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Abstract: Battery fast charging is one of the most significant and difficult techniques 
affecting the commercialization of electric vehicles (EVs). In this paper, we propose a fast 
charge framework based on model predictive control, with the aim of simultaneously 
reducing the charge duration, which represents the out-of-service time of vehicles, and the 
increase in temperature, which represents safety and energy efficiency during the charge 
process. The RC model is employed to predict the future State of Charge (SOC). A single 
mode lumped-parameter thermal model and a neural network trained by real experimental 
data are also applied to predict the future temperature in simulations and experiments 
respectively. A genetic algorithm is then applied to find the best charge sequence under a 
specified fitness function, which consists of two objectives: minimizing the charging 
duration and minimizing the increase in temperature. Both simulation and experiment 
demonstrate that the Pareto front of the proposed method dominates that of the most 
popular constant current constant voltage (CCCV) charge method. 

Keywords: battery fast charging; model predictive control; state of charge; genetic 
algorithm; electric vehicles 
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1. Introduction 

It is necessary to refuel all vehicles after a period of travel. For conventional fuel-driven vehicles, 
the fuel can be replenished quickly and safely at filling stations, with a minimal out-of-service time 
and without energy loss. However, the replenishment of energy in electric vehicles requires charging 
the battery pack. In general applications, such as MP3 players, shavers, cell phones, the charging 
process may last several hours, leading to a long out-of-service time. The charging method is also 
crucial; an unsuitable method leads to high increase in temperature in a battery and even the risk of fire 
and explosion. 

Therefore, charging control is a significant issue in battery management systems, with the aim of 
feeding external energy into batteries in a fast, safe, and efficient way. Fast charging helps to reduce 
out-of-service time and promote the commercialization of EVS. Safe charging not only assures the 
safety of users by preventing battery burning and explosions during the charging process, but also 
prolongs the battery life by preventing overcharging and overheating damage. Efficient charging can 
convert as much electrical energy as possible from a charger to electrochemical energy stored in a 
battery so as to enhance energy efficiency. 

1.1. Literature Review 

Charging methods have been studied since the invention of rechargeable batteries. The earliest and 
the most common charging method is named the constant trickle current (CTC) [1] method, which has 
a simple circuit structure and very low cost. Thus, the constant trickle current method has been adopted 
in most electronic products for many years. Because this method provides a very small current, the 
charging time is extremely long so that it usually works overnight. An easy way to reduce the charging 
time is to increase the constant current (CC). Charging with 1 C current can fill an empty battery in 
one hour. However, one drawback in the CC charging method is that it requires a very precise state of 
charge (SOC) estimator which has the ability to determine whether the battery is fully charged and 
whether to stop the charging process. Unfortunately, the precise SOC estimator is not easy to implement. 
Another disadvantage is that CC charging cannot avoid over-voltage to the battery. A battery can be 
simply modeled with an open circuit voltage (OCV) source and a series-connected resistor. The 
voltage on the resistor will cause the terminal voltage to be always higher than the OCV during CC 
charging, finally leading to over-voltage when the OCV approaches its full value. Taking a Li-ion 
battery as an example, the over-voltage during charging will degrade the crystallographic structure of 
the cathode and cause oxidative decomposition of the electrolytic solvents [2]. 

The constant current constant voltage (CCCV) method has been proposed to overcome the 
disadvantages of CC charging. A CC period is applied until the charging voltage reaches a 
predetermined value, and then the charging process goes into the CV period. In the CV period, the 
charging voltage is fixed to a cutoff value; therefore, the charging current will be automatically 
reduced along with the increase of SOC. Generally, the CV period requires a long charging period [3]. 
In order to enhance charging performance of CCCV, various combinations of CC and CV periods have 
been proposed in recent years, such as CCCVCV [4], (CCCV)2 [5], and so forth. A smooth control 
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circuit (SCC) is proposed to ensure the stable transition from the constant-current (CC) to the  
constant-voltage (CV) stage [6]. A further review of CCCV family is given in [7]. 

