical guiding significance. 

Since the first eight years of the 21st century, the Russian Federation has experienced rapid 

economic growth. During the same period, the power generation also showed significant growth trends. 

Since September 2008, with the rapid spread of the international financial crisis and the global real 

economy downturn, Russia’s economy fell into a severe recession. Therefore, the corresponding power 

generation decreased in 2009, so the power generation sequence of the Russian Federation shows a 

rising trend with typical fluctuations in certain years.  

The yearly power generation curve (shown in Figure 1) exhibits different trends. The power 

generation curves of China and India show obvious rising trends, while the curves of Japan and 

Russian Federation show a basic rising trend with several waves. These four countries are selected as 

samples to test the applicability of the proposed HS-based JPOC forecasting model. Due to the 

different trends of the power generation curves, it is particularly meaningful to make accurate 

predictions. In next section, the performance data is presented to validate the aforementioned method. 

Figure 1. Yearly power generation in China, Japan, Russian Federation and Indian from 

2000 to 2010 (TWh).  
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3.2. Empirical Simulation  

We conduct the experiments following the steps previously shown in Section 2.3. Firstly, we 

choose a separate forecasting model and calculate the single forecasting result. Linear regression 

model [31], time series model [32], Grey (1, 1) forecasting model (GM) [33] and Grey Verhulst model 

(GV) [34] are selected to generate the single forecasting result. Secondly, we establish the HS-based 

JPOC forecasting model according to Equation (1). Thirdly, determine the optimal value of the joint 

parameters using the HS algorithm.  

A flowchart of the HS algorithm for parameter initialization is shown in Scheme 1. The details of 

the selection initial parameter model are as follows: HMS = 20, HMCR = 0.99, PAR = 0.5, BW = 1,  

lb = −100, ub = 100. All the programs were run on a 2.27 GHz Intel Core Duo CPU equipped with  

1 GB of random access memory. In each case study, 30 independent runs were made for the HS 

optimization method in MATLAB 7.6.0 (R2008a) under the 32-bit Windows 7 operating system.  

The proposed HS-based JPOC model was validated with the power generation data from 2000 to 

2010 for China, Japan, Russian Federation and India. Table 1 shows the optimal values of exponential 

parameters for the separate model and the combination forecasting weights for the four countries. The 

combination forecasting weights have both positive and negative values, as can be seen from Table 1. In 

combination forecasting, different single models play different roles in the combination model. There 

may be positive or negative correlations between the individual forecasting result series and the 

original data sequence, so the case that combination forecasting weights have positive and negative 

values is consistent with the actual situation. The combination forecasting weights adopted in this 

paper not only have positive and negative values, but also have no restriction that the sum of weights 

equals to 1. This forecasting weights processing method can achieve more accurate results.  

Table 1. The optimal value of ùi and ni for four countries. 

Optimal parameters China Japan Russian Federation India 

ω1 0.9077 72.6476 23.3226 4.7849 

ω2 −6.9740 −0.0157 −56.2980 −4.1747 

ω3 7.6333 2.3912 0.8225 0.9964 

ω4 0.2341 −58.4778 26.8964 0.9401 

n1 1.2236 −49.9990 32.0378 10.3544 

n2 −0.1259 −97.0534 29.3406 9.6253 

n3 −0.3048 −3.6961 −0.7928 19.8902 

n4 −4.4387 −40.8701 24.8709 0.8831 

The forecasting values and the actual data for these countries are listed in Table 2. To test the 

forecasting performance, the HS-based JPOC model was compared with other four single models 

(linear regression model, time series model, GM model and GV model) and four combination models 

[Equivalent Weight (EW) model, Variance-Covariance (VACO) model, Granger and Ramanthan 

regression combination (R) model and Discounted MSFE model (DMSFE, â = 0.5)]. The comparison 

results are shown in the next section.  
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Table 2. Forecasting results of the HS-based JPOC model for four countries (TWh). 