In recent years, since microprocessor control units (MCUs) and even computers have been applied 
to monitor and control the charging process at charging station for EVs, so some intelligent methods 
can be put into practice. One kind of intelligent charger controls the charging process by detecting the 
tuning points. The tuning points are selected as the threshold points, stationary points, and inflection 
points of battery voltage, temperature, and lapsed time [8–10]. These intelligent methods only change 
the charging behavior at tuning points and the periods between tuning points are still under open-loop 
control. Fuzzy control has been also applied to solve the charging control problem [3,11]. Optimal 
control based on power loss model was adopted to enhance the charging efficiency [12].  
In [13–15], neural networks and genetic algorithms are also introduced to design the membership 
functions and inference rules of the fuzzy controller. Optimization methods, such as the ant colony 
algorithm and evolutionary algorithm, have also been introduced to optimize a best multi-stage CC 
charging profile [16,17]. The optimization does not aim to regulate the real-time charging current 
according to instant system measurements, but rather to find a best charging profile covering the whole 
charging process. Therefore, its performance is seriously dependent on the accuracy of the model used 
in optimization. Suffering from system noise and the time-variance properties of batteries, the 
robustness of these methods is weak. In [18], to increase the charging speed, a grey prediction 
technique is utilized to develop a grey-predicted control system. In that study, the control system does 
not take increase in temperature into consideration and only applies a one-step prediction. The small 
predictive horizon weakens the prediction of future system behavior. 

1.2. Overview of Proposed Charging Controller 

Modeling of batteries has been comprehensively studied in recent years, and some are demonstrated 
to be accurate and efficient enough to model the behaviors of batteries [19–23]. These models make it 
possible to apply model predictive control (MPC) to manage the battery charging process. 

MPC is an advanced control method and has been widely applied in many fields [24,25]. The 
working principle of MPC is to apply system models to predict system responses to possible future 
control sequences and to find the best future control sequence by optimizing the user-defined objective 
function. Only the first element of the control sequence is applied to the controlled system at each 
time. The system states are then sampled again and the calculations are repeated at the next control 
time. The prediction horizon is constantly shifted forward. Because the receding horizon strategy 
updates predictions based on the instant measurement of system inputs and outputs at each control 
time, its robustness has been demonstrated to be strong [26]. MPC may be categorized as either linear 
MPC or nonlinear MPC, according to the linearity of the system models and constraints. For linear 
MPC, the best control sequence can be analytically obtained by solving Diophantine equations. 
However, for nonlinear MPC, the best control sequence usually is calculated numerically under an 
optimization framework [27]. 

Available battery models establish the basis for applying a MPC framework to solve the charge 
control problem. Three advantages of MPC explain the rationale. Firstly, it has the ability to predict 
future battery states under a possible future charging sequence and hence evaluate charging performance 
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over a comparatively long period. Secondly, it calculates the best charging sequence using an 
optimization method, which can solve multi-objective problems. Thirdly, it utilizes a receding horizon 
strategy and only applies the first element of the best charging sequence at each control moment. The 
prediction error caused by model inaccuracy will not accumulate because instantaneous measurements 
correctly update each initial prediction value. As shown in Figure 1, the fast charging control 
framework proposed in this work consists of the following components: 

1. A SOC predictor, predicting the SOC of battery when fed by a sequence of future 
charging current; 

2. A temperature predictor, predicting the future battery temperature under a sequence of 
charging current; 

3. A fitness evaluator, evaluating the performance of the sequence of charging current; 
4. An optimizer, finding the best sequence of charging current using genetic algorithm (GA). 

Figure 1. Fast charging control framework based on model predictive control. 
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2. Predictive Models 

To utilize predictive control, we apply battery models to predict future battery states under a 
sequence of future charging current. The battery states of interest in this study are SOC and 
temperature. The former indicates the charging duration and whether overcharge damage is possible, 
while the latter represents the safety and energy efficiency during the charging process.  
Charging control is necessary to: (1) minimize charging duration; (2) minimize temperature increases; 
and (3) restrict temperature to a safe range. 