Year 
China Japan Russian Federation India 

Actual Forecast Actual Forecast Actual Forecast Actual Forecast 

2000 1355.60 1355.60 1057.94 1057.94 877.80 891.56 554.74 553.94 

2001 1480.80 1467.01 1039.72 1039.74 891.30 891.19 574.55 568.79 

2002 1654.00 1667.22 1058.34 1053.38 891.27 893.10 592.19 596.02 

2003 1910.58 1910.61 1082.61 1087.40 912.08 904.78 624.09 625.52 

2004 2203.31 2201.42 1107.85 1123.63 931.90 925.74 657.72 657.74 

2005 2500.26 2508.04 1153.06 1152.92 954.10 958.47 689.56 693.24 

2006 2865.73 2817.67 1164.35 1170.92 992.10 986.86 738.71 732.62 

2007 3281.55 3149.39 1180.11 1177.17 1018.70 1011.64 797.94 776.56 

2008 3466.88 3493.64 1183.72 1173.00 1040.00 1034.05 824.45 825.24 

2009 3714.65 3791.00 1114.00 1160.27 993.10 1009.53 869.80 869.17 

2010 4206.54 4111.84 1145.27 1140.81 1036.78 1036.80 922.25 922.27 

3.3. Results Analysis 

3.3.1. Comparison with Four Other Single Models 

This section focuses on the comparison between the HS-based JPOC model and the other four 

single models mentioned in this study. Table 3 and Figure 2 list the results of the HS-based JPOC 

model (HSC shown in figures), linear regression, time series, GM and GV forecasting models for 

China and the corresponding errors of these models. Due to the simple rising trend in China’s power 

generation, the four separate models all capture the increasing trend better. The performance disparity 

for these five models can be identified from the errors in Table 3. For short range forecasting, the error 

range [−3%, +3%] is generally considered as a standard to measure forecasting result [35]. Next, this 

range is adopted to compare the five methods as follows: the proposed HS-based JPOC model has only 

one forecasting result point that exceeds the range in a total of 11 points −4.0274% in 2007). The 

maximum and minimum errors are 2.0554% and −4.0274% in 2009 and 2007, respectively. In the 

regression model, there are four result points larger than 3%, two smaller than −3%, and two points 

near −3%, so in total six points are not satisfactory. The regression model reaches the maximum error 

of 5.7904% in 2003 and the minimum error of −15.3452% in 2000. In the time series model, there are 

two result points larger than 3%, one point smaller than −3%, and two points near −3%. The maximum 

error is 6.3466% in 2008 and the minimum error is −3.1404% in 2003. In GM mode, there are four 

result points larger than 3%, and two smaller than −3%. The maximum error is 6.6759% in 2002 and 

the minimum error is −6.3135% in 2007. In GV mode, there are three result points larger than 3%, one 

smaller than −3%. The maximum error is 6.2340% in 2002 and the minimum error is −3.8098% in 

2007. Compared with the four single models, the numbers that exceed the error range for the HS-based 

JPOC model are the least, and the maximum and minimum errors are smaller than other single models.  
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Table 3. Forecasting results of HS based JPOC model and other four single models for 

China (TWh). 

Year Actual 

HS based  

JPOC model 
Regression Time series GM GV 

Forecast Error (%) Forecast Error (%) Forecast Error (%) Forecast Error (%) Forecast Error (%)

2000 1355.60 1355.60 0.0000 1147.58  −15.3452 1316.86 −2.8578 1355.60 0.0000  1355.60 0.0000 

2001 1480.80 1467.01 −0.9313 1438.79  −2.8370 1504.08 1.5721 1578.96 6.6288  1545.61 4.3767 

2002 1654.00 1667.22 0.7993 1730.00  4.5949 1651.65 −0.1421 1764.42 6.6759  1757.11 6.2340 

2003 1910.58 1910.61 0.0016 2021.21  5.7904 1850.58 −3.1404 1971.66 3.1969  1991.06 4.2123 

2004 2203.31 2201.42 0.0858 2312.42  4.9521 2141.59 −2.8012 2203.25 −0.0027  2248.10 2.0329 

2005 2500.26 2508.04 0.3112 2603.63  4.1344 2472.39 −1.1147 2462.04 −1.5286  2528.38 1.1247 

2006 2865.73 2817.67 −0.0168 2894.84  1.0158 2807.41 −2.0351 2751.22 −3.9958  2831.54 −1.1931 

2007 3281.55 3149.39 −4.0274 3186.05  −2.9102 3219.00 −1.9061 3074.37 −6.3135  3156.53 −3.8098 

2008 3466.88 3493.64 0.7719 3477.26  0.2994 3686.91 6.3466 3435.48 −0.9057  3501.65 1.0029 

2009 3714.65 3791.00 2.0554 3768.47  1.4489 3895.65 4.8726 3839.00 3.3476  3864.49 4.0338 

2010 4206.54 4111.84 −2.2513 4059.68  −3.4912 4174.39 −0.7643 4289.92 1.9822  4241.93 0.8413 

Figure 2. Forecasting performance of HS based JPOC model and other four single models 

for China.  