2.1. RC Model for SOC Prediction 

Figure 2 describes the RC equivalent circuit model [28], which is applied in this paper. This model 
consists of a bulk capacitor bC  which simulates energy storage and a surface capacitor sC  which 
represents the dynamic property of the battery. Output resistance 0R , surface resistance sR  and bulk 
resistance bR  are utilized to model the internal resistance of the battery. 
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Figure 2. The battery RC Model. 

 
 

In this paper, we denote k  and sT  as the time index and sampling time, ( )bV k  and ( )sV k  as the 
voltages of bulk capacitor and surface capacitor respectively, ( )I k  as the charging current, 0 ( )V k  as 
the terminal voltage. The voltage of bulk and surface capacitor are selected as the state vectors. 
Charging current is selected as the system input and terminal voltage is selected as the system output. 
System discrete time-variant state space equations are expressed as follows: 
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SOC in the RC model is estimated using the voltages of the two capacitors based on the relationship 
between SOC and the open-circuit voltage (OCV). Since bC  represents the bulk energy in the battery, 
it contributes the majority of the battery SOC, as expressed as follows: 

)]()(20[
21
1 kSOCkSOCSOC

sb CC +=  (10) 
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where: 

))(()( kVFkSOC bSOCOCVCb −=  (11) 

))(()( kVFkSOC sSOCOCVCs −=  (12)

( )OCV SOCF − ⋅  is the function mapping OCV to SOC. It is usually predetermined by the manufacturer’s 

datasheet or experimental data. 

2.2. Thermal Model in Simulation 

Reference [28] proposed a simple single-node lumped-parameter thermal modal for batteries. It 
models the thermal process in three stages. In the first stage, the Joule effect generates heat in the 
battery. In the second, the battery's heat is conducted and convected to the surrounding air. Finally, the 
surrounding air exchanges heat with the ambient. In the RC model, the heat generation is expressed by: 

2 2 2
0 0( ) [ ( ) ( ) ( ) ( ) ( ) ( )]g s s s b bQ k T I k R k I k R k I k R k= + +  (13) 

where: 
0 ( ) ( )I k I k=  (14) 
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( ) ( ) ( )s bI k I k I k= −  (16) 

Meanwhile, the heat passing from the battery to the surrounding air is expressed by: 

( 1) ( 1)( ) air
p

eff

T k T kQ k
R

− − −
=  (17) 

where airT  represents the effective temperature of surrounding air and effR  stands for the effective 

thermal resistance. Based on the assumption that 50% of the heat from the battery is spent to warm the 
air [28], airT  is expressed by: 

airair

p
ambair Cm

kQ
TkT

)1(5.0
)1(

−×
−=−  (18) 

where ambT  is the ambient temperature, ( 1)pQ k −  is the passing heat in previous step, airm is the 
airflow rate, and airC  is its heat capacity. 

Strictly speaking, the value of effR depends on the thermal control method. For example, it becomes 

smaller if the cooling fans are open. However, in this study, we assume the charging process is 
conducted in an environment with only natural convection. In this case, effR  is fixed as a constant with 

the value calculated by: 
1

eff
tR

hA kA
= +  (19) 
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where h  is the heat transfer coefficient in the natural environment, A  is the total module surface area 
exposed to the air, t  is the thickness of the module case, and k  is the thermal conductivity of the 
module case material. 

We denote ( )gQ k  as the heat generation which heats the battery and ( )pQ k  as the heat loss which 
cools the battery by heating the surrounding air. Therefore, the battery temperature ( )T k  can be 
calculated by: 

( ) ( )
( ) ( 1) g p

bat bat

Q k Q k
T k T k

m C
−

= − +  (20) 

where batm  is the mass of the battery, batC  is heat capacity of the battery. 