 

Table 4 lists the forecasting values and actual data of power generation for Japan and the 

corresponding errors. Figure 3 shows the curves of actual data and the forecasting results of the 

proposed model and the other four single models. The error analysis of Japan is as follows:  
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The proposed model has only one forecasting result point that exceeds the range (4.1535% in 2009). 

The minimum and maximum errors are −0.0121% and 4.1535% in 2005 and 2009. In the regression 

model, there is one result point larger than 3%, three smaller than −3%, one point near −3% and one 

point near +3%. Regression reaches the maximum error 4.7127% in 2009 and the minimum error 

−3.2505% in 2007.  

Table 4. Forecasting results of HS based JPOC model and other four single models for 

Japan (TWh). 

Year Actual 

HS based  

JPOC model 
Regression Time series GM GV 

Forecast Error (%) Forecast Error (%) Forecast Error (%) Forecast Error (%) Forecast Error (%)

2000 1057.94 1057.94 0.0000 1055.12  −0.2666 1076.88 1.7903 1057.94 0.0000 1057.94 0.0000 

2001 1039.72 1039.74 0.0019 1067.49  2.6709 1088.67 4.7080 1068.34 2.7527 1070.54 2.9643 

2002 1058.34 1053.38 −0.4687 1079.87  2.0343 1097.33 3.6841 1080.12 2.0579 1082.35 2.2686 

2003 1082.61 1087.40 0.4424 1092.24  0.8895 1103.70 1.9481 1092.02 0.8692 1093.39 0.9957 

2004 1107.85 1123.63 1.4244 1104.62  −0.2916 1108.37 0.0469 1104.06 −0.3421 1103.70 −0.3746 

2005 1153.06 1152.92 −0.0121 1117.00  −3.1273 1111.80 −3.5783 1116.23 −3.1941 1113.32 −3.4465 

2006 1164.35 1170.92 0.5643 1129.37  −3.0043 1114.32 −4.2968 1128.53 −3.0764 1122.27 −3.6140 

2007 1180.11 1177.17 −0.2491 1141.75  −3.2505 1116.17 −5.4181 1140.96 −3.3175 1130.59 −4.1962 

2008 1183.72 1173.00 −0.9056 1154.13  −2.4997 1117.53 −5.5917 1153.54 −2.5496 1138.32 −3.8354 

2009 1114.00 1160.27 4.1535 1166.50  4.7127 1118.53 0.4066 1166.25 4.6903 1145.49 2.8268 

2010 1145.27 1140.81 −0.3894 1178.88  2.9347 1119.27 −2.2702 1179.11 2.9548 1152.14 0.5999 

Figure 3. Forecasting performance of the HS-based JPOC model and four other single 

models for Japan.  
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In time series model, there are two points larger than 3%, four points smaller than −3%. The 

maximum error is 4.7080% in 2001 and the minimum error is −5.5917% in 2008. In GM mode, there 

is one result point larger than 3%, three smaller than −3%, and two points near +3%. The maximum 

error is 4.6903% in 2009 and the minimum error is −3.3175% in 2007. In GV mode, there are three 

points smaller than −3% and two points near +3%. The maximum error is 2.9643% in 2001 and the 

minimum error is −4.1962% in 2007. From errors analysis, we also conclude that the proposed model 

has better forecasting performance. For Japan’s power generation sequence, there are two turning 

points (in 2001 and 2009). The forecasting errors of the proposed model for these two points are 

smaller than that of other single forecasting models which can be seen from Table 4. We can conclude 

that the HS based JPOC model can obtain better predictive performances in obvious turning points. 

For the Russian Federation, no error result point of the proposed model exceeds the error range 

[−3%, +3%] (Table 5, Figure 4). There is only one result point larger than +3% or smaller than −3% 

for the linear regression, time series, GM and GV models, respectively. For India, we can also see that 

the errors of the result points are all within the [−3%, +3%] error range for the proposed model, time 

series model, GM model and GV model (Table 6, Figure 5). In the linear regression model, there is 

one result point larger than 3% and one point smaller than −3%. It seems that the proposed HS-based 

JPOC model does not display any obvious advantage concerning forecasting error range compared 

with other four single models, but from another point of view, we can analyze the maximal absolute 

percentage error (MaxAPE) indicator for these models. The MaxAPE indicator is defined as follows:  

max 100,   1,2, ,t t

t
t

y y
MaxAPE t T

y

 
    

 


  (4) 

where ty is the power generation value in the tth year; ty


represents its forecasting result for the same 

period; and T is the number of data used for the MaxAPE calculation. 

Table 5. Forecasting results of the HS-based JPOC model and other four single models for 

Russian Federation (TWh). 