2.3. Thermal Model in Experiment 

The simulation model requires many physical parameters of the battery and working environment. 
However, in practice, these parameters usually cannot be obtained accurately. Meanwhile, the 
theoretical model only considers the ideal situation so that it may not be suitable for the complex and 
nonlinear electrochemical process inside the battery. Furthermore, heat generation is only caused by 
heating of the resistors, which does not fully represent the actual situation. In reality, heat generation 
during charge is also affected by the charging acceptance rate. In [5], it pointed out that “close-to-fully 
discharged batteries can be recharged with very high currents for a short period of time” and [29] 
concluded that for A123, a kind of LiFePO4, “at a low state of charge, nearly all the charging current 
is absorbed by the chemical reaction. Above 80% of SOC, more and more energy goes into heat”. 

Figure 3 shows the temperature curves of our experimental LiFePO4 cells during charge processes 
with different charging rates. The increase in temperature agrees with the two results reported in the 
literature above. 

Figure 3. Increase in temperature under different charging rates. 

 

The increase in temperature obviously also has a close relationship with the charging rate. High 
charging rates will cause high increase in temperature. Therefore, we select the SOC, the charging rate 
and the current temperature to predict the future temperature based on a neural network (NN). 
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Figure 4 shows the structure of the NN. The training set consists of the real data recorded in the 
charging process, as shown in Figure 3. The input vector contains three parameters of interest: 

)(kSOC , )(kT  and )(kI , and the output or the predictive result is )1( +kT . T  is directly measured by 
a temperature sensor while I  and SOC  is measured and estimated respectively by the programmable 
charger IT6154, measurement of current of which is accurate enough to calculate SOC  using 
columbic counting method. Since the whole charging process is recorded, the input vector at time k  
and the output at time 1+k  are known to train the neural network. 

Figure 4. Neural network for predicting battery temperature. 

 
 

The testing set also consists of the real data recorded in charging process, including the batteries 
used in training set and those only used in testing set. The predictive error is defined as the expression: 

ˆ( 1) ( 1) 100%
( 1)

T k T k
T k
+ − +

×
+

 

where ˆ( 1)T k +  is the predictive result by the neural network and ( 1)T k +  is the measured result during 
the charging process. The training method is back propagation (BP) learning. When the time step is set 
to 30s, the average prediction error is 3.36% and the maximum is 5.43%. 

2.4. Model Based Prediction 

To predict battery states under a given sequence of future charging current, two problems should be 
solved: (1) how to initialize the prediction at time k ; and (2) how to realize the multi-step prediction 
based on the one-step prediction model. 

In order to initialize the prediction at time k , the RC model must know the last system state 
( 1)x k − , the last system input ( 1)u k − , and the model parameters at time k . Among them, ( 1)u k −  and 
( 1)y k −  can be obtained from the current sensor and voltage measurement, respectively, while 
( 1)x k −  can be obtained by closed-loop estimators such as the extended Kalman filter [30],  

sigma-point Kalman filter [31,32], H∞ filter [33], and so on. The closed-loop filters are able to 
eliminate accumulated errors and the estimation result will gradually converge to the real value, or to a 
limited error range. The model parameters are stored in a look-up table indexed by SOC and 
temperature. The table is constructed using the off-line testing data. The slow changes in SOC and 
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temperature give the reason for updating the model parameters at time k  according ( 1)SOC k −  and 
( 1)T k − , especially when sT  is comparatively small. ( 1)SOC k −  is calculated according to Equation (10), 

and ( 1)T k −  is measured directly from a temperature sensor fixed on the surface of the battery. 
Given the value of ( )I k , the above preparation allows a one-step prediction of ( )SOC k  and ( )T k . 

However, a single-step prediction is usually insufficient to predict system behavior over a long 
process. Generally speaking, the prediction horizon in MPC is more than one step. Therefore, a  
multi-step predictor is necessary to predict system states exerted by a sequence of future charging 
current. A simple way to realize the multi-step predictor is an iterative prediction, which uses the 
predictive future system states at time k j+  as the initial state for the next time 1k j+ + . 