Year Actual 

HS based JPOC 

model 
Regression Time series GM GV 

Forecast Error (%) Forecast Error (%) Forecast Error (%) Forecast Error (%) Forecast Error (%)

2000 877.80  891.56 1.5676 870.75 −0.8031 880.58 0.3167 877.80 0.0000 877.80 0.0000 

2001 891.30  891.19 −0.0123 888.22 −0.3456 895.51 0.4723 887.95 −0.3759 894.35 0.3422 

2002 891.27  893.10 0.2053 905.69 1.6179 910.60 2.1688 904.47 1.4810 910.80 2.1913 

2003 912.08  904.78 −0.8004 923.16 1.2148 925.84 1.5086 921.31 1.0120 927.13 1.6501 

2004 931.90  925.74 −0.6610 940.63 0.9368 941.24 1.0023 938.45 0.7029 943.33 1.2265 

2005 954.10  958.47 0.4580 958.1 0.4192 956.79 0.2819 955.92 0.1908 959.39 0.5544 

2006 992.10  986.86 −0.5282 975.57 −1.6662 972.51 −1.9746 973.71 −1.8536 975.29 −1.6944 

2007 1018.70 1011.64 −0.6930 993.04 −2.5189 988.38 −2.9763 991.83 −2.6377 991.02 −2.7172 

2008 1040.00 1034.05 −0.5721 1010.51 −2.8356 1004.40 −3.4231 1010.29 −2.8567 1006.57 −3.2144 

2009 993.10  1009.53 1.6544 1027.98 3.5122 1020.59 2.7681 1029.09 3.6240 1021.92 2.9020 

2010 1036.78 1036.80 0.0019 1045.45 0.8362 1036.93 0.0145 1048.24 1.1053 1037.08 0.0289 
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Figure 4. Forecasting performance of HS based JPOC model and other four single models 

for Russian Federation.  

 

Table 6. Forecasting results of the HS-based JPOC model and the other four single models 

for India (TWh).  

Year Actual 

HS based JPOC 

model 
Regression Time series GM GV 

Forecast Error (%) Forecast Error (%) Forecast Error (%) Forecast Error (%) Forecast Error (%)

2000 554.74  553.03 −0.1442 524.91 −5.3773 543.28 −2.0658 554.74 0.0000 554.74 0.0000 

2001 574.55  574.65 −1.0025 562.58 −2.0834 572.42 −0.3707 562.53 −2.0921 580.62 1.0565 

2002 592.19  598.29 0.6468 600.25 1.3610 603.12 1.8457 594.22 0.3428 608.34 2.7272 

2003 624.09  624.76 0.2291 637.93 2.2176 635.46 1.8219 627.70 0.5784 638.09 2.2433 

2004 657.72  655.13 0.0030 675.6 2.7185 669.53 1.7956 663.06 0.8119 670.11 1.8838 

2005 689.56  690.47 0.5337 713.27 3.4384 705.42 2.3000 700.41 1.5735 704.63 2.1855 

2006 738.71  731.39 −0.8244 750.95 1.6569 743.23 0.6119 739.87 0.1570 741.97 0.4413 

2007 797.94  777.08 −2.6794 788.62 −1.1680 783.06 −1.8648 781.55 −2.0540 782.47 −1.9387 

2008 824.45  824.57 0.0958 826.29 0.2232 825.02 0.0691 825.58 0.1371 826.54 0.2535 

2009 869.80  870.19 −0.0724 863.96 −0.6714 869.22 −0.0667 872.09 0.2633 874.64 0.5564 

2010 922.25  922.21 0.0022 901.64 −2.2348 915.78 −0.7015 921.22 -0.1117 927.37 0.5552 
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Figure 5. Forecasting performance of the HS-based JPOC model and the other four single 

models for India.  

 

For the Russian Federation, the MaxAPE values are 1.6544%, 3.5122%, 3.4231%, 3.6240% and 

3.2144% for the proposed HS-based JPOC model, linear regression model, time series model, GM 

model and GV model respectively. For India, the MaxAPE values are 2.6794%, 5.3773%, 2.3000%, 

2.0921% and 2.7272% for the corresponding models. Compared with other four single models, the 

MaxAPE of the HS-based JPOC model is smaller, which means the proposed model has less 

forecasting risk. For the Russian Federation’s power generation sequence, there is also a turning point 

in 2009, and forecasting error of the proposed model is also smaller than the other single models. It is 

also tested by this case that the HS-based JPOC model can treat the sudden turning points better than 

other models. 

Next, the mean absolute percentage error (MAPE) is adopted as an indicator of forecasting precision 

listed in Table 7. The calculation of the MAPE indicator was mentioned above in Equation (2). Among 

these five forecasting models, the HS-based JPOC model is the most accurate forecasting model 

because of its smallest MAPE value. Taking the MAPE of the HS-based JPOC model as a benchmark, 

the improvement rate with respect to the other four single models is also reported in Table 7. The 

improvement rates of regression, time series, GM and GV are 262.5863%, 113.3657%,  

167.7741% and 123.5114%, respectively, for China; 198.2371%, 291.8114%, 199.6679% and 

191.7476% for Japan; 133.5178%, 136.3315%, 121.4022% and 130.9194% for the Russian Federation; 

309.2960%, 138.8565%, 43.5823% and 144.7102% for India, respectively. Most MAPE 

improvements are over 100% for these four cases. The at least 43.5823% improvement reveals the 

superior forecasting performance of HS-based JPOC model. Therefore, it can be concluded that the 

proposed model is significantly more accurate than other four single forecasting models.  
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Table 7. The MAPE comparison of the HS based JPOC model and the other single models (%). 

MAPE 

Comparison 

China Japan Russian Federation India 

MAPE 
Improvement 

Rate (%) 
MAPE 

Improvement 

Rate (%) 
MAPE 

Improvement 

Rate (%) 
MAPE 

Improvement 

Rate (%) 

HS-based 

JPOC model 
1.1739 ---- 0.7828 ---- 0.6504 ---- 0.5142 ---- 

Linear 

Regression 
4.2564 262.5863 2.3346 198.2371 1.5188 133.5178 2.1046 309.2960 

Time Series 2.5047 113.3657 3.0671 291.8114 1.5371 136.3315 1.2282 138.8565 

GM 3.1434 167.7741 2.3458 199.6679 1.4400 121.4022 0.7383 43.58230 

GV 2.6238 123.5114 2.2838 191.7476 1.5019 130.9194 1.2583 144.7102 

3.3.2. Compared with Other Combination Models 

The forecasting performance of the HS-based JPOC model (HSC shown in figures) is compared 

with four other combination models (EW, VACO, R, and DMFSE). In the DMSFE combination 

forecast model, the discounting factor β is chosen as 0.5. Table 8 lists the combination forecasting 

values and actual data of China’s power generation and the corresponding errors between the actual 

value and the forecasting results. Figure 6 shows the curves of actual data and the forecasting results of 

the proposed model and the other four combination models. We can hardly observe the advantages of 

our proposed model from Figure 4 since these combination forecasting results are all very close to the 

actual values, so we also adopt error analysis for the proposed model and the other combination models.  

Table 8. Forecasting results of HS based JPOC model and other combination models for 

China (TWh). 

Year Actual 

HS-based  

JPOC model 
EW VACO R DMFSE (0.5) 

Forecast Error (%) Forecast Error (%) Forecast Error (%) Forecast Error (%) Forecast Error (%)

2000 1355.60 1355.60 0.0000 1293.91 −4.5508 1306.24 −3.6412 1353.98 −0.1195 1295.39 −4.4416 

2001 1480.80 1467.01 −0.9313 1516.86 2.4352 1522.51 2.8167 1451.09 −2.0063 1517.34 2.4676 

2002 1654.00 1667.22 0.7993 1725.80 4.3410 1728.83 4.5242 1679.2 1.5236 1725.62 4.3301 

2003 1910.58 1910.61 0.0016 1958.63 2.5149 1959.86 2.5793 1936.02 1.3315 1958.07 2.4856 

2004 2203.31 2201.42 0.0858 2226.34 1.0452 2225.88 1.0244 2214.63 0.5138 2225.78 1.0198 

2005 2500.26 2508.04 0.3112 2516.61 0.6539 2515.38 0.6047 2517.18 0.6767 2516.27 0.6403 

2006 2865.73 2817.67 −0.0168 2821.25 −1.5521 2820.60 −1.5748 2841.72 −0.8378 2821.19 −1.5542 

2007 3281.55 3149.39 −4.0274 3158.99 −3.7348 3158.86 −3.7388 3170.78 −3.3755 3159.47 −3.7202 

2008 3466.88 3493.64 0.7719 3525.32 1.6857 3525.70 1.6966 3495.19 0.8166 3526.52 1.7203 

2009 3714.65 3791.00 2.0554 3841.90 3.4256 3847.58 3.5785 3837.86 3.3169 3842.90 3.4525 

2010 4206.54 4111.84 −2.2513 4191.48 -0.3580 4201.34 −0.1236 4142.26 −1.5281 4192.37 −0.3369 
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Figure 6. Forecasting performance of the HS-based JPOC model and the other 

combination models for China.  