In summary, at control time k , the SOC model and temperature model can iteratively map a 
sequence of future charging current [ ( ), ( 1),..., ( 1)]I k I k I k p+ + −  to future battery states 
[ ( ), ( 1),..., ( 1)]SOC k SOC k SOC k p+ + −  and [ ( ), ( 1),..., ( 1)]T k T k T k p+ + − . The multi-step prediction 
uses an open-loop manner in which each step suffers from the prediction error in the previous step and 
finally reverts to the errors in the initial values at time 1k− . Fortunately, these initial values are 
estimated in a closed-loop manner so that initial errors are comparatively small. In reality, any battery 
management system requires such an estimator to obtain the real-time SOC and measure the battery 
temperature. The results can be used as the initial values. 

3. Formulation under MPC Framework 

Given a sequence of future inputs, the length of which is denoted as the prediction horizon P, the 
future system states can be predicted based on the dynamic system model. The future system behavior 
under the sequence of inputs can then be evaluated based on a performance index. At each control 
time k , the basic idea of MPC is to find an optimal sequence of inputs ˆ ˆ ˆ[ ( ), ( 1),..., ( 1)]u k u k u k p+ + − , 
which optimizes the performance index, and then apply the first element of the input sequence ˆ( )u k   
to the system as the current control variable. In the charging control problem, MPC optimizes  
a sequence of future charging current [ ( ), ( 1),..., ( 1)]I k I k I k p+ + − , which has the best performance  
index based on the predicted battery states )]1(),...,1(),([ −+−+ pkSOCpkSOCkSOC  and 

ˆ ˆ ˆ[ ( ), ( 1),..., ( 1)]T k T k T k p+ + − . 

3.1. Performance Indexes 

The performance index reflects control objectives. The first objective is to minimize charging 
duration. However, in a limited prediction horizon, it is impossible to directly predict the whole 
charging process, so we turn to the tracking of a user-defined SOC trajectory instead. A fast-rising 
SOC trajectory requires a fast charging speed while a flat one requires a slow speed. 

The expected SOC trajectory can directly copy from any real charging trajectory controlled by any 
charging scheme. In addition, the expected trajectory can be set as a real trajectory with revisions 
based on some special considerations. To track the expected trajectory, the performance index 1J  is 

expressed by: 
( ) ( )*

1 1 1J SOC k p SOC k p= + − − + −  (21) 
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where *SOC  is the user-defined, expected SOC trajectory. Because SOC is required to achieve  
the expected point in the final step, evaluation of the SOC tracking performance is based on the  
final prediction state only. How this is achieved is not very important from the point of view of the 
charging process. 

The second objective of charging control is to minimize the increase in temperature, which partially 
reflects energy efficiency and system safety. Assuming that the expected trajectory is copied from a 
CCCV charging process, without consideration of temperature, the best charging current sequence is 
the same sequence applied in the CCCV process. However, if we take increase in temperature into 
consideration to evaluate charging performance, as expressed in 2J , the MPC will try to track the 
expected SOC curve using a process in which increase in temperature is minimized: 

2
ˆmax{ ( ) ( 1) | 0,1,..., 1}J T k j T k j p= + − − = −   (22) 

3.2. Constraints 

Because a charging sequence may cause damage to the battery or lead to dangerous events, it is 
necessary to design some constraints to protect the battery during the charging process. The first 
constraint is that the SOC must not exceed 100%, to avoid over-charge damage. In practice, to reserve 
some tolerance, 98% SOC is treated as the full state. The second constraint is that temperature must be 
kept in a user-defined range to avoid overheating caused by overcharge or by a large charging current 
which exceeds the instant charging acceptance level. The two constraints are expressed by: 

%98)(:1 ≤+ jkSOCC   (23) 

and: 

2
ˆ: ( ) ( )C T k j T k j+ ≤ +   (24) 

where 0,1,..., 1j p= −  and T  is the user-defined safe range, which is designed either as a constant, 
indicating the highest temperature during the whole charging process, or as a time indexed function 
specifying the temperature limitation along with charging duration. 

4. Optimization Using Genetic Algorithm 

The MPC charging control problem is formulized to minimize the performance indexes 1J  and 2J , 
subject to the constraints 1C  and 2C . Essentially, the control problem is transformed into a constrained 
multi-objective optimization problem. 