 

The proposed HS-based JPOC model has one forecasting result point that exceeds the range in the 

total of 11 points (−4.0274% in 2007). The maximum and minimum errors are 2.0554% and −4.0274% 

in 2009 and 2007, respectively. In the EW combination model, there are two result points larger than 

3%, two smaller than −3%, and two points near 3%, so total of four points are not satisfactory. The 

EW model reaches the maximum error of 4.3410% in 2002 and the minimum error of −4.5508% in 

2000. In the VACO combination model, there are two result points larger than 3%, two points smaller 

than −3%, and two points near 3%. The maximum error is 4.5242% in 2002 and the minimum error is 

−3.7388% in 2002. In the R combination model, there is one result point larger than 3%, and one 

smaller than −3%. The maximum error is 3.3169% in 2009 and the minimum error is −3.3755% in 

2007. In the DMFSE model, there are two result points larger than 3%, two points smaller than −3% 

and two points near 3%. The maximum error is 4.3301% in 2002 and the minimum error is −4.4416% 

in 2000. In all, the numbers that exceed the error range for the HS-based JPOC model are the least, and 

the maximum and minimum errors are all smaller than those of the other combination models. The  

HS-based JPOC model showed better forecasting performance compared with the four other 

combination models for China.  

Table 9 lists the forecasting values and actual data of power generation for Japan and the 

forecasting errors. Figure 7 shows the curves of actual data and the forecasting results for the five 

models. The error analysis of Japan is as follows: the proposed model has only one forecasting result 

point that exceeds the range (4.1535% in 2009). The minimum and maximum errors are 50.0121% and 

4.1535% in 2005 and 2009, respectively. In the EW combination model, there are two result points 

larger than 3%, and four smaller than −3%. The maximum error is 3.2740% in 2001 and the minimum 

error 54.0454% in 2007. In the VACO combination model, there are two result points larger than 3%, 

two points smaller than 53%. The maximum error is 3.5009% in 2009 and the minimum error is 

53.8751% in 2007. In the R combination model, there is only one result point larger than 3%. The 

maximum error is 3.6221% in 2009 and the minimum error is −1.6965% in 2010. In the DMFSE 
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model, there are two result points larger than 3%, four points smaller than −3%. The maximum error is 

3.2778% in 2001 and the minimum error is −4.0522% in 2007. The HS-based JPOC model also 

showed better performance compared with the four other combination models for Japan, from both the 

numbers exceeding forecasting error range [−3%, +3%] and the maximum and minimum errors.  

Table 9. Forecasting results of HS-based JPOC model and the other combination models 

for Japan (TWh). 

Year Actual 

HS based  

JPOC model 
EW VACO R DMFSE (0.5) 

Forecast Error (%) Forecast Error (%) Forecast Error (%) Forecast Error (%) Forecast Error (%)

2000 1057.94  1057.94 0.0000 1061.97 0.3809 1060.16 0.2098 1058.15 0.0198 1062.00 0.3838 

2001 1039.72  1039.74 0.0019 1073.76 3.2740 1071.95 3.0999 1038.32 −0.1347 1073.80 3.2778 

2002 1058.34  1053.38 −0.4687 1084.92 2.5115 1083.41 2.3688 1056.93 −0.1332 1084.95 2.5143 

2003 1082.61  1087.40 0.4424 1095.34 1.1759 1094.33 1.0826 1085.91 0.3048 1095.36 1.1777 

2004 1107.85  1123.63 1.4244 1105.19 −0.2401 1104.81 −0.2744 1116.91 0.8178 1105.19 −0.2401 

2005 1153.06  1152.92 −0.0121 1114.59 −3.3363 1114.94 −3.3060 1144.29 −0.7606 1114.57 −3.3381 

2006 1164.35  1170.92 0.5643 1123.62 −3.4981 1124.78 −3.3985 1163.88 −0.0404 1123.58 −3.5015 

2007 1180.11  1177.17 −0.2491 1132.37 −4.0454 1134.38 −3.8751 1172.64 −0.6330 1132.29 −4.0522 

2008 1183.72  1173.00 −0.9056 1140.88 −3.6191 1143.78 −3.3741 1169.76 −1.1793 1140.77 −3.6284 

2009 1114.00  1160.27 4.1535 1149.19 3.1589 1153.00 3.5009 1154.35 3.6221 1149.04 3.1454 

2010 1145.27  1140.81 −0.3894 1157.35 1.0548 1162.08 1.4678 1125.84 −1.6965 1157.16 1.0382 

Figure 7. Forecasting performance of HS based JPOC model and other combination 

models for Japan.  
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The forecasting results and errors for the Russian Federation and India are listed in Table 10 and 

Table 11. The curves of actual data and the forecasting results for the two countries are drawn in 

Figure 8 and Figure 9. 

Table 10. Forecasting results of the HS-based JPOC model and the other combination 

models for the Russian Federation (TWh). 

Year Actual 

HS based  

JPOC model 
EW VACO R DMFSE (0.5) 

Forecast Error (%) Forecast Error (%) Forecast Error (%) Forecast Error (%) Forecast Error (%)

2000 877.80 891.56 1.5676 876.73 −0.1219 876.60 −0.1367 877.85 0.0057 876.74 −0.1208 

2001 891.30 891.19 −0.0123 891.51 0.0236 891.38 0.0090 888.93 −0.2659 891.52 0.0247 

2002 891.27 893.10 0.2053 907.89 1.8648 907.80 1.8547 895.16 0.4365 907.90 1.8659 

2003 912.08 904.78 −0.8004 924.36 1.3464 924.30 1.3398 909.96 −0.2324 924.37 1.3475 

2004 931.90 925.74 −0.6610 940.91 0.9668 940.89 0.9647 933.45 0.1663 940.92 0.9679 

2005 954.10 958.47 0.4580 957.55 0.3616 957.56 0.3626 959.58 0.5744 957.55 0.3616 

2006 992.10 986.86 −0.5282 974.27 −1.7972 974.31 −1.7932 988.48 −0.3649 974.27 −1.7972 

2007 1018.70 1011.64 −0.6930 991.07 −2.7123 991.14 −2.7054 1011.15 −0.7411 991.06 −2.7133 

2008 1040.00 1034.05 −0.5721 1007.94 −3.0827 1008.04 −3.0731 1024.59 −1.4817 1007.94 −3.0827 

2009 993.10 1009.53 1.6544 1024.90 3.2021 1025.03 3.2152 1028.93 3.6079 1024.88 3.2001 

2010 1036.78 1036.80 0.0019 1041.93 0.4967 1042.08 0.5112 1021.05 −1.5172 1041.91 0.4948 

Figure 8. Forecasting performance of the HS-based JPOC model and the other 

combination models for the Russian Federation.  
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Table 11. Forecasting results of the HS-based JPOC model and the other combination 

models for India (TWh). 

Year Actual 

HS based  

JPOC model 
EW VACO R DMFSE (0.5) 

Forecast Error (%) Forecast Error (%) Forecast Error (%) Forecast Error (%) Forecast Error (%)

2000 554.74 553.03 −0.1442 544.42 −1.8603 549.23 −0.9933 554.79 0.0090 544.47 −1.8513 

2001 574.55 574.65 −1.0025 569.54 −0.8720 568.95 −0.9747 572.73 −0.3168 569.55 −0.8702 

2002 592.19 598.29 0.6468 601.48 1.5688 600.06 1.3290 594.83 0.4458 601.48 1.5688 

2003 624.09 624.76 0.2291 634.79 1.7145 632.82 1.3988 623.06 −0.1650 634.78 1.7129 

2004 657.72 655.13 0.0030 669.57 1.8017 667.34 1.4626 656.87 −0.1292 669.56 1.8002 

2005 689.56 690.47 0.5337 705.93 2.3740 703.73 2.0549 695.72 0.8933 705.91 2.3711 

2006 738.71 731.39 −0.8244 744.00 0.7161 742.16 0.4670 738.44 −0.0366 743.98 0.7134 

2007 797.94 777.08 −2.6794 783.92 −1.7570 782.76 −1.9024 783.95 −1.7533 783.91 −1.7583 

2008 824.45 824.57 0.0958 825.86 0.1710 825.72 0.1540 830.56 0.7411 825.86 0.1710 

2009 869.80 870.19 −0.0724 869.98 0.0207 871.21 0.1621 876.37 0.7553 869.99 0.0218 

2010 922.25 922.21 0.0022 916.50 −0.6235 919.47 −0.3014 918.44 −0.4131 916.54 −0.6191 

Figure 9. Forecasting performance of the HS-based JPOC model and the other 

combination models for India.  

 

No error point of the proposed model exceeds the range [−3%, +3%] for the Russian Federation. 