Generally, a multi-objective optimization problem can either be solved by multi-objective 
optimizers directly, or by transforming it into a single-objective problem which can be solved by 
single-objective optimizers [34]. In this paper, we apply the latter method because SOC tracking is 
more important than temperature management in the charging process, so the two objectives can be 
merged into one index by summing with different weights. To solve the optimization problem, a 
genetic algorithm (GA) is applied because of its strong global searching ability without the 
requirement of derivative information of objective functions. Since the two constraints should be 
strictly satisfied in the charging process to assure the safety and health of the battery, solutions that fail 
to satisfy anyone of the constraints will be assigned the worst fitness. 
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From what discussed above, the fitness function to be minimized in GA is expressed by: 

( )
( )

1 1 2 2 1 2and are held
otherwise

J J C C
F

ω ω+⎧⎪= ⎨ +∞⎪⎩ 　
 (25) 

where 1ω  and 2ω  are the weights of 1J  and 2J . 

The minimization problem is solved by a standard GA, the scheme of which is illustrated in Figure 5 
and briefly described in the following steps. 

Figure 5. Scheme of the standard GA. 

 

1. Coding. The standard GA generally codes a candidate solution as a string of characters which are 
usually binary digits, referred to as a chromosome. The candidate solution is termed an 
individual. Accordingly, the set made up of a number of individuals is termed a population. In 
this paper, we apply a real-value coding method, which codes a candidate solution as a set of 
floating decision variables. The real-value coding method is proven to have superior 
performance to the binary-coded method in control optimization problems [35]. 

2. Initialization. The standard GA starts with an initial population. Usually, individuals in the initial 
population are produced randomly. In MPC, the initialization process is executed at each control 
time to start the GA. Since the best control sequence optimized at time k  contains good 
candidates from 1k +  to 1k p+ − , one initial individual is specially designed by shifting it one 
time step and filling the last charging current with the same value as ˆ( 1)I k p+ − , as shown in 
Figure 6. This individual introduces historical best charging sequence into the current 
optimization process, thus it is helpful to improve optimization performance to be at least very 
similar with the previous optimized performance. 
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Figure 6. Initialization of one special individual by introducing the best control sequence 
optimized in previous step into the present step. 

Time k:
Best Sequence )(ˆ kI )1(ˆ +kI ... )2(ˆ −+ PkI )1(ˆ −+ PkI

)1(ˆ +kI )2(ˆ +kI ...Time k+1:
Initial Individual )1(ˆ −+ PkI )1(ˆ −+ PkI

 
 

3. Fitness evaluation. We evaluate the fitness of each individual in each generation according to the 
Equation (25). The smaller the fitness, the better the individual. However, to facilitate the 
following selection step, the raw fitness is usually scaled to assign suitable selection pressure to 
each individual. In this work, the scale function is expressed as follows: 

1
1scale rF

F
=

+
 (26) 

where r  is power of raw fitness. A large r  will quickly increase the selection pressure to a 
worse individual, accelerate the convergence speed, and increase the risk of premature especially 
for multi-peak landscape, and vice versa. 

4. Selection. Individuals are selected from the previous generation to the current generation based 
on the scaled fitness scaleF , following the survival of the fittest rule. Many selection methods 
have been developed to avoid genetic drift and premature phenomena. In this work, the roulette 
wheel selection method is adopted [36]. The elitism strategy is also applied in selection to assure 
that the best solution will never be lost. 

5. Crossover. In the crossover step, the standard GA exchanges information between two parent 
individuals and produces two child individuals. In this work, the arithmetical crossover method 
is used. Given two parents 1x and 2x , the children 1y  and 2y  are produced by linear combinations 
of parents with a random coefficient λ :  

( )1 1 21y x xλ λ= + −  (27) 

( )2 2 11y x xλ λ= + −  (28) 

6. Mutation. After the crossover step, a subset of individuals is selected with a mutation probability 
of mp . To explore the search space, we use Gaussian mutation, which adds a random value from 
a Gaussian distribution with variance σ to each item of the selected individual. 

7. Termination. Many terminating conditions have been proposed to stop the iteration process. For 
example, when the distances among individuals are smaller than a predetermined value, an 
individual satisfies a minimum criterion, or the maximum number of generations is reached. The 
last method is applied here. 
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5. Performance Demonstration 

5.1. Settings 

In order to evaluate the proposed MPC based charging control strategy, simulations are conducted 
based on a well established “7 Ah Saft Lithium-Ion battery” provided in Advisor [21]. RC model 
parameters and OCV all are time-variant variables depending on SOC and temperature. The curves of 
OCV and 0R  are shown in Figure 7 as examples. Interpolating method is applied to create the 
continuous values space. The constant parameters in this simulation environment are given in Table 1. 

Figure 7. Battery time-variant properties. Taking OCV and Ro as examples. Data source: 
Advisor. 

 
 

Table 1. Parameters setting in the simulation and experiment. 
 Symbol Description Value Unit 

Battery 
(simulation) 

C Battery nominal capacity 7 Ah 
mbat Battery mass 0.37824 kg 
Cbat Battery heat capacity 795 J/kgK 
Reff Effective thermal resistance 7.8146 K/W 
Tamb Ambient temperature 20 oC 

airm  Airflow rate 5.8333 g/s 
Cair Air heat capacity 1009 J/kgK 

MPC 

Ts Control period 30 s 
p Prediction horizon 5 -- 

1ω  Weight of SOC tracking J1 100 -- 

2ω  Weight of termperature rising J2 1 -- 

GA 

MaxGen Maximum generation number 30 -- 
Popsize Population size 50 -- 

r Power of raw fitness in scaling 2 -- 
Rλ  The range of crossover coefficient [0.1, 0.9] -- 
pm Mutation probability 0.2 -- 
σ  Variance of Gaussian mutation 1 -- 

Remark: The typical value of J1 is around 0.08 while that of J2 is around 2. Therefore, the real weight ratio of 
J1 to J2 is around 4:1. 
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In this work, we select the control period sT to be 30 seconds using a trial and error method 
according to experimental results. A shorter period requires the charger to change the charging current 
more frequently. It will increase working load to the charger and lead to more energy loss caused by 
switch circuits. The longer period will decrease the frequency to tune charging current in the charging 
process so that the performance of MPC will be limited. In addition, the long control period implies 
that the prediction based on the model is over a long time which essentially requires a more accurate 
battery model. Finally, the 30 seconds control period is long enough to allow GA to finish the 
optimization process. 

5.2. Evaluation Method 

Fast charging speed and low heat generation are both objectives in charging control. However, the 
two goals conflict with each other. Fast charging essentially requires large current and hence leads to 
high heat generation, and vice versa. From the viewpoint of multi-objective optimization, the 
conflicting objectives are usually evaluated by Pareto curve. For charging control, the x-axis is set as 
the charging duration and the y-axis as the final temperature increase ( ) (0)T end T− . As shown in 
Figure 8, the curve with the circle marks represents the Pareto front of the CCCV family, where the 
CC period applies 1.5 C to 6 C current for fast charging. The CCCV Pareto front splits the objective 
space into two sections. Any charging result located in the upper right section is worse than the CCCV 
family for both objectives, while any result in the bottom left section is better than CCCV for both 
objectives. Therefore, we evaluate the performance of the charging controller according to the location 
of results. 

Figure 8. Pareto fronts of CCCV and MPC charging methods in simulation. The expected 
trajectories of MPC are modified from CCCV by multiplying 1.05. 

 

5.3. Simulation Results 

To facilitate comparison with the conventional CCCV family, we set the expected SOC trajectory 
by multiplying by 1.05. The new trajectory is intended to accelerate the charging speed. Since the 
working temperature of Li-ion batteries, especially for vehicular batteries, is from 20 °C to 40 °C, the 
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ambient temperature is set as 20 °C and the safe range of temperature is set below 40 °C. The search 
space of the charging current is fixed from 0 C to 6 C. 