One result point is larger than +3% and one point is smaller than −3% for the EW model, the VACO 

model and the DMFSE model, respectively. Only one point is larger than +3% for the R model. For 

India, the errors of the four combination models are all within the error range. The HS-based JPOC 

model does not show any obvious advantage when dealing with the time series data trends of the 

Russian Federation and India. Next, we measure the forecasting risk by using the MaxAPE indicator. 

For the Russian Federation, the MaxAPE values for the five models are 1.6544%, 3.2021%, 3.2152%, 

3.6079% and 3.2001%, respectively. The MaxAPE of the HS-based JPOC model is the smallest, 

which means that it will be less risky to choose the proposed model to forecast future trend. For India, 
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the MaxAPE values of the five models all fluctuate around 2% (2.6749%, 2.3840%, 2.05491%,  

1.7533% and 1.8513%). The MaxAPE of the HS-based JPOC model is not the best in this case, but 

through analyzing the absolute value of errors, we can find that only in 2000 and 2009, the errors 

showed worse results (1.5676% in 2000 and 1.6544% in 2009). Only two error points are slightly 

larger for India. Since the overall error indicator MAPE is adopted for the objective function, there 

may be certain individual points with slightly larger errors during the HS optimizing training process, 

but in other year points, the errors of the HS-based JPOC model are much smaller than those of the 

other combination models. The errors of the HS-based JPOC model expressed smaller fluctuations, 

which in not the case for the other combination models. Furthermore, the overall MAPE indicator is 

the smallest, which explains the comprehensive performance of the proposed model shown in Table 12. 

Table 12 shows the MAPE improvement rate of the HS-based JPOC model compared to the other 

four combination models. The improvement rates of EW, VACO, R, DMSFE (â = 0.5) are 103.6545%, 

100.5963%, 24.2695% and 102.6578%, respectively, for China; 205.3654%, 201.4563%, 8.4951% and 

205.4037% for Japan; 123.3087%, 123.1550%, 31.3038% and 123.3087% for the Russian Federation; 

and 138.3119%, 98.0163%, 0.0389% and 137.9424% for India, respectively. We observe from Table 12 

that the HS-based JPOC model outperforms all other combination forecast models since the proposed 

model has the lowest MAPE.  

Table 12. The MAPE comparison of the HS-based JPOC model and the other combination 

models (%).  

MAPE 

Comparison 

China Japan Russian Federation India 

MAPE 
Improvement 

Rate (%) 
MAPE 

Improvement 

Rate (%) 
MAPE 

Improvement 

Rate (%) 
MAPE 

Improvement 

Rate (%) 

HS based JPOC 

model 
1.1739 - 0.7828 - 0.6504 - 0.5142 - 

EW 2.3907 103.6545 2.3904 205.3654 1.4524 123.3087 1.2254 138.3119 

VACO 2.3548 100.5963 2.3598 201.4563 1.4514 123.1550 1.0182 98.0163 

R 1.4588 24.2695 0.8493 8.4951 0.8540 31.3038 0.5144 0.03890 

DMFSE (β = 0.5) 2.3790 102.6578 2.3907 205.4037 1.4524 123.3087 1.2235 137.9424 

4. Conclusions  

It is well recognized that no single model consistently performs well in all situations. The combination 

model can always improve the accuracy of forecasting and is typically a reliable forecasting method 

for any practical forecasting issue. In this paper, the Harmony Search algorithm-based joint parameters 

optimization combination model is proposed for power generation forecasting. The single forecasting 

model adopts a power function form. The exponential parameters of the single power function model 

and the combination forecasting weights are then optimized simultaneously through using the HS 

algorithm to get the optimal parameter values. The combination forecasting results can be obtained 

finally. The yearly power generation data from 2000 to 2010 for typical countries with different trends 

are forecasted to test the effect and accuracy of the proposed method. Compared with four single 

models and four combination models for these four countries, the main conclusions drawn from the 

above study can be summarized as follows: first, the proposed combination model outperforms other 
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single models and combination models for China, Japan, the Russian Federation and India. The 

numbers that exceed the error range [+3%, −3%] for the proposed model are the least, and the 

maximum and minimum errors are all smaller than other single models and combination models. 

Second, in terms of prediction accuracy, the proposed model is superior to other single models and 

combination models because it has the minimum MAPE value. Third, the proposed combination model 

could achieve better predictive performances at obvious turning points of power generation time series 

which can be reflected in several special points of the Japan and Russian Federation data. Even if there 

may be certain fluctuations in the future trends for power generation sequences, the proposed model 

could show promising results. In summary, all of those results showed that the proposed combination 

model is superior to the single models and other combination models for the test countries in terms of 

forecasting accuracy and model selection risk.  
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