The MPC is applied to track the modified SOC trajectories from 1.5 C to 4.5 C. A faster charging 
speed cannot keep the rising temperature within a safe range. The Pareto front of the MPC is illustrated 
in Figure 8 by the curve marked with stars. The results for the MPC clearly dominate those of the 
CCCV family. Only the result of the trajectory revised from 1.5 C has a similar performance to CCCV.  
The reason is that a 1.5 C current is comparatively so small that it limits the applicable current 
sequence to a small range. If the fixed search range can be accordingly reduced, e.g., from 0 C to 3 C, 
the result will be improved. 

As an example, the charging processes of CCCV and MPC are compared in the case of 3 C, shown 
in Figure 9. At the beginning of charge, the internal resistance is large when the SOC is very low. In 
this process, the rising temperature dominates the fitness function. The optimized charging profile 
applies a smaller current than CCCV. However, the increase in the SOC tracking error gradually 
requires a higher current to speed up. Meanwhile, internal resistance is reduced significantly along 
with the increase in SOC. Therefore, in the middle period, the charging current for MPC is larger than 
for CCCV. In the final stage, the current in the CV period is decreased to prevent over-voltage of the 
terminal voltage. Since the trajectory of the MPC is modified from the CCCV, the same trend is 
retained in MPC, keeping the terminal voltage under 4 V. 

Figure 9. Curves during CCCV and MPC charging processes using modified 3 C profile. 

 

5.4. Experimental Results 

Since the maximum charging current of the programmable electric charger IT6154 is 9 A, in the 
experiment we use a single Li-ion cell with 2.3 Ah to demonstrate the fast charge performance of 
MPC. To protect the cells, we limit the charging current to below 3 C, i.e., 6.9 A. The ambient 
temperature is 25 °C. The expected SOC trajectories of MPC are 1.10 times those of the CCCV results. 

Figure 10 shows the Pareto-fronts of the CCCV and MPC charging results in experiments. All the 
results for MPC are superior to those for CCCV. Figure 11 illustrates the details of the 2 C charging 
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processes. Unlike the simulation model, where the temperature is high in the lower SOC range of the 
specified battery type, the real LiFePO4 cell has good charging acceptance at low SOC. Therefore, a 
high charging current is utilized to increase the charging speed. Before reaching around 80% SOC, 
another high charging period occurs. This is because MPC predicts the high temperature increase 
beyond 80%, so it applies a high charging current at this stage and switches to a low charging current 
when SOC is close to 1. 

Figure 10. Pareto fronts of CCCV and MPC charging methods in experiments. The 
expected trajectories of MPC are modified from CCCV by multiplying by 1.10. 

 

Figure 11. Experimental curves during the CCCV and MPC charging processes using a 
modified 2 C profile. 
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6. Conclusions  

One of the most important obstacles for the mass commercialization of electric vehicles is the 
comparatively too slow process of refueling their energy. However, simply speeding up the charging 
process will increase the temperature rise, resulting in a low energy efficiency of charging process and 
maybe even damage to the batteries being charged. Therefore, the battery charge problem actually is a  
multi-objective issue which should be evaluated under the Pareto-optimal concept.  

On the other hand, the charging stations of electric vehicles are usually designed as advanced 
equipment rather than a single chip based charger for portable devices. Thus, computers can be applied 
in charging stations to control the charging process. Although the proposed framework contains 
advanced algorithms such as NN and GA, it is practicable to be implemented on these computers, as 
shown in our experiment. 

To accelerate charging speed and reduce the temperature increase, we introduce the MPC framework 
to the charging control process. Given a future charging sequence, the RC model and proposed 
modified ESC model are applied to predict the SOC in simulation and experiment, respectively. 
Meanwhile, besides the single-node lumped-parameter thermal model used in simulation, we also 
establish a neural network to model the thermal behavior of the applied battery in the experiment. A 
standard genetic algorithm is applied to optimize the charging current under the multi-objectives and 
constraints. The simulation and experimental results strongly demonstrate the availability and efficacy 
of MPC, with the conclusion that the Pareto front of the MPC dominates that of CCCV. 
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